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ALMOST RIGID HOPFIAN AND DUAL HOPFIAN
ATOMIC BOOLEAN ALGEBRAS

JIM LOATS AND JUDY ROITMAN

There are no nontrivial constraints on the number of
atoms and the size of an almost rigid dual Hopfian atomic
Boolean algebra with no more than ¢ atoms; and no non-
trivial constraints on the number of atoms of an almost
rigid Hopfian, dual Hopfian atomic Boolean algebra of size c.

0. Introduction. In [3], one of the authors showed the (real)
existence of a Hopfian (onto endomorphisms are 1-1), dual Hopfian
(1 — 1 endomorphism are onto) atomic Boolean algebra. This algebra
was of size C, had countably many atoms, and was almost rigid (each
automorphism moves at most finitely many atoms). Thus it had only
countably many automorphisms. Are more automorphisms or more
atoms possible? In this paper we show the (consistent) answer is yes.

It was known that under MA, a Boolean algebra with infinitely
many atoms and size less than c¢ is neither Hopfian nor dual Hopfian,
[3], and must have exactly ¢ automorphisms, [4]. Van Douwen gave
a consistent counterexample to this theorem in a model of not — MA
[1]. The techniques used to answer our first question show that his
example is in fact dual Hopfian, and that there are no nontrivial
restrictions on the size of the algebra or on the number of atoms of
an atomic almost rigid dual Hopfian Boolean algebra of size < c.

Since our constructions need only the presence of cofinally many
Cohen reals (in a sense to be made precise in §3), they can be carried
out in many models. The most interesting examples of our techniques
are the following two theorems.

THEOREM 1. Let v have uncountable cofinality and add v many
Cohen reals to a model of CH. Then in the new model the following
holds:

If o= N=Zk=cand £ =Z ®, then

(a) there is an almost rigid dual Hopfian atomic Boolean algebra
of stze k£ with N many atoms.

(b) there is a almost rigid Hopfian, dual Hopfian atomic Boolean
algebra of size ¢ with N many atoms.

THEOREM 2. Assume MA. Then if w = A= ¢, the conclusion
1(b) holds.

It will turn out that ¢ need not be a constraint on the size of

141



142 JIM LOATS AND JUDY ROITMAN

our dual Hopfian algebras. However, the statement of this theorem
is even more technical than Theorem 1, so we delay its statement
to Corollary 3.5.

Some conventions: all algebras are infinite Boolean subalgebras
of some .Z%(k) which contain all finite and cofinite subsets of x. We
use map to mean a Boolean endomorphism and denote {a} by a.

If F is an infinite set and ¢ a formula, we say “¢ infinitely often
on E” iff {a € E: ¢(a)} is infinite. “Infinitely often” means infinitely
often on w.

Finally, “model of set theory” always means “countable transitive
model of ZFC”.

1. Motivation. Fix Bc Z(k), an algebra and a map f: B— B.
We want to extend B so that f has no homomorphic extension to
the new algebra.

DEFINITION 1.1. Let D be a pairwise disjoint subset of B, D* C
D, and suppose for some d*,d*N UD= UD* Then b is a d*/D
split if b>d*N UD and bNd = @ for all deD ~ D*.

LEMMA 1.2. Let f: B— B be a map and C a pairwise disjoint
subset of B, D = {f(c):ceC}. If C*cC,¢*N UC= UC,c*eB, and
D* = {f(c): c€C*} and d* = U D*, then f(C*) is a d*/D split.

Lemma 1.2, whose proof follows immediately from the Boolean
properties of f, is used in the following two ways.

The Hopfian motivation. Suppose f is an onto map of the
algebra B which is not 1 — 1. Since f is not 1 — 1 there is some
a== g3 and some v, where f(8) = f(@ =7, Let d; ={B, a}~ 7.
Continuing by induction, given distinct v, ¢ =< k, and d;, so v,€d;,
and f(d;) = 7, choose v, €d; and let d, DB for some g with
f(B) = 7,4,. In this way there is a countably infinite set of atoms,
A, and a pairwise disjoint family D = {d,: @ ¢ A} c B where f(d,) = @
and ANd, ~& = @. During the inductive construction of B, we
want to have put a set J (of the form U,.,d, where 2 A) into B
in such a way that there is no x/A split in the new algebra. If in
the final algebra B, there is still no /A split, then by Lemma 1.2,
f has no place to send J. 2 will be a Cohen subset of A.

The almost rigid, dual Hopfian motivation. If f is a 1 —1
map of the algebra B which is not onto, there is some « not in the
range of f. Let @&, be such, d, = f(@,). Pick a,ed, with a, # a,
and let d, = f(@). Continue. You have constructed a countably
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infinite set of atoms A and a pairwise disjoint family D = {d,: @ € A} C
B where f(@) =d, and ANd, ~ &+ ¢ infinitely often on A. Such
an A, D can also be constructed if f is an automorphism of B moving
infinitely many atoms: Let A = D be an infinite set of atoms moved.
Given such A4, D, as we construct B, we want to have put zC«
into B so that if J = Usesns doy there is no J/D split in the new
algebra. As before, if the final algebra B still has no J/D split,
there will be no image for x under f. In this case, 2 will be a
Cohen subset of «.

Doomed endomorphisms. Here we define the sorts of endomor-
phisms we have a chance of killing.

DEFINITION 1.4. Let A be countably infinite subset of £. Then
D = {d,: a € A} is a candidate if D is pairwise disjoint and ANd, ~
@ # @ infinitely often on A.

DEFINITION 1.5. (a) f is expanding if there is a candidate D =
{d.: ¢ € A} where f(@) = d, for «e€ A and some |d, N A| > 1.

(b) f is contracting if there is a candidate D = {d,: « € A} where
f(d,) = @ and some |d, N A| > 1.

(¢) f is kinetic if it is neither expanding nor contracting and
for some candidate D = {d,: a € A}, f(&@) = d, for « € A. (In particular,
a kinetic map moves infinitely many atoms to atoms.)

An algebra with no contracting maps is Hopfian. An algebra
with neither expanding maps nor kinetic maps is almost rigid, dual
Hopfian.

2. Combinatorial lemmas. In this section we prove the
combinatorial lemmas needed to construct our algebras. In 2.1, we
work only in the case BC P (w); in §2.2 we give the lemmas
allowing us to extend our results to Bc . (k) for arbitrary « < c.

2.1, Countably many atoms. Fix M, a model of set theory.
The Cohen partial order P, is the set of finite functions from w into
2. We say 2 c w is a Cohen subset of w over M iff its characteristic
function is an M-generic filter on P, (M-generic means it meets
every dense set in M). Notice that if x is Cohen over N DM, then
2 is Cohen over M.

Canonical situation. In M, the following hold:

D ={d,:new}c FPw), D is a candidate, E is an infinite subset
of w. Let z be a Cohen subset of w over M, J = U,c. 2,-

Here are three key lemmas, followed by their proofs and their
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interpretations. If ¢ Ccw, we let o’ denote {new:and, ~ 7 =+ @}

LEMMA 2.1.1. Assume the canonical situation. If E°1is infinite,
then

(a) UDNENxNJ is infinite,

() UDNENJ~ X is infinite,

(¢) UDNENx~J is infinite, and

d UDNE~(xUJ) is infinite.

LEMMA 2.1.2. Assume the camonical situation. If ENd,#+ O
for infinitely many n, then ENJ and E ~ J are infinite.

LEMMA 2.1.3. Assume the canonical situation. Then EN x and
E ~ x are infinite.

Proofs. Lemma 2.1.3 is a standard fact about Cohen reals.
The other two lemmas follow from the fact that if SeM is a
collection of ordered pairs on ® containing an infinite 1 — 1 re-
lation, then there are infinitely many (m, n)eS with m, necx;
infinitely many (m, n)eS with mex and n¢x; infinitely many
(m, n) €S with m ¢ 2 and nex; and infinitely many (m, n)eS with
mex, nex.

Thus for 2.1.1, let S be the set of all pairs (m, »n) where m ¢
End, and m =n. If m,nex, and (m,n)eS, then me UDN EN
z2NJ. If mex,newx, and (m,n)eS, then me UDNENJ ~x. If
mex, nex,and (m,n)eS, thenme UDN ENx~J. Byhypothesis,
each of the above possibilities occurs infinitely often, so 2.1.1 is
proved.

For 2.1.2, let S be the set of all pairs (m, n) where m ==
n,d, NE+ @ and d,NE =+ ¢@. Then for infinitely many pairs
(m,n)eS, mé¢x and nex we have d,NEcJ and d,NECE ~ J, so
we’re done.

Interpretations. D represents a function f we’re trying to kill—
either f(n) = d, for all n or f(d,) = 7 for all n. Lemma 2.1.1 allows
us to add J without adding « and x without adding J. Lemmas
2.1.2 and 2.1.3 will ensure that we don’t add an earlier split which
we want to avoid.

To apply these lemmas, we turn to the Second canonical situa-
tion. The following holds in M: B is a subalgebra of A (w); & is a
collection of candidates, each a subset of B, where if D={d,:necw}e &
then for some infinite b, € B there is no

Ud./D

‘nebD
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split in B (for brevity this is called a b,-split); and D* = {d}: ne w} C
B is a candidate not in &2, Finally, « is a Cohen subset of w over
m, J = U,e. di.

(Interpretation: B is the algebra so far, & is the set of candi-
dates we have killed so far, D* is the candidate we are about to
kill by adding either J or z.)

LEMMA 2.1.4. Assume the second canonical situation. If b, ce
B, then x = (cNJ)U D ~ J).

LEMMA 2.1.5. Assume the second canonical situation. If b, ce
B, then (cNx) U (b~ x) is mot a J/D* split.

LEMMA 2.1.6. Assume the second canonical situation. If De
2,b,ceB, then (cNJ)Ub~J) and (cNx)U b ~x) are not by,
splits.

Respectively, these lemmas say that we can add J without
adding z, that we can add x without adding J, and that we can add
either © or J without bringing any dead D’s in back to life via
b,-splits.

Proofs. First note that a set of the form (¢ N x) U (b ~ x) is the
disjoint union of bNe¢, (c~bd)N=x, and (b ~ ¢) ~ z.

Proof of 2.1.4. If bNec is infinite, or if ~ (b Ue¢) is infinite,
then by 2.1.83 x = (cNJ)U B ~J). So we may assume that bNec
is finite and b U ¢ is cofinite. Then for infinitely many =,

df~n=0UcNdi~T# D .

So either (¢ ~ b)° or (b ~ ¢)° is infinite. If (¢ ~ b)° is infinite, then
by Lemma 2.1.1(b),

ec~bnNnJNae=c~bdNndJ.

So we’re done. On the other hand, if (b ~ ¢)° is infinite, then by
2.1.1(d),

[(b~¢)~JlNx*=b~c)~J
and we’re done.
Proofof21.5. LetS={n:d}f ZbUec}. Define T = {d} ~ (bUec):

ne¢S. If ~8 is infinite, by 2.1.2 TN J # @ and bence no J/D* split
is contained in b Uc. So we may assume S is cofinite. Then either
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(e ~b) or (b~c) is infinite. If the former, by 2.1.1(¢) no set
containing (¢ ~b) Nz is a J/D* split. If the latter, by 2.1.1(a) no
set containing (b ~ ¢) Nz is a J/D* split, and we’re done.

Proof of 2.1.6. Let D= {d,: new}e Z and consider U,.;,d. =
d. To show the first part by contradiction, suppose for some b, ¢ € B,

d=UDnN[enJ)U®d~J)].

If d N (¢ ~b) meets infinitely many d}, then by 2.1.2,dN{c~b) ~ J
is infinite, a contradiction. If d N (b ~ ¢) meets infinitely many d},
we get a similar contradiction. So we may assume d N (¢ ~b) and
d N (b ~ ¢) meet only finitely many d}, say d¥, ---, d¥. Let h = U.. dF.
Then if (cNJ)U (b ~ J) is a b,-split, so is (¢ N k) U (b ~ k) which is
an element of B. Contradiction.

The second part of the lemma has a similar proof. Suppose

d=UDU[cn2a)U(d~z)].

If dNn(c~b) is infinite, then by Lemma 2.1.3, dN(c~b) ~x is
infinite, a contradiction. In case d N (b ~ ¢) is infinite, the argument
is similar. So we may assume d N (¢ Ab) is finite. But then [dN
(CADB]UIbN ] belongs to B and is a b,-split, a contradiction.

2.2, More atoms. Fix M a model of set theory, AeM, A<
ON. The Cohen partial order P, is the set of finite functions from
A into 2. We say xC A is a Cohen subset of A over M iff its
characteristic function is an M-generic filter on P,.

The salient fact we use is the following well-known lemma.

LEMMA 2.2.0. Let x be a Cohen subset of £ over M,AecM, A
an infinite subset of k. Then xN A is a Cohen subset of A over
M.

For the rest of this section we parallel 2.1. Proofs are omitted,
since by using Lemma 2.2.0, they are nearly exactly the same as
in 2.1.

Third canonical situation. In M the following hold:
D={d,:acA}c F«),

D is a candidate, E is an infinite subset of A, a countable subset of
k. Let x be a Cohen subset of £ over M, and J = U.cons de-

LEMMA 2.2.1. Assume the third canonical situation. If
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E'={acE:ENd, ~ &+ @}

if infinite, then
(a) AN UDNENxNJ is infinite,
() ANUDNENx~J is infinite,
(e) AN UDNENJ ~x is infiite.

LEMMA 2.2.2. Assume the third canonical situation. If ENd,+#
@ infinitely often on A, then ENJ and E ~ J are infinite.

LEMMA 2.2.3. Assume the third canonical situation. Then E N
x and E ~ x are infinite.

The interpretation is as before: D represents a function f we’re
trying to kill. Lemma 2.2.2 allows us to add J without adding an
x/A split, and to add x without adding a J/D split, as desired. Again,
2.2.2 and 2.2.3 ensure we don’t add an earlier split which we want
to avoid.

That these lemmas will suffice follows by noting that if any E
has a hope of adding either J or x, then it must meet the hypotheses
of 2.2.1 and 2.2.2.

Fourth canonical situation. The following holds in M: B is a
subalgebra of F(k); & is a collection of candidates, each a subset
of B, where if D = {d,: a € A}e & then for some b, € B there is no
Uses, /D split in B (for brevity this is called a b -split); and D* =
{d.: a € A} C B is a candidate not in &7. Finally, x is a Cohen subset
of k over M, J = Useana di.

LEMMA 2.2.4. Assume the fourth camonical situation. If b, c€
B then (cnNJ)U (b ~ J) is not an x/A split, that is

[enHUB~ININA=2x.

LeMma 2.2.5. Assume the fourth canonical situation. Ifb,ceB
then (cNx) U ~ x) is not a J/D* split.

LEMMA 2.2.6. Assume the fourth canonical situation. If De 2,
b,ceB, then (cNJ)U b ~J) and (cNx)U (b~ ) are not b,-splits.

3. Final constructions.
Main hypothesis. The following holds in our universe V:w <

A, v has uncountable cofinality; {M,: & < 7} is an increasing vy-sequence
of models, each has the same cardinals as V; in each M,,, there
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is a Cohen subset z, of A\ over M,, each (M, CU..s M, and M, =
£ = al

THEOREM 3.1. Suppose the main hypothesis holds. Then there
is an atomic Boolean algebra B F(\) where |B| = v-£ and B has
no expanding or kinetic maps.

Proof. Let B,e M, be an algebra c .Z”(\) of size £. For g <7,
let B, be the algebra generated by B, U {x..a < g}; let B= U B.
Suppose f: B— B is expanding or kinetic. Then there is a candidate
D={d,;acA},Dc B, and f(@) =d, for all aceA. Since v has
uncountable cofinality, D c M, for some a; and since (M,)* C Un<r M,,
De M, for some 3. Let J= Uaexﬂmda. Then by Lemma 2.2.5,
there is no J/D split in B,,,, and by Lemma 2.2.6, there remains no

J/D split in B.

Modified main hypothesis. The following holds in our universe
Viw £ N £ v; v is regular and uncountable; {M,: @ < v} is an increa-
sing sequence of models; each M, has the same ordinals as V; if 4
is a countable subset of A then Aec M, for some o and there is a
Cohen subset x,, of A over M, with x,,€ M, for some B; each
(M) € Uuer M, and v* = 7.

THEOREM 3.2. Assume the modified main hypothesis. Then there
1s an atomic Boolean algebra B C FP(\) where |B| = v and B has no
expanding, contracting or kinetic maps.

Proof. Again let B,e M, be an algebra c &”(\) of size k. We
will construct by induction an increasing sequence of algebras
{B;: B < v} as follows (where the final algebra B = ;< By).

If B is even, B; is the algebra generated by U.<; B. U {x;} where
x; is defined below.

If B is odd, B; is the algebra generated by U.<; B, U {J;} where
Js is defined below.

Let X be the set of names of element of B, | X| = v-£. Let &
be the set of all D = {d,: a € A} where A is a countable subset of A\
and d,eX. Let {D,: a <} enumerate &2. Let B’ = U, B, for
all B.

We define z,: Suppose @ is even, each B,, @ < 3, has been
defined, and for a < B8, @ even, have defined 6(a) so that D,,, =
{d)*: o€ A,,} and x, is a Cohen subset of 4,,. Let

G, ={r:te{da):a < B,a even} and D.cC Bj}
and let §(8) = inf G;. Let p be the least so that B; € M, and D, =
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{di®:.0€ A;p) € M,. Let x; be a Cohen subset of A,; over M,.

We define J; for odd B3: Suppose each B, a < 3, has been
defined, and for a < 8, @ odd, we have defined some D;,,, = {d)*: 0 ¢
A} and for some x, a Cohen subset of A4,., J, = U,., d:”. Let

H, ={r:t¢{6(e):a < B, a odd} and D.c B},

and let 6(B) = inf H;. Let p be the first so that B;e M, and D, =
{d;'®:0€ A} e M,. Let x be Cohen subset of A,; over M,, and let
Js = Use, do'?.

By 2.2.5, expanding and kinetic maps are destroyed at even
stages; contracting maps are destroyed at odd stages. That every
expanding, contracting or kinetic map is destroyed follows from the
regularity of v. Lemma 2.2.6 ensures that dead maps are not re-
surrected.

Theorem 1 is now restated as

COROLLARY 3.3. Let v have uncountable cofinality, and add v
many Cohen reals to a model of CH. Then in the new model the
following holds:

IfwEn=k=cand £ = w, then

(a) there is a dual Hopfian almost rigid atomic Boolean algebra
of size £ with » many atoms. 7

(b) there is a Hopfian, dual Hopfian almost rigid atomic
Boolean algebra of size ¢ with N many atoms.

Proof. In such an extension ¢ = v in the final model, and it is
well-known (see e.g., [2]) that the hypothesis of 3.2 holds for £ < v;
thus 3.8.(b) is proved.

By homogeneity we can rearrange the extension by first adding
v many Cohen reals and then adding @, many Cohen reals. So we
can arrange that M, E~v =c. Again it is well-known that the
hypothesis of 3.1 holds; thus 3.3(a) is proved.

Theorem 2 is restated as

COROLLARY 3.4. Assume MA. Then if ® =< N = ¢, the conclusion
of 3.3(b) holds.

Proof. A reader unfamiliar with logic may choose to parallel
the arguments throughout the paper to show that small collections
of dead functions stay dead, but it is less exhausting to show that
every model of MA satisfies the main hypothesis.

Assume MA. Let {4, a < ¢} enumerate \° for A < ¢ (by MA,
A = ¢). Let M, be the Skolem closure of the ordinals together with
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{Asa < g). If A is a countably infinite subset of N and Ae M,,
then by MA, there is some 2, a Cohen subset of A over M;. Since
x C A, x is in some M,.

Finally, we remove ¢ as as a constraint on size.

COROLLARY 3.5. Let M be a model of set theory, £ a cardinal
in M, MEx<S k=2 Let N be the extension of M by w, many
Cohen subsets of Nn. Then im N there is an almost rigid dual
Hopfian Boolean algebra of size £ with N many atoms. (Note that
N = ¢ = sup{c”, \)"}.

Proof. Let {x,: & < w,} be the Cohen subsets of A\ added by N.
Let M, = M, and for 0 < a < w, let M, be the Skolem closure of
Us<oe M U {x;: 8 < a}. Then the main hypothesis is satisfied, so we
may apply 3.1.
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