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TENSOR PRODUCTS FOR SL, (f) II, SUPERCUSPIDAL
REPRESENTATIONS

C. ASMUTH AND J. REPKA

Certain pairs of quadratic extension Weil representa-
tions of SL.(f) have as their tensor product the quaternion
Weil representations. This fact is used to develop a method
for decomposing tensor products of certain pairs of irre-
ducible supercuspidal representations of SL,(f).

1. The object of this paper is to give decompositions of tensor
products of certain pairs of supercuspidal representations of SL,(f)
where f is a p-adic field of odd residual characteristic. These
tensor products are summands of the quaternion Weil representation.
The second section includes preliminaries concerning the quaternion
Weil representation and its relation to quadratic extension Weil
representations.

The third section sets up the basic mechanism by which the
tensor product summands in the quaternion Weil representation are
analyzed. It ends with what is the central theorem of the paper.
This theorem provides information on decompositions of tensor
products in terms of characters of certain multiplicative subgroups
of the quaternions.

The fourth section is a catalogue of data on characters of multi-
plicative subgroups of the quaternions. It is based on [3] and to
an extent on [5]. Unifortunately, the work in [5] excludes the cases
needed here. For that reason I would like to particularly thank L.
Corwin for a manuscript version [4] which includes some specific
computations for the quaternion case. The computations in [4] and
[5] are similar.

The fifth section gives the decompositions of tensor products
explicitly. The main result of §3 and the data in §4 combine to
produce the end results.

The sixth section is independent of the others. It gives a
(brief) description of how these and other results ([6] and [7]) can
be used to give partial results for the tensor products of pairs
of supercuspidal representations not covered in the above work.
Specifically, we can describe which tensor products contain a con-
tinuous part in their decompositions, and give the multiplicities
explicitly. We can also give the multiplicities for some of the
discrete components.

2. Letf be a p-adic field with odd residual characteristic. Let
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o be the ring of integers and let p denote its prime ideal. Let
K = o/p be the residue class field of order ¢q. Let @ = {¢, x, ex}.
Then for @ and \ef*, we obtain a Weil representation 76, \)
of SL,(f) with representation space C=(t(16)). Here C=(k(1 8))
denotes the space of C-valved compactly supported locally constant
functions on t(v'9). (T(, ») corresponds to D(®,, t(V/#)) in [10]
where @ is some fixed character of f* and @,(x) = @(x\).)

Let v, be the norm map of f(170) over f. Let C’ = {act( 0):
vo(a) = 1}. From this group we get the decomposition

TO, \) = H T, N, ) ([10]) .
vel)

Each T(0, ), +) has the representation space C=(6, v) = {f € CZ(t(V" 6)):
Va e, flza) = fz)y(a)}.

Let D denote the division algebra of quaternions over f. Let
P denote the prime ideal of its ring of integers. For xef* we
have a Weil representation T(D,\) of G = SL,() in C?(D). An
explicit formula for T(D, \) is found in [9]. While all choices of \
give equivalent representations, we retain this parameter in order
to easily express the quaternion Weil representation as a tensor
product.

Let v, be the reduced norm of D over f. Set I'={vyeD:
v(v) =1}, For Ue f, let 2, denote its character. Then the space

Co(D, U) = { feC2(D): S ey = f(z)} is invariant and we

have the corresponding decomposition

T(D, \) = ]_IA T(D,n, U) .
goh

We will need to choose specific imbeddings of the various £(19)
in D for 6e@®. A basis for D over f can be given by the set
{1, 4, 7, k} where *=¢, 7°==x, and = —ji=%k  We choose
imbeddings of (1 ¢) and f( ) in D to consist respectively of
elements of the form a + b7 and @ + bj. If —1 is a square in f,
we may imbed f(V'exr ) in D as elements of the form a + bk. If
not, let ¢ be a fixed primitive ¢* — 1 root of unity in {1 ¢)c D.
Then choose f(1”éx )= D to consist of elements of the form a + b(j.
We shall refer to these imbeddings as primary imbeddings of the
various t(1/6) in D.

Let t(@)e D be given by t(e) =35 and t(x) = t(ex) = 4. This
allows us to identify f(16)@t1 ¢) with D by the map (u, v)—
u + vt(d). Using this identification along with formulae from [9]
we have the following.

PROPOSITION 2.1. For 0 # xncf and 0 € Q, there exists a unique
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Net such that T, N) Q TG, \') = T(D, ) where (f Q g)(u + vi(0)) =
fwg(v).

Thus it will be tensor products of the form T4, \, ) @ T(@, N, )
which we analyze in this paper.

Let Uel" be a nontrivial representation. Then T(D, n, U)
consists entirely of supercuspidal summands. Let U correspond to
6eC? as given by [3]. Let o, be the nontrivial character on the
units in the integers of f(1© ¢ ) whose kernel is the squares. Then
by [1] we have, considering o, restricted to C°, T(D,, U) =
[deg. UPIT(, N, ¢0,) + T(6, M, ¢0,)] where N*/nev,(t(176)). Here,
as in [1], we assume ¢* = 1 if § = e.

For xe{l, ¢ m, en}, let H = {f e Co(D): f(z) # 0=z eV a ['(t*)}.
Let H¥(U) = H N Cz(D, U). From [1] we see that HNU) P H'(U)
under T(D, A, U) is isomorphic to [deg U*C: (9, ¢04) under T(d, N, 0y).
Let {6, 0,} = @ — {6}. Then the action of T(D,\, U) on H*(U)P
H®»(U) is equivalent to [deg U} copies of T(d, V*, é0;). If U*=
and U is nontrivial then each H*(U) is G-invariant and distinct.
Let »,: C2(D) — C2(zI") for z € D be the restriction map. The follow-
ing lemma is easily derived from the facts in [10] and [1].

LEMMA 2.2. Let W be a G-invariant subspace of CP(D). Let
V be an irreducible supercuspidal summand meeting H(U). If
zeV x () then the multiplicity of summands of type V in W
which also meet H*(U) is equal to the dimension of »r (W N H*(U)).

Let H(yr,, ) S C2(D) be the subspace identified with C2(6, 4v,) ®
Cz(0, +r,) as prescribed in Proposition 2.1. LetH, (v, 4r) =7,(H(¥ry, ).
Let Cz(zI", U) = »,(C2(D, U)). Lemma 2.2 says that our main object
should be to compute the dimensions of the spaces H (v, ) N
Cr=l, U).

3. Let B= (" x IN/{£=@1, 1)}. We define a map @: B— z/" given
by (3, v) — 67'%2y. @ is clearly a well defined surjection. It follows
that the map @* given by @*f = fo® is an injection of C(z[") into
C>(B).

In what follows, if M is a group and L is a subgroup with a
one-dimensional representation T, we denote by I,(M, T) the set
{feCr(M): Ve L, fxz)=T(x)f(z)}. We also set I,(M, T)={f € C2(M):
vee L, fizx) = T(x)"'f(z)}. If U is any irreducible representation of
M, we set R(M, U) and L(M, U) to be right and left regular repre-
sentation subspaces of type U respectively.

Let W(z) be the trivial representation of the group {(zvz7?, v):
vel'Y{£@Q, 1)}. Then we have
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PROPOSITION 3.1. @*(C2(z20")) = I(B, W(z)). We think of B as
(Ux Ve xI'):U-1) = V(-1

PROPOSITION 3.2. Let U*(y) = U(zvz™).
Then we have the decomposition
In(B, W(z)) = 11 [1x(B, W(2)) N E(B, U® ).
vel
Each summand 1s irreduble under the right regular repiresentation
action of B.

Proof. This is a simple consequence of group character com-
putations.
Let £ be the fixed ¢* — 1 root of unity of §2. For #e{x, ¢} we
define
C if 0=c¢

g) =
() jif 6=rx.

Since for our purposes of computation, = and ex are interchangeable
we discuss only § = w and e.

Let B = (' x I, (w(8), ®(6))>/{(x, »): xcty. Let @ be the obvious
well defined extension of @ to B’. Notice that [B’: B] =2. As
before, we construct the dual map @*: C=(zI") — C=(B’). Let W(z) be
the trivial representation of the subgroup of BY given by the ele-
ments of the form (zvz~, v) for ve D.

Let s: C(B’) — C7(B) be the restriction map.

PROPOSITION 3.3. The following is o commuting diagram of
bijections.
I(B’, W)
N
; / o*
C2(1) — Ix(B, W(z))

Proof. &% is an injection since @ is a surjection. @* and @ are
both clearly surjections by the definition of induced representation.
If p: B— B’ is the inclusion, then @ = @op, hence the diagram
commutes. Therefore s is also a bijection.

Now set Z”c B’ to be the subgroup of B’ generated by images
of C’ x C’ (considered as a subgroup of I" X [" given by the primary
imbedding of £(17°6)) and (w(0), w(0)). Since w(d) centralizes C’, we
may express irreducible characters X of Z’ as triples (p,, 0,, w) Where
o(—1)p,(—1) = 1, X restricted to C? < C? is p, ® p,, and X(@w(8), @(0)) =
weCl.
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_ PROPOSITION 3.4.  Let X = (yvs, ¥uv, (@) 'w(@))).  Then
O*(H (s, ¥2)) = L(B%, X).

Proof. We need to pull right translation by elements in Z°
back to C?(zI") and see what happens. A simple calculation gives
(f @ 9)a™(u + vt)R) = (f @ (u + vt(O)¥d(a)yv(B) for (o, B) €
C? x C? and f® g€ C2(8, 1) X CZ(0, 4,). Similarly (f @ g)(@(@)*(u +
0B = (f @ g)(u + vE(0))Pr,(w(0)*®(0)). The definition of induced
representation gives containment. Equality follows from the fact
that ¥ & P, — (Yriars, Vi, P(@(0)'@(0))) is one to one.

PROPOSITION 3.5.  @*(H, (4, %)) = wes’ [R(B?, M) I(B?, W(z)) N
I,(B% X)] with X as in Proposition 3.4. The dimension of each
summand s the multiplicity of X in M|, where R(B?, M)N
I(B’, W(z)) = {0}. ‘

Proof. Clearly, by Propositions 3.3 and 3.4,
O (H. (g, ) = [I(B’, W(@) N L(B°, H)n 1T R(B’, M) .

MeB
We need to see that intersection commutes with direct sum in this
case. We may write I (B’ W) = [Tyt Lu(B’, W(z)) N R(B’, M).
Similarly I (B° %) = Huess I(B®, X) N L(B°%, M) = 11,52 L(B% 2) N
R(B% M). This is what was needed.

By Proposition 3.3 we see that the multiplicity of summands of
type M in I,(B’ W(z)) is either one or zero since the same is true
for In(B, W(z)). (Proposition 3.2) We now look at the somewhat
elaborated expression for @*(H., (v, 4),

I.[o [Ix(B’, W(2)) N R(B’, M)] N [I.(B’, X) N L(B’, M)] .

MeB

For M occuring in I,(B’, W(z)), the left hand expression in square
brackets is an irreducible right regular subspace of type M of
Cr(B?. The right hand half is a sum of left regular subspaces of
type M. This fact gives the rest of the proposition immediately,
since irreducible spaces of these two sorts have intersections of
dimension one.

4, Two make use of Proposition 3.5, we need to determine the
characters on Z’ of representations of B’. Since [B’ B] =2, we
know that a representation of B’ is either an extension or is induced
from a representation of B.

From [3], we obtain a parametrization of I'. When —1¢ (£*)
we choose secondary imbeddings of #(v'7) and t(1/ex) in D. Let
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& = {**. Then these imbeddings are given by elements of the form
a + bzj and a + bgly respectively. The norm one subgroups in these
imbeddings are denoted C* and C*' respectively. C* and C*' are
conjugate in D but not in /'. Thus when —1 is not a square, we
have a set of norm one subgroups C° where 6@ = Q U {7/, ex'}.
Elements of [’ are expressed as U = U(9, 9) where 6@ or Q' as
appropriate, ¢eé“ and we require that ¢*= 1 if 6 #e. The only
equivalences occur when —1¢ (£*)* and 6 # ¢ where U(9, ¢) = U(5, ¢).

The following information on characters is derived directly from
[4]. The methods in [5] can be extended to produce the same
results. Let U = U@, ) as above. We denote by & (U, §) the
character of U restricted to C’. Let D’ be ", w(6)) if 6 = ¢ and
(T, @0)[{w(@)) if 0 +¢. Let E’ be the subgroup of D’ generated
by w@) and C°. If Vel’, we let ZG'N’(V, 0) denote the character of
its restriction to E’.

Since = may be chosen to be any generator of p, we lose nothing
by considering only the cases § = e and § = w. Also, in what follows,
if X is any multiplicative subgroup of D, we let X, denote XN
(1 + P¥) where P is the prime ideal of the integers in D.

LevMmA 4.1. Let 0 =¢e. Let U= U0, ¢) have conductor Iy.
(@) If 6 = ¢ we write & (U, &) = Dipcte o0 Wwhere

(1 if o=9
a, = 12 if conductor pp = C; and 4|(N —1 —3s), and s < N .
10 otherwise

Furthermore if we set & (¢) = {‘oe(j“: o, = 2}, we have the property
eEZ(9) if and only if ¢ €& (0).

(b) If 6 #¢ then & (U,¢) is the sum of all characters of C°
which are trivial on Cy = C°N (1 + P¥) and agree with ¢ on —1.

We now consider the case 0 = «.

LemMMaA 4.2. Let U = Ule, ¢) have conductor {'y. Then & (U, x)
18 the sum of all characters trivial on C% which agree with ¢ on
—1.

When U = U(9, ¢) and 0 # ¢, the situation is more complicated.
Let @ be a fixed character of f* with conductor p. Let S =
{fretv e cD:x =0 or o' =1}. If N is even, we may express
elements of I'y_,/I'y in the form 1 + aj¥ ' where aeS. Any re
(I'y_i/T'y)" can be expressed as z(1 + aj¥ ') = @(trace (Za)) for some
reS. Here “trace” is taken to be of £(17¢) over f. If § + ¢ and
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gzieCA’5 has conductor Cy, there exists a unique ze ([ y_,/I'y)" such
that z and ¢ agree on I'y_, and 7 is centralized by the quadratic
extension in D containing C°. Let f(¢) denote the corresponding
element of S which gives 7. If ¢ is trivial on Cj_,, set pu(g) = 0.

LEMMA 4.3. Assume that 6 =7 and 6 =emw or ex’. Let U=
U@, ¢) have conductor I'y. If peC® then (p)e SNt If we write
g(Uy 72'.) = Zpeﬁz a’P[O the/ﬂ

_ {1 if p(o) = 1/2 trace (a*t(9)) , acCnNS
"7 0 otherwise .

LEMMA 4.4. Assume 0 = 7w and 6 =7'. (Of course —1¢ (*) in
this case.) Let U = U(0, ¢). Then & (U, ) = D,e4=b,0 where

b {2 if for some aeC: NS,  pp) = 1/2 trace (a*(g))
"7 |0 otherwise .

When 6 = 6 = x, the situation is more complicated. For ¢e@”
we will construct a set & (¢) as in the case § = ¢. If s is odd then
C:/Cz,, can be identified with SNf by expressing elements in the
form 1+ aj® (modulo Cf.,) where acSNt. Let (s, u) be the
character on C7/CZ., whose value at 1 + aj*is @(ua). Let A(s, u, ¢) =
{pe(j‘f: Zon(s, u) =1 on Cf}. Let

N2

(@) =U U 4@n —1, —2e(g)a’(—1)"*", ¢) .

n=10#xeSNI

LEMMA 4.5. Let U= Ulx, ¢). We write & (U, ) as Dioci= A0
where a, has the following values
(a) If —1e(*)* we have

1 for p=9¢

for pe & (g)

2 for () = 1/2@¢race a®)tug) , aeSNCt
0 otherwise .

(b) If —1le (£ we have

Do

L for p=porp=7¢
for peE () or pc & (P)

for 1) = 1/2(¢race a®)pu(¢), a*= -1, aeSNC*
0 otherwise .

[ NI )

As before, we write irreducible representations of B in the form
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U®YV where U and V are irreducible representations of I" which
agree on —1.

LEMMA 4.6. An irreducible component of W(z) extends to B? if

and only if the corresponding representation of I' X I' extends to
D% x D°,

Proof. This follows from definitions of B? and D’ and Proposi-
tion 3.2.

LEMMA 4.7. If UKV is a component of W(z), there is a unique
component of W(z) whose restriction to B includes UR V.

Proof. This follows from Proposition 3.3.
From [3] we get the following:

LEMMA 4.8. Let U= U@, ¢)el’. Then U extends to D’ if and
only if 6 =10 or 6 =0". Also U extends to D’ if and only if U*
does as well.

Now let U be an arbitrary representation of I'. If U does not
extend to D’, then U* ® U induces irreducibly to B’. On the other
hand, if U extends to DY, then the unique extension of U* @ U to
B? referred to in Lemma 4.7 is a restriction of certain extensions
of U" x U to D’ x D’. Let F’ = {w()?, I'> so that F’ is an ex-
tension by central elements. [D’: F?] =2. Let {U,} be the set of
extensions of U to F’ where x ranges over some appropriate index
set. For any such U,, let U, and U, denote the two extensions
to D?. We may similarly identify extensions of characters of C’ to
E?’ since in fact two distinet extensions of U to D’ differ by a
character of £’/C’, we may denote by {4,,} the set of extensions of
¢ to K’ where z ranges over the same index set and » =1 or 2.
Under this arrangement, ¢, and ¢, both agree with the central
character of U, on the center of D’.

LEMMA 4.9. Let 0 = ecand U = Ule, ¢) for any ¢e€‘5. Then we
may further order things so that for m =1 or 2 we have

g(Uxmy €) = Oum T Z Oz + Puz -

pe& ()

LEMMA 4.10. Let 0 = © and assume that —1le(t*)’. Let U =
U(r, ¢) for some ¢€C™ with ¢* %= 1. If & (U, w) is writlen D67 @0,
then :
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g(Uzm, 8) = ¢xm + Z p:cl =+ pmz .
ap:2

LEMMA 4.11. Let 6 = @ and assume —1¢ (£*)°.
(@) If U= Uz, ¢) and & (U, &) = Dipet= a0 then

E(Uamy ) = Gom + Bam + 5, 0 + Pz -
ap:

(b) If U= U, ¢) and & (U, ) = Spes7b,0 then
E (Uam, ) = 35 0 + 0 -
=

We now have listed sufficient information to give characters on
Z° for 0 = ¢ and . Let Z*(U, 6) be the character of Z’ correspond-
ing to U@ U. We consider the case ¢ = 6 first.

PropOSITION 4.12. Let U = Ule, ¢).
(a) If vy(#) e (£*)* U e(t*)* then

Z U, &)=+ 3 3@ 0 /30 + (B, 6 V5
+2 3 3 (P, 0,1 50(0) -

0,05 ($) t=%1
(b) If vy(z) & (£°)* U e(t*)* then
U, ) =6, 6,0@) + 3, 3 (4, 0,1V 90) + (0, 6, 1V 05(8))
+2 33 (0, 0,8/ p000) -

0,0€% (9) t==%
Proof. In case (a), U*=U; in (b) U’ = U. In either case,
U*@U extends to B’. Then &*U,¢) is just the restriction of
Z (U, &) QF (U, ¢) to Z°. In case (a) we must have

g((ﬁml)zy 8) = é-yl _|_ pe;é) (Oyl + py?

where the product of any p,, and p,, is trivial on the center of D°’.
Thus if 7,,®0,. is a component of & ((U,), e Q £ (U, e), its
restriction to Z? is given by (7, 0, §,u0.:n(Q)). But (0,,0..(0) =
OynOom(€™€) = po(g). Hence the result for (a) follows using Lemma
4.9. The computation for (b) is analogous.

PROPOSITION 4.13. Assume 6 # ¢ and that U = U(0, ¢) has con-
ductor ['y. Then &*(U,e) is the sum of all characters (o, g, w)
which are trivial on Z° N (I'y X I'y) and such that o(—1) = o(—1) =
g(—1).
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Proof. Use Lemma 4.1 (b) and the fact that U* @ U induces
irreducibly to B.

We now consider the case 6 = =«.

ProprosSITION 4.14. Let U = Uz, ¢) and assume

g(U’ TC) Z a’Pp

oeC

(@) If vp(z) e () U (—m)X*)* and —1¢€ (*)?, then
(U, )= (¢,6,1) + Z 2 (6,00 + (0,8, 1)
+ 2 Z Z E (P, 0,%) .

(b) If vy(z)e (") U (—nm)(t) and —1e(t*) then
EHU D) =660+ 5 56,00 + (0,6,
+2 3 3 3o, 0,0).

ap=2 a,=2 t=1

(€) If vp(r) € (1) U (—m)(t*)* and —1¢(t*)" then
U, =(68D+660+ 60+ 060+ 3 51601
T (@601 +23 > 5 (0,0,0).

ao_ a,=2 t=x*1

Proof. In each case U* x U extends to B’. We then use the
methods for Proposition 4.12 using data from Lemmas 4.10 and 4.11
as needed.

PropPOSITION 4.15. Assume that —1¢ (t*).

(a) Let U= Ulx, ¢) and assume vp(z)¢ (*) U (—n)(E*). Then
U is of the form U, ¢') with p(¢') = &ug). Let (U, &) = Dot app0
and U, ) = 3,.07b,0 as in Lemmas 4.5 and 4.4 respectively. In
particular

2 if daeC N S: o) = 1/2 trace (a’sp4(9))
0 otherwise .

s =

Then
(U, w) = E ; (0,0,1) + (0,9, 1)

HEPYPYINCAIE
(o) Let U=U', ¢') and assume v,(2) € (£*)*U(—n)(t*). Then U?
18 of the form U(w, 3) where t(g) = &p(¢’). Let & (U, ) = 3petb,0
and (U, ) = 3,07 a,0. Then
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2 if dJaeC N S: ) = 1/2 trace (a*24(8"))

b, =
’ 0 otherwise ,

and

U, m = 3 3 (4,0,1) + (3, 0, 1)

=2 +1

ZZ Z(ap,t)

b =2 a,=2t=x1

Proof. In case (a) we may assume z‘' = z7'Z = £, the generator
of C:/C:. Tt is easy to see that z-'C7z = C¥ so that U? is of the
form U(x’, ¢'). We may write ¢'(a) = ¢(zaz™) for acC*. (Note
that here U = U.) Our choice of z forces p(¢') = &x4(¢). The result
in (a) now follows from Lemma 4.11. Case (b) is more or less the
reverse of case (a).

ProrosITION 4.16. Assumf that —le¢ (), U= U, ¢), and
vy(z)e )Y U (—m)[E*)* so that U* = U. Let

SHU, m) = 2. 2 Ao, 0,1).

t= +1<7/7€L

2 if for some «, B€C™N S we have (o) = 1/2(trace a*(p))

A, = } and (o) = 1/2(trace S°1(9)) .
0 otherwise

Proof. Here U*@U extends to B*. The extension of & (U?, 7)®
& (U, w) to Z’ is obtained by using Lemmas 4.4 and 4.11(b).

ProposITION 4.17. Let U = U(G, ¢) where é¢€fer, en’). Then
write

“ (U, Z Z A,o(0, 0, 1) .

(a) If —1& ) or vy(z) ¢ () U (—m)(t*)* then

1 if o) and (o) €{1/2 trace (a*t(g)): a € C: N S}

Aop = { .
0 otherwise .
() If —1e(t*)? and vy ()€ () U (—m)(*)* then

1 3f —plo) and p(o) € {1/2 trace (a*u(4)): a € C: N S}

AUP = { .
0 otherwise .

Proof. Clearly U* ® U induces irreducibly to B~ in this case.
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Therefore & *(U, x) is induced from & (U?, n) ® & (U, ) on C* x C-.
Thus & (U, =) consists of all characters (o, p, £1) such that o is
a component of & (U, x) and o is a component of & (U, 7). We lack
only the information on & (U7 n). Assume that U7 = U(S,, ¢,). If
—1e®)® and v(z) ¢ (£*)° U (—z)(t*)* then U = U and ¢, = 6. Then
the formula in case (a) follows from Lemma 4.8. If —1¢(f*)* and
v(2) € (1) U (—m)(t*)’, we have U? = U and the result in (a) holds.
If —1e)® and v,(2) ¢ () U (—n)(f*)* we may take 6 =exr and
0, =en’. We can also take p(¢,) = £u(g). Also p(¢) = Lx for some
xef. One can check that when —1¢ (1), {tr(a®¢x):acC N S}=
{tr (e®¢lx): a« € C°N' S}. This also results in the formula in (a). In
case (b) we see that U = U. We have §, =6 =er and ¢, = ¢ so
that p(¢,) = —p(¢). Therefore (b) holds.

ProposITION 4.18. Assume U = Ule, ¢) has conductor I'y. Then
& (U, &) is the sum of all characters (o, o, w) of Z* which are trivial
on Z°N(Iy X I'y) and such that o(—1) = o(—1) = ¢(—1).

Proof. This result is exactly analogous to Proposition 4.13.

5. Let 0 =¢ or m. We may write 10, \, vr) @ T(0, N, 4r) in
the form

m,T(D, 1, ) B 11 me, 1, 9)T(e, 1, ¢) © m(e, 7, 9)T(e, T, §)

oeC’

S I mz 1,97, 1,6 S mx,e, §)T(z, ¢ 6)

5eC7, 0221
& I mer, 1, 9)TER, L §) @ mier, &, 9TET, &, 9) -

6eCtT, 21
One might well ask if m(e, ), ¢) is well defined when ¢ is the unique
character of order 2 since T'(e, ), ¢) is reducible in this case. In fact
it is well defined since the corresponding representation U(e, ¢) is
centralized by all of D. Thus the dimension of H,(sy, 4) N
C2(D, U(e, ¢)) is independent of z. More details will emerge in proofs
in this section.

THEOREM 5.1. Let § =¢. Set x=1 and N =x. Let +, and
v, € C* have conductors C: N I'y, for n=12.Let ¢¢ C’ have con-
ductor C°N Iy.

(@) If 6 ¢ Mmets, and ¢cC® with ¢* = 1 then

(1 if N> max{M, M}

m 0y Noy Q) = .
(9 Noy 9) 10 otherwise .

(b) For ¢eCA'E and ¢ =1 we have
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2 if 9 E(Yiy) N B (Pye)
1 if ¢ = Y€ E(Yuy)
m(, 1, ¢) =<1 if ¢ = P, € F (Yu)
1 if pg=ay and o, =1
0 otherwise
2 if € E W) N E (Yiy)
1 if ¢ = v
m(e, @, ¢) =41 if ¢ = Yy,
1 ’Lf 6 = "7”1
0 otherwise .

_ [l ifu=qp=1
(€ my {0 othe'rl'w?,se.2
Now let 6 = =. For¢eé’5, 0 # ¢, set 2(¢, 2) = {pe@f: eCnS
such that a®* = 1 and (o) = 1/2 trace (a’xu(g))}.

THEOREM 5.2. Let 4, and wzeé"‘ have conductors C~N Iy, for
n=12 and let e C’ have conductor C°N I'y. Assume also that
—1e(t)x R

(a) Let 6 =¢, et and 1 £ ¢eC. Then

1 ¢f N> max{M, M}

N =
m(E Moy ) 0 otherwise .

() ¢eC such that ¢ = 1 we have

2 if YeT(@F)UZ(G, 1) and .9, E(3) U (4 1)
1 if ¢ =y and iy € E(g) U Z (4, 1)
m(w, 1, ¢) =41 if ¢ = Y. and ¥4, € E () U D (¥, 1)
1 ifg=ny and =1
0 otherwise
2 if Y€ F(p) UF(g 1) and vy ZF () U Z (4, 1)
1 if ¢ = 4, and P9, € ()
m(e, @, ¢) =31 if ¢ = Y, and Y, € ()
1 ifo=9,and =1
0 otherwise .

(¢) For 6 =er and ¢eC= with ¢ = 1 we have
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if N > max {M,, M,}
m(em, 1, 8) = {1 if app, and 9. € Z (1, 0)
otherwise

if N > max {M,, M,}

if Ay and pap, € (1, ¢)
0 otherwise .

-

m(ex, 0, 9) = A

{1 @.f";"lz”‘/f =1
@ m,= {O othev*wise.z

THEOREM 5.3. Let 0 = 7w with ¢, A, +» as in Theorem 5.2.

Assume —1 (") and set » =\ = 1.

m(ﬁ’ 1, ?x) + /)n(ﬂ-, 1; 6*) =

(a) Let 6 =¢ with 1 # gseéf. Let vy =1 or w. Then

€ 5) (1 4f N> max{M, M}
Mm(e, No, 3) =
s P 0 otherwise .

() For 6eCr, 6 =x, &* =1, let ¢, = ¢0.. Then
2 if i and i € (G, 9)
vf Y, and Ay € Z(1, 9) U E7(9)
'Z’f Y, € {¢; 95} and "/fl’wz € @(1, ¢) U g7(¢)
if e €149, B} and Yy € Z(1, ¢) UE(9)

if T, and 4,7, € (6, 6} and P(—1)=1.
otherwise

R © k= = O

if Y, € Z(E, ) an_d
Y € (P UE(P)UZ (1, ¢)

2 af Py € (¢, ¢) and

m(z, €, 6,) + m(T, €, ) = - Vi €E(9) U (9) UZ(1,9)

if P, €{g, ¢} and . € (& 9)
if Yy €1{8, ¢} and J.9, € D(E, ¢)
‘0 otherwise .

(¢) Let 6 =er and let 9eC=, ¢*= 1. Then

1 if Ji, and € Z(1, 6)
m(ex, 1, ¢) = m(ex, ¢, 9) = {1 of iy, and 9. € F(E, ¢)
0 otherwise .

1 g =an=1
(@) m, = {O otherwise.

Proof of 5.1, 5.2, 5.3, Observe that @* sends Cr(zI', U) to
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R(B, U" @U). Thus, using the data from the propositions in §4 and
the formula in Proposition 3.5 we obtain dimension of the various
spaces H, (v, ) N C2(2IT, U) where U = U(f, ¢). By Lemma 2.2,
these numbers are in turn the multiplicities in H(4r, ) of represen-
tations 7(0, », ¢0,) whose representation space in C?(D, U) includes
functions nonzero on z. By the remarks at the beginning of this
section we need consider only the cases z =1 and z¢f(3 ) in D.
These choices will produce m(d, 1, ¢) and m(d, h,, ¢) respectively
where n, ¢ v,(£0175)).

There are a number of points requiring further comment. First
of all, when # = ¢ and 6eC° we have the relation peZ(¢) if and
only if g€ % (0). Thus the multiplicities given in 5.1(b) can be ex-
pressed neatly using this inversion.

In Theorem 5.3(b) we use sums of the form m(zm, z, ¢,) +
m(z, %, ¢,). This is more expedient because in fact U(w, ¢) and
Uz, ¢) are identical. The values given here are obtained from
considering U(x, ¢) and U(x’, ¢') together. No information is lost
since T(x, z, ¢,) and T(x, x, ¢,) are equivalent.

Finally, in Theorem 5.2(c) we find m(ex, 1, ¢) and m(ex, ¢, ¢) con-
sidered together. The corresponding values for z are 1 and {. The
question comes down to seeing whether & (1, ¢) = Z(1, ¢') in this
case. We may assume pu(g) = z(; p(¢") = ©£{ where xef. We then
check to see that the sets {trace (a%¢™():ae(C°N S} are equal for
m = 0 or 1. (Recall that (‘' = ¢&; &£ generates C°N S.)

We now consider the remaining question of what happens when
T, \, 4) is reducible. The case when 6 =¢ and —1e(f*)’ is
reasonably typical. For simplicity of notation we confine our discus-
sion to this case.

Assume qr,eC¢ is the unique character of order 2. Then
T(e, 1, ) = T, 1, 4r) @ T¥(e, 1, 4r)). In general we may write
T, 1, o) Q T(e, @, o) as

;H” m;(E, )\’) “}I‘I)TYJ(& >‘” Q/'fl) + H mx(59 >\’3 ?)T(S, >\” ¢) ’
where 0, ), and ¢ range over the same sets as given in the beginning
of this section. Thus, for ¢ # 4, € C°, we have m'(3, ), ¢)+m (3, \, ¢) =
m(d, , ¢) and also m(e, N, o) = >, mi(6, N, ¥ry)-

THEOREM 5.4. Here we describe how summands are distributed
between the two T7(e, 1, 4r) @ T(e, N, ary).

(a) For ¢ = 4, mo, 1,9) =0

B MG, 1, ) = doyms, 1, 4) )

(e) m°(o, x, ¢) = m(0, x, ¢) for x =101 ¢, d *¢, 6C°

Q) m, @, ¢) = 1/2)mle, 7, ¢) for ¢eC-.
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Proof. First of all, we note that it was valid to exclude m,
since 4, was not trivial (Theorem 5.2(d)).

The space of T*(¢, 1, 4,) consists of functions supported on 1z tC:.
Thus the space of functions in the tensor product is contained in
H*@ H* &P H*. (This can be verified by considering what elements
are represented by the various 3-dimensional anisotropic quadratic
forms over f.) This is sufficient for parts (a), (b), and (c).

Let X: C2(D) — Cy(D) be given by (Xf)(z) = f(zr). While X is
not an SL,(f) isomorphism, it does take invariant subspaces to
invariant subspaces. In particular, if U = U(e, ¢), we have U = U
so that X sends H*(U) @ H*(U) to itself. Moreover, X interchanges
the spaces of T(s, 1, 4r) @ T(e, m, 4,) for @ =1 and e. Since the
number of irreducible G-spaces of H~(U)@ H*(U) is finite, the
number of such components accounted for by each T7(, 1, ) ®
T(e, &, +,) must be the same. Hence part (d).

6. The above methods apply only to the specific case of the
tensor product of two supercuspidals T(8, A, +r), T(6, N, 4r,) belonging
to the same quadratic extension f(1©'¢) and with ) and A\ related
as in Proposition 2.1. It is the purpose of this section to deseribe
what is known about tensor products of other pairs of supercuspidal
representations.

First we note that the contragredient of 7(, ), ¢) is T(4, —\, &),
which is the same as T(0, \, ¢) if and only if —1ey,(f(v 0)), which
1s always true for 4 = ¢, and otherwise is true if and only if —1¢
(t*)*. Then we remark that the principal series representations are
all self-contragredient.

We also note (see [8], Corollary 3.4) that the tensor product of
two supercuspidals can only contain a direct sum of supercuspidals
and (possibly) copies of the special representation and (possibly)
continuous direct integrals of principal series representations.

We apply the results of [6] and [7] to find, for example, which
such tensor products contain direct integrals of principal series
representations. The results depend on whether or not —1e(f*)%
let us therefore consider first the case when —1 e (%)%

Consider the representation T(e, Ay, ), +°*#* 1. From [6],
Theorem 5, we see that for any principal series representation T,
T, T(e, My, o) contains 2 copies of T'(e, \, ¢) for all ¢ such that
o(—1Dp(—1) = ¢(—1), plus one copy of T(a, A, ¢), for each @ +# ¢ and
for all ¢ such that ¢(—1) = o(—1)y(—1) and for each choice of X\;
and if o(—1)y(—1) = —1, one copy of T'(, N, 9,), Where 4, is the
square-trivial character and this last representation contains two
irreducible components. By the main theorem of [7], and using the
above remarks about contragredients, we see that if -, ¢ # 4, then
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T(e, M, ) @ T(e, Ny, ) contains 2 copies of the direct integral (with
respect to Lebesgue measure) of the principal series of appropriate
parity, T(e, \,, o) @ T(a, A, ¢) contains 1 copy of the direct integral
of the right parity for either choice of a # ¢ and either choice of
N, and the tensor product of T'(e, N, o) with either irreducible piece
of T(e, M, 4,) also contains 1 copy of the appropriate direct integral.
On the other hand, if M/Név.(t(¢)), then T(e, My, ) @ T(e, N, ¢)
does not contain any continuous part (including the case ¢ = ).

A similar analysis, using [6], Theorem 6, shows that if {4, 6} =
{r, exr} then T(6, N\, ¢:) @ T(0, N\, ) contains one copy of the direct
integral of the principal series of the appropriate parity, for any
Ny, 6 (84, & # ), and T(6, N, ¢,) Q@ T(6, \, ¢) contains 2 copies of the
appropriate direct integral, while T'(4, A, ¢,) Q T(, \, $) does not, if
M/N € v, (E(V8)).

If —1¢(£*)?, the results are similar, except that for 6 == ¢, it is
T, N, ¢.) Q T(8, —\, ) which contains 2 copies of the direct integral
and T, \, ¢,) ® T(0, \, $) which does not.

The results involving the square-trivial characters can also be
read off without difficulty. Moreover, by [2] and [6], the special
representation occurs in any of these tensor products with the same
multiplicity (0, 1, or 2) as the direct integral of the even parity
principal series.

In addition, similar considerations allow us to compute the
multiplicities of certain supercuspidal components of tensor products
of pairs of supercuspidal representations. Indeed, if A, )\’ are related
as in Proposition 2.1, the results of §5 tell how to decompose
T, », ) @ T(, N, ) so reciprocity considerations give us the multi-
plicity of T(6, —\, ) in the tensor product of T'(6, \, ¢) with any
supercuspidal representation. The calculation is altogether trivial,
so we omit the details.

Our results so far are far from complete, but they are sub-
stantial. To summarize: In §5 we decomposed completely tensor
products of the form T4, N, )QT(0, N, +); then we found the principal
series and special constituents of the tensor products of any pair of
supercuspidal representations; and we have just seen how to calculate
some of the supercuspidal constituents of any tensor product of two
supercuspidals (those belonging to the same 6 as either of the factors
and, in each case, to the other choice of , i.e., —)\)).

As yet we have no way to treat completely those tensor products
not covered in §5. We cannot calculate the multiplicities of those
supercuspidals associated to the other 6 (or #’s) or to the other
choice of .
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