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MANIFOLDS ADMITTING TAUT HYPERSPHERES

JAMES J. HEBDA

The definition of taut submanifolds in Euclidean space
is extended to submanifolds of an arbitrary complete
Riemannian manifold. Manifolds containing a tautly em-
bedded hypersphere are characterized up to homeomorphism.
Also, a partial result in this direction is proved for manifolds
containing a tautly embedded sphere of arbitrary codimension.

1* Taut submanifolds have received much attention in recent
years [1], [3], [6], [7]. There the emphasis is on characterizing the
taut submanifolds of a particular ambient space, usually Euclidean
space, although there are studies involving hyperbolic space and
complex protective space as well [4], [5]. In this paper the subject
is approached from a different perspective: to characterize the am-
bient space given that it contains certain taut submanifolds. For
example:

THEOREM 1. A complete simply connected Riemannian manifold
of dimension n that admits a taut embedding of S™'1 is either homeo-
morphic to Sn, diffeomorphic to Rn, or diffeomorphic to S"'1 x R.

In a Euclidean sphere or in a complete, simply-connected Rie-
mannian manifold without conjugate points, every geodesic sphere
is taut. The converse is also true.

THEOREM 2. Suppose a complete Riemannian manifold has the
property that about every point some small geodesic sphere is taut.
Then the manifold is either simply connected without conjugate
points or isometric to a Euclidean sphere.

2* Let M be a complete Riemannian manifold and N c M a
proper submanifold. In particular, N is a closed submanifold with
the subspace topology. For each p e M, we define the function
LP:N->R b y Lp(x) — [d(x, p)]2 w h e r e xeN a n d d i s t h e d i s t a n c e
f u n c t i o n on ikf. W e s a y JV is taut if f o r a l m o s t e v e r y peM a n d
a l m o s t e v e r y r > 0 t h e h o m e o m o r p h i s m

induced by inclusion is injective, where the homology coefficients
are in some field. Because of Lemma 2.8 on page 705 of [3], this
definition coincides with the definition for taut submanifolds of
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Euclidean space. It roughly states that on a dense set of p e M,
the function Lp has the least possible number of critical points.

Lp is a continuous function which is smooth at the points of N
that are not in the cut locus C(p) of p. At these points, one has
a characterization of a critical point of Lp and its index in terms
of the focal points of N [12].

PROPOSITION 1. A point xoeN, xo&C(p) is a critical point of
Lp if and only if the unique minimizing geodesic from p to xQ is
perpendicular to N at x0. Furthermore, its index is the number of
focal points of N between x0 and p, counted with multiplicity, along
this geodesic, and its nullity is the multiplicity of p as a focal
point.

Proof. The first statement follows from the first variation
formula, and the second is essentially the finite dimensional approxi-
mation of the path space by broken geodesies, e.g., [10], page 160,
where broken geodesies are unnecessary since we evade the cut locus
of p . •

The nature of the critical points of Lp and Lp> are similar if p
and pr are close together.

PROPOSITION 2. ( i ) Let x0 eN, xo£ C(p) and U be a neighbor-
hood of x0 in N. If x0 is a nondegenerate critical point of Lp with
index λ, then for all pf sufficiently near p, Lp> has a nondegenerate
critical point in U of index λ.

(ii) Let K c N be a compact subset and U a relatively compact
neighborhood of K in N. If Lp has a relative minimum on K,
i.e., Lp is constant on K and Lp(x) > LP(K) for all x e U — K, then
for all p' sufficiently near p, Lp> attains a relative minimum in U.
A similar statement is true for relative maximums.

Proof, (i) is a consequence of the fact that nearby geodesies
have the same index. The proof of (ii) is analogous to Lemma 5.1
of [11]. •

In what follows, we will be concerned with taut embeddings of
spheres Sk. In this case, the tautness condition and Proposition 2
imply that a relative minimum of Lp is an absolute minimum, that
a relative maximum is an absolute maximum, and that the index of
any nondegenerate critical point must be either 0 or k.

3* In this section we prove Theorem 1. We begin with the
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following proposition.

PROPOSITION 3. Let M be a complete Riemannίan manifold and
N a taut connected hypersurface which separates M. Let 7 be a
geodesic starting at xoe N perpendicularly to N. If there exists a
cut point of x0 along 7, then the first focal point of N along 7 oc-
curs between x0 and the cut point.

Proof. Since N separates M, M — N consists of two connected
components. Furthermore, being taut, the relative minimums of Lp

are absolute minimums. Let p0 be the cut point of x0 along 7 and
suppose the first focal point of N along 7 does not occur between
x0 and p0. Then, by Proposition 1, for any p along 7 between x0

and p0, Lp has a nondegenerate relative minimum at x0, there being
no focal points between xQ and p. This is an absolute minimum.
Thus for all x e N, d(x, p) >̂ d(x0, p) and by taking limits as p ap-
proaches p0, d(x, p0) ̂  d(x0, Po) for all x e N. This shows that the
segment of 7 between x0 and p0 is contained in one of the components
of M — N. (If it wasn't we could find a point of N closer to p0

than x0.) Extend 7 on the "other side" of N and take a point q on
7 close enough to N so that there is no focal point between x0 and
q, and q lies on the opposite side of N from p0. As before, Lq

attains its absolute minimum at x0. Thus d(x, q) ̂  d(x0, q) for all
x £ N. Now, the segment of 7 between q and pQ is not minimizing,
since it contains the cut point x0 of pQ. Hence, by completeness of
M, there is a minimizing segment σ connecting q to pQ. Since N
separates M, a intersects N at some point x. Hence d(p0, q) =
(̂JPO, #) + d(x, q) ̂  d(p0, x0) + d(xQ, q) = length of the segment of 7,

which contradicts the nonminimality of 7. Therefore we have shown
the first focal point of N occurs between x0 and pQ. •

REMARK. By [13], if M is simply connected, every properly
embedded, connected hypersurface of M separates M. Thus the
hypothesis that N separates M can be dropped from Proposition 3
if M is simply connected.

In view of this remark, Theorem 1 is a consequence of the fol-
lowing Theorem 1'.

THEOREM 1'. Let M be a complete Riemannian manifold of
dimension n that admits a taut embedding of S^1 which separates
M, then M is either homeomorphic to Sn

9 diffeomorphic to Rn, or
diffeomorphic to S^1 x R.

Proof. Let N be the taut embedding of S^1 separating M.
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Thus by Proposition 3, we can conclude that the first focal points
occur prior to the cut points. The results of § 2 allow us to conclude
that a first focal point must be of multiplicity n — 1. (If not, by
choosing a point p slightly beyond the first focal point on the geo-
desic, the function Lp would have a nondegenerate critical point of
index λ with 0 < λ < n — 1.) If p0 is the first focal point of N
along 7 starting perpendicularly at xoeN, then LPo is constant on
N. For taking p between x0 and p0, Lp has a minimum at x0, and
p with pQ between xQ and p, Lp has a maximum at xQ. Since these
are absolute extrema, on taking limits as p approaches pQ we find
LPo is constant. Since the multiplicity of the first focal points is
constant, the first focal locus is an n — 1 dimensional submanifold
of the normal bundle of N [9]. (A generalization of Warner's regular
conjugate locus [14].) Furthermore, we have essentially shown that
the distance to the first focal point is constant on each side of N.
(We are in a situation analogous to the regular spherical conjugate
loci of [15].) Hence, the components of the first focal locus in the
normal bundle get identified each to a single point, since the focal
points are of maximal multiplicity. Now the first focal locus has at
most one component on each side of N. Hence this leaves three
possibilities, either there are two focal points of N, one on either
side; there is only one focal point; or there are no focal points.
Now, two geodesies starting perpendicularly to N cannot meet until
at least one of them has reached the first focal point, otherwise if
p is the point of intersection, Lp has two distinct minima in con-
tradiction to the tautness of N. This says that the exponential
map of the normal bundle of N into M is one-one on the set of
normal vectors shorter than the distance to the focal point. Thus
if there are no focal points the exponential map gives a diffeomor-
phism of the normal bundle of N to M, hence M is diffeomorphic
to S*-1 x R. If there is only one focal point, p0, then N is a geo-
desic sphere about p0 and since the focal points of a geodesic sphere
about a point correspond to the conjugate points of that point, p0 has
no conjugate points. Furthermore, since the exponential map on the
normal bundle of N is one-one up to the focal points, the exponential
map at p0 is one-one. Hence, M is diffeomorphic to TPQM = Rn under
the exponential map at p0. Lastly, if there are two focal points,
let p0 be one of them. Then, N is a geodesic sphere about p0, and,
by the same reasoning as in the previous case, the first conjugate
points to Po occur at constant distance and no pair of geodesies
emitted from p0 meet before this conjugate point which is of multi-
plicity n — 1. We can conclude that M is a Blaschke manifold at
p0, and is homeomorphic to Sn. (See Theorem 5.43 of [2] and Theo-
rem 3.1 of [15].) •
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4* In order to prove Theorem 2, suppose that for every p eM,
some geodesic sphere S(p, r) about p of radius r less than the injec-
tivity radius at p is taut. Certainly, every such geodesic sphere
separates M, and p is a focal point of S(p, r). This leaves two
possibilities. Either M is diffeomorphic to Rn and every peM has
no conjugate points, or M is homeomorphic to Sn and is a Blaschke
manifold at every point. In the second case, Berger's theorem in
Appendix D of [2], states that M is isometric to a Euclidean sphere.
This proves Theorem 2.

5* In this section we sketch a partial result for manifolds ad-
mitting taut spheres of arbitrary codimension. The following was
proved in [8] with an extra assumption of simple connectivity.

THEOREM 3. Let M be a compact Riemannian manifold admit-
ting a taut embedding of Sk. Suppose that the first focal point on
every geodesic starting at x0 e Sk perpendicularly to Sk occurs between
x0 and its cut point. Then M is homeomorphic to a sphere.

Proof. As in § 3, we show that the multiplicity of a first focal
point is k, that for every first focal point pQ, LPo is constant on Sk,
and that a pair of geodesies starting perpendicularly to Sk do not
meet until at least one of them has reached the first focal point.
If we consider the first focal locus X of Sk in the normal bundle,
it can be shown that X is a hypersurface of the normal bundle and
that the exponential map restricted to X is a submersion into M
[9]. Since M is compact, every geodesic has cut points, and we
may conclude that X is compact. Hence, using the submersion,
exp(X) = K is a compact submanifold of M of dimension n — k — 1.
Futhermore, one can prove that M is expressible as the union of
the normal disk bundle of Sk and the normal disk bundle of K pasted
together by a diffeomorphism of their boundaries. These common
boundaries may be identified with X in such a way that the ex-
ponential map restricted to X is the projection of the normal sphere
bundle onto K. The map (π, exp): X—> Sk x K, where π is the
restriction to X of the projection of the normal bundle of Sk onto
Sk, is a diffeomorphism because, first of all, it is clearly an immer-
sion of manifolds of the same dimension and compactness implies it
is onto, and secondly, if it was not one to one, one could find two
minimizing geodesies from a point xoeSk to a focal point poeK,
contradicting the condition that the first focal point occurs before
the cut point. Similarly, for any xoeSk, exp: π~~1(x0) —>K is a diffeo-
morphism. Therefore, K is diffeomorphic to Sn~k~ι since π~1{x^) is
diffeomorphic to S*-*-1, and X is diffeomorphic to Sk x Sn-k-\ By
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the mapping cylinder construction, we see that the normal disk
bundle of Sk is homeomorphic to Sk x D%~k, that the normal disk
bundle of K is homeomorphic to Dk+1 x Sn~k~\ and that the pasting
map on the boundaries corresponds to the identity map. However,
Sk x Dn~k and Dk+1 x S—*-1 pasted together via the identity map on
the boundaries is the sphere S*. •

REMARK. The condition on the focal points is not generally
satisfied by taut spheres when the codimension is greater than one.
A easy example is the following. Let M = Sm x S\ Let Sk be a
great sphere in Sm with k < m, and p e S\ The submanif old N =
Sk x {p} is taut. However, along the geodesic 7 — (x0, 70)> where τ0

is a geodesic in Sn starting at p and x0 e Sk, the first focal point of
N and the cut point to (xθ9 p) coincide.
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