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ON EMBEDDING SEMIFLOWS INTO A
RADIAL FLOW ON /,

RoGER C. McCANN

Let = be a semiflow on a separable metric space X such
that the negative escape time function is lower semiconti-
nuous and x—xrxt is a one-to-one mapping for each tc R*.
If = has a globally uniformly asymptotically stable critical
point, then = can be embedded into a radial flow on [..
This generalizes known results on embedding flows or semi-
flows into radial flows on [..

1. Introduction. In [3] L. Janos showed that a semiflow 7 on
a compact metric space X satisfying

(i) -mt is one-to-one for every te R*

(ii) there is a peX such that N{Xzt:t =0} = {p} can be
embedded into a radial flow on l,. In [2] M. Edelstein generalized
this result to

THEOREM I. Let @ be a semiflow on a separable metric space
X satisfying

(a) for each te R*, x —»xnt: X — X is a homeomorphism, of X
onto a closed subset of X,

(b) there is a pe X such that for each meighborhood U of
there is a T e R such that XntC U for all t = T.
Then 7w can be embedded into a radial flow on I,.

Evidently properties (a) and (b) generalize properties (i) and (ii)
respectively. Note that property (b) imposes a type of compactness
on the semiflow. For example, a radial flow on I, can be embedded
into itself trivially, but such a flow does not have property (b).

In this paper we further generalize properties (a) and (b) to

(e) x — xwt is one-to-one for each te R*,

(d) the negative escape time function is lower semicontinuous,

(e) = has a globally uniformly asymptotically stable ecritical

point p.
We will show (Corollary 8) that property (a) implies properties (c)
and (d). Evidently property (b) implies property (e). Property (e)
imposes a type of local compactness on the semiflow. Notice that
a radial flow on I, does satisfy property (e).

The principal result of this paper, Theorem 7, generalizes every
other result known to the author concerning embedding flows or
semiflows into radial flows on [,.
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2. Notation and definitions. Throughout this paper R and
R* will denote the reals and nonnegative reals respectively. A
flow on a topological space X is a continuous mapping 7: X X R—X
such that (where xznt = n(x, t)) 270 = ¢ for all x€ X and (xwt)ns =
2n(t + s) for all xe X and ¢t,seR. If R is replaced by R* in the
previous sentence, then 7 is called a semiflow. A point p of X is
called a critical point of 7 if pnt = p for all te R (or te R" if 7w is
a semiflow). A compact subset M of X is said to be stable with
respect to « if for any neighborhood U of M there is a neighbor-
hood V of M such that VzR+c U. A compact subset M of X is
said to be a global attractor if for any neighborhood U of M and
any z€ X there is a de R* such .that az[d, o) CU. The compact
set M is called a global uniform attractor if it is a global attractor
and if there is a neighborhood U of M such that for any neighbor-
hood Vc U of M there is a c¢eR* such that Uznfe, =) V. A
stable global (uniform) attractor is said to be globally (uniformly)
asymptotically stable.

A continuous function L: X — R* is called a Liapunov function
for a compact subset M of X if L(xnt) < L(x) for every xe X — M
and 0 < ¢, L(xmt) —0 as t— o for every xze€X, and L(x) =0 if
xeM. Let M be a compact asymptotically stable subset of X. A
straightforward argument shows that if x€ X — M and if U is any
neighborhood of M, then there is a neighborhood V of = and a
T > 0 such that Vz[T, ) c U. With this observation the proof of
the following theorem is essentially identical with that of Theorem
10 in [1].

THEOREM II. A compact subset M of a metric space X 1s
globally asymptotically stable with respect to a semiflow @ if and
only if there ts Liapunov function for M.

Let X and Y be topological spaces on which are defined flows
(semiflows) = and p respectively. We say that 7 can be embedded
into p if there is a homeomorphism %2 of X onto a subset of Y
such that h(xwt) = h(x)ot for every e X and te R(te R").

The set of all sequences x = {x,, ,, ---, &,, +--} of real numbers
such that 37, 2% converges is denoted by [,. If addition and scalar
multiplication are defined coordinatewise and if a norm is defined
by ||lz|| = Gy, #2)¥, then [, is a real Banach space. A flow p on
l, is called a radial flow if there is a c¢<€ (0, 1) such that zpt = ¢’z
for every (z,t)el, x R.

Let 7= be a semiflow on X. The function a: X — [ — o, 0] defined
by a(x) = inf {—¢: there exists ye X with yznt = x} is called the
negative escape time function. Throughout this paper we shall
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assume that a is lower semicontinuous, i.e., a(x) < lim,,inf a(y).
It is an elementary exercise to show that a(xmt) = a(x) — ¢ for all
t=0 and 2z X.

3. The embedding. Henceforth, = shall denote a semiflow on
a separable metric space X satisfying

(1) x— axt is one-to-one for each tec R™,

(2) the negative escape time function is lower semicontinuous,

(83) m has a globally unformly asymptotically stable eritical
point p.
Also, U shall denote a neighborhood of p such that for any neigh-
borhood V< U of p, there is a 7 > 0 such that Uz[T, «)c V.

Let t<0 and e X. Since -mw(—t) is one-to-one there is at
most one y € X with yn(—t) = . If such a y exists then we shall
denote this ¥ by zzt. It is a straightforward exercise to show that
if s,te R and x ¢ X, then (ant)rs = xn(t + s) whenever each side of
the equality is defined. Suppose that {x;} and {¢;} are sequences in
X and R converging to x e X and ¢ € R respectively. Using property
2 it is easy to show that if x,7¢, is defined for each ¢, then zrzt is
defined and w;zt, — ant as 1 — oo,

LemmA 1. If za(a(x), 0] C U, then — o <a(x).

Proof. Let Vc U be a neighborhood of p such that VzR =V
and x¢ V. Then an(a(x),0lNn V=¢. Let T >0 be such that
UnTc V. Then zx(a(x) + T, ) V. In order that this be con-
sistent with zzw(a(x), 01N V = ¢, we must have a(x) = —co.

LEMMA 2. Let o be a semiflow on a metric space Z. If

(i) the megative escape time function v is lower semicontinu-
ous,

(ii) each trajectory contains a start point, i.e., for each xe€Z
there 1s a y € Z such that yo(—v(x)) = z,
then Zwt is a closed subset of Z for each t = 0.

Proof. Let t=0 and let{x} be a sequence in Z such that
.0t —y for some yeZ. Then ~v(xo0t) < —t for every 4 so that
v(y) £ —t. By (ii) there is a z€ Z such that zo(—v(y)) = y. Then
y = (zn(—v(y) — t))ot € Zot. 1t follows that Zot is a closed subset
of Z.

Let L be a Liapunov function for » (Theorem II) and let ) be
any number in the range of L such that L*([0,N]) c U. Set
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Y ={xec L7([0, \]): a(@) = —1 and zn(—1, «)c L7Y[0, A])}

and let o denote the semiflow obtained by restricting = to Y x R*.
Let g denote the negative escape time function with respect to o.
We will show that ¢ satisfies the hypotheses of Theorem I.
Hence, ¢ can be embedded into a radial flow on [,., We will then
extend this embedding to an embedding of 7= into a radial flow.

LEMMA 3. For every x € Y there is a y € Y such that yo(—B(x))==x.

Proof. There are two cases to consider: az(a(x), o) < L7'([0, \))
and zw(a(x), <) N L*(\) # ¢. In the latter case there is a unique
zeam(a(x), ) N L™*(\) and a unique t€ R such that zzt = x. Since
xzeY we must have 1 < ¢. Then g8(x) = —t + 1. Set y = zxl. Then
yeY and yo(—pR®x) = yr(—pLx)) = @rl)x(t — 1) = zat = 2. Now
suppose zzm(a(x), ) < L7*([0, »)). Then zz(a(x), ) U so that, by
Lemma 1, — o <a(x). Since €Y we must have a(x) £ —1. Let
yexm(a(x), ) be such that yrz(—a(x) —1)=2. Since a(x)=
a(yr(—a(x) + 1)) = a(y) + a(x) + 1 we have a(y) = —1. If y = zxt
for some ¢t >0 then —1 = a(y) = a(znt) = a(z) — t so that a(z) =
t—1> —1. It follows that B(x) = a(x) + 1 and that yo(—pB()) = =.
This completes the proof.

LEMMA 4. Let {x;} be a sequence such that x, — x for some x € X.
If there exists a t€ R such that xwte L~'(\), then either t = lim inf
a(x;) or there are a subsequence {x;} of {x;} and a sequence {t;} in R
such that xmt; € L7X(\). In the latter case t; —t.

Proof. Suppose liminf a(x,) < ¢. Let {z;} be a subsequence of
{x;} such that a(z;) — liminf a(x;). For any d¢€(0, ¢t — liminf a(x,))
eventually a(x;) <t —4d. Also a(x) <t — 6 because a(x) =< liminf
a(x,). Since L(xzw(t — 0)) > L(xwt) = N > L(xw(t 4+ 6)) we have
L(z;m(t — 6)) >N > L(z;zx(t + §)) eventually. Hence, there are ¢;¢
(t —0,t + d), eventually, such that L(x;mt;) =\. Since § can be
chosen arbitrarily small we must have ¢; —¢.

LEMMA 5. (3 is lower semicontinuous.

Proof. Let xeY and let {«;} be a sequence in Y such that z; — z.
Let {x;} be any subsequence of {x;} such that B(x;) — B3 for some
Be[—c,0]. There are two cases to consider: azt € L~'(\) for some
te R and xxw(a(x), ) L7*([0, N)). If axwte L~'(\) for some ¢, then
by Lemma 4 either a(x) < ¢ < lim inf a(z;) or there are a subsequence
{x,} of {x;} and a sequence {¢,} in R such that ¢, —¢ and 7t ¢
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L=(\). If t < liminf a(x;), then B(x) =¢+ 1 and B(z;) = a(x;) + 1
so that B(x) < lim inf B(x;) = 8. If there are a subsequence {x,} of {x,}
and a sequence {¢,} in R such that ¢, —¢ and x,7t, € L~*(\), then g(x) =
t+1 and B(x,)=t,+1. Then B(x)=lim B(x,)=L. Thus if xxte L'()\),
then B(x) =< B. It follows that B(x) < liminf B(x;) whenever zzte
L7*(\) for some teR. Now suppose that xmw(a(x), )< L= ([0, \)).
Then pg(x) = a(x) + 1. Again there are two cases to consider:
x;w(o(x,), ) < L7*([0, »)) for every ¢ and there exist a subsequence
{z,} of {x;} and a sequence {s,} in R such that xz,zs,c L~*(\) for
every n. In the former case we have B(x;) = a(x;) + 1 and B(x) <
lim inf B(x;) since a is lower semicontinuous. In the latter case, let
V < U be a neighborhood of p such that x¢ VZR" and let T > 0 be
such that Uz[T, «)c V. Then L7'(\)x[T, )V and we must
have s,e[0, T] for all » sufficiently large. Let s be any accumula-
tion point of {s,} and let {s;} be a subsequence of {s,} such that
s;—s. Then ux;ws;e L7'(\) and x,ms; —axws. Hence, xzmwse L'(\)
which contradicts our assumption that azm(a(x), «)c L7Y([0, n)). It
follows that Q(z) < lim inf B(x;) whenever zz(a(x), ) L]0, \)).
Combining this with the result B(x) < lim inf 8(x;) whenever xzzwte
L=(\) for some tc R obtained earlier in the proof, we conclude that
B is lower semicontinuous.

Collecting together the above results we have that

(i) o is a semiflow on the separable metric space 7Y,

(ii) if V is a neighborhood in Y of p, then there is a 7 >0
such that Yo[T, ) c V, (This follows directly from the facts that
Y c U and ¢ is a restriction of 7.)

(iili) Yot is a closed subset of Y for every ¢ = 0 (Lemmas 3, 5,
and 2).

In light of Theorem I the semiflow ¢ on Y can be embedded into
a radial flow p on l,. Let ¢e(0,1) be such that xpt = ¢z and let
h:Y — 1, be a homeomorphism of Y onto A(Y) such that h(xot) =
hx)pt for every (z,t)eY x R*. Since ¢ is a restriction of © we
have h(xmt) = h(x)ot for every (x,t)eY X R*. Now define a mapp-
ing H: X — 1, by

H(x) = h(zrt)p(—1)

where te R* is such that zzte Y. (H will be shown to be well
defined in the following lemma.)

LEMMA 6. H 1s a homeomorphism of X onto H(X).

Proof. We will first show that H is well defined. Clearly for
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every x € X, there is a ¢ = 0 such that antc Y. Moreover, if xnte
Y, then zz(t + s)e Y for every s = 0. In order to show that H is
well defined it suffices to show that h(xzwt)o(—t)=h(zm(t+s))o(—t—s)
whenever xzateY and s=0. Since znteY and s =0 we have
harn(t + s)) = h((ent)mws) = h(xrnt)ps. Hence h(xm(t + s)o(—t —s) =
(h(xmct)os)o(—t — s) = h(xmt)o(—t). The mapping H is well defined.
We will now show that H is one-to-one. Suppose that H(x) =
h(zrt)o(—t), H(y) = h(yrms)o(—s), and H(x) = H(y). Without loss of
generality we may assume that ¢>=s. Then H(y) = h(ynt)o(—t)
since ynte€Y whenever ynseY and s < t. Since H(x) = H(y) we
must have h(xwt) = h(yzwt). Recalling that & is a homeomorphism
we have xnt = ymt so that & = ¢ since -zt is one-to-one. The map-
ping H is one-to-one. Next we will show that H is continuous.
Let xe X and let {x;} be a sequence in X such that z, —>2x. Let
te R" be such that L(zzt) < n. Then a2z(t + 1)e Y. Also for all ¢
sufficiently large L(xzt) < x and 27(t+ 1)eY. Then H(z,) =
hxw(t + 1)o(—t — 1) = h(xn(t + 1))o(—t — 1) = H(x). Hence, H is
continuous. Finally we will prove that H-' is continuous. Let
ye X and let {y,} be a sequence in X such that H(y,) — H(y). Then
there exist ¢, t,€ R™ such that H(y,)=h(y.wt,)o(—t,) and H(y)=~h(yxt).
Let s, =inf{seR":ywscY}. We will show that {s)} is bounded.
Suppose not. Then there is a subsequence {s,} of {s,} such that s;—co.
If y,e L7([0, \]), then s, = 1. Hence, we may assume 1 =<s; and
y; ¢ L7([0,\]) for every j. Then y,z(s; — 1)e L'(A). Note that
H(y) «— H(y;) = h(y;ns;)o(—s;) = ¢~*ih(y;xs;). Since s; — o and ce
(0,1) we have ¢=*i— co. In order that ¢~*h(y;zs;) — H(y) we must
also have h(y;ms;) —0 where 0 is the origin in [,. Since % is a
homeomorphism y;rs; — p so that y,x(s; — 1) — p. This is impossible
because y;7(s;—1) € L7'(\) and L(p)=0. Hence {s;} must be bounded.
Without loss of generality we may suppose that 0 < s, < ¢ for every
1. Then H(y,) = Myxt)o(—1t) — h(yrt)o(—t) = H(y) so that h(yt)—
h(yzt). Since h is a homeomorphism, y,7t — ynt and we have y,—y.
Hence, H-' is continuous and H is a homeomorphism of X onto

H(X)cCl,.

THEOREM 7. Let @ be a semiflow on a separable metric space
X such that the negative escape time function is lower semicontinu-
ous and -t is one-to-onme for each te R*. If w has a globally uni-
formly asymptotically stable critical point, then ™ can be embedded
wnto a radial flow on I,

Proof. In light of Lemma 6, we need only show that H(zzs)=
H(x)ps for every (x,s)e X X R*. Let xc X and ¢t = 0 be such that
xwteY. Then (xms)nt =an(t +s)eY and we have H(xzs) =
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h(wms)mt)o(—1t) = h((xmt)ws)o(—t) = (h(xmt)ps)o(—1t)=(h(xxmt)o(—1))ps =
H(x)ps.

COROLLARY 8. ([2, Theorem 1]|.) Let @ be a semiflow on a
separable metric space having the properties

(i) x—xrt is a homeomorphism of X onto a closed subset of
X for each tc R,

(ii) there is a pe X such that for any mneighborhood U of p
there is a Te RY with Xntc U for all t = T.
Then 7 can be embedded into a radial flow on I,.

Proof. Clearly (i) and (ii) imply that -z¢ is one-to-one for all
te R™ and p is globally uniformly asymptotically stable respectively.
It remains to show that (i) implies that the negative escape time
function « is lower semicontinuous. Suppose that a is not lower
semicontinuous. Then there exist xe X, ¢ > 0, and a sequence {x;}
in X such that 2, —2 and a(x,) < a(x) — 6 for every 4. Thus
x,w(a(x)—0) is defined for every ¢. Then (z,7(a(x)—0))w(—alx)+0)=
2, — x so that x ¢ Xn(—a(x) + 0) = Xz(—a(x) + §) since Xxt is closed
for every ¢ = 0. Then there exists ze X such that zz(a(x) — §)==.
This is impossible because a(x) — 6 < a(x) and a(x) = inf {—¢: there
exists ye X with ynt = x}. Therefore, we must have that «a is
lower semicontinuous. The desired result now follows from Theorem 7.

In the proof of Corollary 8 we showed that if Xzt is a closed
subset of X for all ¢ € Rt then the negative escape time function a
is lower continuous. The converse of this is not valid. Let X =
[0,1) and define 7: X x R— X by zat =e'x. Evidently 7 is a
semiflow on X. The negative escape time function is defined by

Inxz if %0

a(®) = —o ifx=0.

Thus « is lower semicontinuous. However Xzl = [0, ¢™") is not a
closed subset of [0,1). Thus the lower semicontinuity of a does not
imply that Xzt is a closed subset of X for every te R*.

COROLLARY 9. (Theorem 5 of [4].) Let w be a flow on a separable
metric space which has a globally asymptotically stable critical point
p. Then © can be embedded into a radial flow on I, if and only if
p s globally uniformly asymptotically stable.

Proof. Since w is a flow x — xwt is one-to-one for every te R*
and a(x) = —c for every xe X. If p is globally uniformly asymp-
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totically stable, then, by Theorem 7, = can be embedded into a
radial flow on 4. The converse follows easily since the origin in
4 is globally uniformly asymptotically stable with respect to a radial
flow.
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