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POLYNOMIALS IN DENUMERABLE INDETERMINATES

RICHARD M. GRASSL

D. Knuth used the Robinson-Schensted ‘‘insertion into a
tableau’’ algorithm to give a direct 1-to-1 correspondence
between ‘‘generalized permutations’ and ordered pairs of
generalized Young tableaux having the same shape. Since
a generalized permutation characterizes a power product
of differential indeterminates, the work of D. Mead on the
principal differential ideal generated by a Wronskian
provided an independent proof of the existence of the
Knuth bijection. This work led Mead to suggest that
other interesting combinatorial results may be found by
equating the cardinalities of different vector space bases
for the same finite-dimensional subspace of a differential
ring. In a previous paper the author showed how such
combinatorial identities follow from the study of ‘‘strong
bases’ for certain ideals in a ring of polynomials in a
denumerable set of indeterminates. The present paper
completes that work by presenting an infinite number of
such strong bases and thus greatly expands the ring theory
and differential algebra having applications in the enumera-
tion of tableaux.

1. The ideals I. Let R = F[y,;] denote the polynomial ring in
the algebraically independent indeterminates y,; (t1=1,2, ---, n;
j=20,1,2 ---)over a field F. In applications to differential algebra,
one lets ¥, ¥, -+, ¥, be n independent indeterminates and y,; be
the jth derivative of y,. Then a principal differential ideal [x] is
the ideal (z,, x;, 2., ---) in which x; is the jth derivative of «.

D. Mead’s study in [9] of [W,], where W, is the Wronskian of
Yy, Yoy ***, Yuy gives a vector space basis for R consisting of
determinantal products having a natural 1-to-1 correspondence with
ordered pairs of Young tableaux of the same shape, having # or
fewer rows. Let z,, be the ¢th derivative (y,9, - - - 9,)'?; it is shown
below that ideals (x,, ., ---), related to [z,,], share combinatorial
properties with [W,] when q¢ = n(n — 1)/2.

A combinatorial method for proving the existence of syzygies
(i.e., the nonexistence of a strong basis) is also described. The
structure of (x,, «,, ---) is studied in a manner that gives the struec-
tures of all ideals generated by subsets of the ;.

Let {x;} = 2, @, --- be a finite or denumerable sequence in R, I
be the ideal (x,, z,, ---), and X be the set of all power products
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Let A be a linearly independent (over F') subset of R such that
L ={atlae A, £ X} generates the vector space R over F; then it
is easily seen that the subspace I is generated by the subset C of
all @z in L with £ 1. The set 4 is called an a-set for {x;} if L
is a basis for the vector space R; if A is an a-set, C is a basis for
I. If L is not a basis for R, the linear dependence relations of the
elements of L are called syzygies. If {x;} has an a-set, the sequence
is said to be strong. Below we describe a family of sequences {z;},
develop a number of a-sets for each sequence, and for each a-set
give an algorithm for determining membership in the ideal
(41/'0, Lyy ©° )

A power product (pp) = in the y,; of degree d = degw and
weight w = wgtw is a product of d factors, each of which is one
of the y,;, with w the sum of the second subscripts j of these d
factors. Below, Q = (g, @, ***, Qu, 9sy) is an ordered (n + 1)-tuple
of fixed nonnegative integers, ¢ = ¢, + ¢, + -+ + @uyr, T = {t;, s, -+ -}
is a subset (not necessarily proper) of {¢,¢ + 1, ---}, and g is a
nonnegative real number. Whenever 7 is written as # = p%, p is
the product of all the factors y,; of 7 with j < ¢, and 7 is the
product of the factors y,; of # with j = q..

The set of all pp in the y,; is designated as P. The word space
is used to denote a vector space over F'; thus P is a space basis for
the ring R.

For all ¢ in T, let v, be a linear combination with coefficients
in F' of the pp n = pn with

degw +wgtx <n+t and degn + pwgty <n» + pt

and let x, be the sum of v, and a linear combination with nonzero
coefficients in F' of all the products

Y1i5,Y25, " Yni, with ngqm for léiénand j1+ T +.Ii'n:t'

Let I = (x,, @, ---) be the ideal in R generated by the x, with ¢
in T.

2. Ordering of power products. Associated with the 7 of a
fixed pp 7 = pn is a function j(¢, k) such that » =%, --- 9, with
either 7, =1 or

i = YisanYijan *°° Yijaap o

@< 36, k) <56, k+1) for 1<k<d, =deg7,.

If », =1, j@4, k) is not defined for ¢ = h.) This is next used to
define nonnegative integers g¢,, a function M[i, k], and a sequence
o(m) = 8y, 8, +--. Then o(x) will be used in a partial ordering of
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the pp which is the key tool for the study of the structure of the
ideal I.

Let g,=d, and M[Lk]l=nk—-1)+1 for 1=k=g9g,. Now
assume that ¢ > 1, that g, , is defined, and that M[s — 1, k] is
defined for 1 <k < g,,. Let g, be the largest positive integer m
with m + j(4, m) — ¢, < g,_, if such an m exists and let g, =0
otherwise. Also let

(1) ML, kl=M[i—1,k+ j6,k—ql+1 for 1<k=<g,.

For those 4 with g, > 0, this defines M[i, k] for 1<k <9, If
m = M[i, k] for such an ¢ and %, let s, = j(¢, k); if m is a positive
integer not in the image set of M, let s, = . Also let s, = degn +
pwgtn. Since M is easily shown to be injective, the sequence
() = 8, 8, +++ is now well defined. [o(07) depends only on 7.]

Let o(n) = sy, 8, -+ and o(n') = s, si, ---. If there is an integer
m such that s, <s, and s, = s, for k¥ < m, then = is said to be
stronger than ©' (x>7x') at m. The stronger than relation is transi-
tive but is not a complete linear ordering.

3. The set A. An i-tuple

(2 ) scn+1y sm+2y ] sc'n+i

in o(x) for which each of these ¢ terms is finite is an 4-run for =
and the sum of the 7 terms is the weight of the i-run. It can be
shown that the weight of the ¢-run (2) is a nondecreasing function
of ¢ in (2). If the weight of an n-run for « is in the given set T,
the associated product

( 3) b = y1sm+1yzsm+2 e y‘"’cn+n

is called a gB-factor of #. The set A is now defined to consist of
all 7 having no B-factors and the set C to consist of all

v =at, acl, § = Ty®y, ~ " Ty, , ex=1, t,eT.

In §5, C and L = A U C will be shown to be space bases for I
and R, respectively. When ¢ =0, T=1{0,1, ---}, and each v, = 0,
A and C can be shown to be the same as the sets of a-terms and
B-terms respectively, defined in [5], using the machinery in [7] and
induction on n.

4. The bijection §. Next we define a mapping ¢ from P to
L and, as in Levi’s work in [7], show that & is a bijection and
then show that L and C are space bases for R and I, respectively.
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Let = have the b of (3) as a B-factor and let o(x) = s, s, ---.
It is easily seen that

(4) o(m/b) = 8o, ** ) Semy Stetvrintss *

i.e., that o(z/b) is o(x) with the #n-run corresponding to b deleted.
This implies that = can be written as abb, ---b,, with the b, all
the p-factors of = and a € A4; then ¢ is defined by

(5) f(x) = 6(abb, - - - b,) = ax,x,, --- x,, , Where ¢, = wgth,.

If = has no B-factors, 7 is an a in A and 6(x) = 0(a) = «.
Examination of the sequence o(w) = s,, s, --- shows that 6 is
injective. Since the terms aw,x,, --- x, in (5) are easily seen to be
in one-to-one correspondence with the 3n-section partitions dealt
with in [3], Theorem 1 of that paper shows that # is a bijection.

5. The space bases C and L.

LEMMA. If © has a B-factor b =y, -+ Y,;, of weight t, then
T = fymox; + filty + folt, + -+ A+ fiTs
where fLeF, w, > n, and degrw, + wgtrw, < degrw + wgtn for 0=
h<s. Also, degw, = degnw — n and wgtrn, = wgtz — .
Proof. By definition of x,,
(6) 2, — v, = eb + eb, + --- + b,
where each ¢, is a nonzero element of F and for 1 < h < 7,

(7) bh:ylkl".ynkvﬂ With kl+ vt +k%:t:jl+ e +jn and
Ik, + 7, for some 1.

Solving (6) for b and letting 7, =7/b and 7, =7b, for 1L <7
yields

T=mb = — foo v, + foltg®, + fim 4+ e+ fom, .
By definition of v,, one can write
—foto®y = friaTprys + =+ + fiT0,

where, for » < h < s, one has f,eF, and 7, > = at 0.

For1<h <7, w, = (xb,)/b, with b, as in (7) and so deg 7, = deg =,
wgtm, = wgtw. From (7), it follows that %k, < j; for some 7. Let
the p-factor b of = be as in (3). If k, < j, it can be seen that
T, > at some m with m <en + 1, and if k, < 7, 7> 1, then
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7, > n at some m with m =< en. Since ©, = w/b, we have degrx, =
degw — n, wgtn, = wgtz — ¢, and #, > 7 at 0.

THEOREM 1. L and C are space bases for R and I, respec-
tively. '

Proof. Let B be the complement of A in P. For every non-
negative integer s, let P(s) consist of all # in P with degw +
wgtw < s. Let R(s) be the subspace of R generated by P(s). Let
A(s), B(s), C(s), I(s), and L(s) be the intersections with R(s) of A,
B, C, I, and L, respectively. Note that R(s) has finite dimension.

The space R(s) is generated by its elements of the form =g,
with 7 in P(s) and & a pp in the x, with ¢ in T, since the elements
of this form with ¢ = 1 generate R(s). Since B(s) is finite and the
“stronger than” relation is transitive, the lemma implies that R(s)
is generated by its elements af with a in A(s) and ¢ a pp in the
x, with ¢ in T, i.e., L(s) generates R(s).

Since § with its domain restricted to B(s) is a bijection onto
C(s), L(s) = A(s) U C(s) has the same finite number of elements as
P(s) = A(s) U B(s). Since P(s) is a basis for the space R(s), this
means that the set L(s) of generators for R(s) is also a basis for
R(s). Then it follows that L is a space basis for R.

The space I is generated by the #£& with = in P and & a pp of
positive degree in the x, with ¢ in T; then C generates I since the
7 in B can be replaced by linear combinations of elements of L.
Since C is a subset of the basis L for R, the elements of C are
linearly independent and so C is a basis for I.

6. The algorithm @. The algorithm ¢ for determining whether
a polynomial » of R is in I consists of using the lemma in §5 to
replace in 7 the pp belonging to B and continuing until 7 is ex-
pressible as

7'=f10‘151+"'+fmam5m; fheF; aheAy

with each ¢, a pp in the x, with ¢ T. Then 7 is in I if and only
if each &, has positive degree in the z,.

The description of @ implies that a nonzero polynomial » of R
is not in I if the pp of each term of » is in A. This motivates
the presentation of some simple sufficient conditions for a pp 7 to
be in A. First, for a given Q, if # = 9,9, --- 7,, then 7 is in A4 if
deg 7, = 0 for some 7.

Secondly, let a pp = have a function j(¢, k) and integers g, as
in §2. The condition
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¢+ 72,0+ - +im, ) =d, +¢q
@=q.+ -+ + @+ Quy)

is sufficient for g, to be 0 and hence for « to be in A. Interchang-
ing 1 and some %, 1 < h < mn, as subscripts ¢ leads to

qn + j(l’ 1) e j(??,’ 1) Z dh + q + j(hy 1) .

If for some fixed % this inequality holds for the pp of all the terms
in a nonzero = of R, then » is not in I.

7. Application to differential ideals. Let y,, ---, y, be inde-
pendent differential indeterminates over a differential field F of
characteristic 0. Let z = y,y, --- ¥,, and let y,; and z; be the jth
derivatives of y, and 2, respectively.

For any choice of ¢, q,, - - -, 9., ¢,.. as nonnegative integers with
¢g=¢ + - +4q,,and T ={q,q + 1, ---}, the 2z, meet the conditions
required of the z, in §1 and hence it follows that the set A of §5
forms an a-set for the differential ideal

I=1z]= (20 2411, )

and hence {z,} is a strong sequence.

8. Combinatorial applications. Let the signature of a = in
P be the n-tuple E =]Je, ---, e,] with ¢, the degree of 7© in the
factors y,; with © = h. A polynomial is homogeneous with signature
E if it is in the subspace V[E] generated by the 7 of signature E.
A polynomial is isobaric of weight w if it is in the subspace V,
generated by the 7 of weight w. Let V(w, E) = V[E]NV, and
let p(w, E) be the dimension of the subspace V(w, E).

Let S = [sy, 8, + -, 8,], with the s, nonnegative integers that are
not all zero. A strong sequence {z;} = x,, ,.,, --- Will be called an
S-sequence if:

(i) each z; is homogeneous with signature S and is isobaric
with weight 7, and

(ii) {z;} has an a-set consisting of homogeneous and isobaric
polynomials.

Let A be such an a-set for fixed S-sequence {z,} = z,, ®,,,, --- and let

na(w, E) = na(W; el’ T e'n)
be the number of elements in AN V(w, E). We note here that
N (w; 0,0, ---,0) equals 1 if w = 0 and equals 0 if w > 0.

THEOREM 2. The dimension of the vector space V(w, E) can be
expressed as
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(8)  pw, B) = nw, B) + 3 n.(i; e, — ks, + -+, e, — ks,)p(4, k)

where the sum 1is taken over all mommnegative integers i, j, k such
that © + j + gk = w, k > 0, and the e, — ks, =0 for 1 < h < n.

Proof. Each side of equation (8) is the dimension of the finite
dimensional space V(w, E). The left side is the number of elements
in the basis consisting of the # in V(w, E) while the right side is
the number of a&, associated with the strong sequence {x;}, in
V(w, E).

The formula (8) in Theorem 2 enables one to calculate the
n.(w, E) recursively, i.e., for a given E =[e, ---, ¢,] in terms of
values n.(w’, E') with signatures E' = [e], - -, e,] having e, < ¢, for
1<h=<n and ¢, <e¢, for some h. We next use this to obtain the
following:

THEOREM 3. The number n,(w, E) depends only on w, E, q, and
S and can be written as n.(w, E, q, S).

Proof. For definiteness, let s, > 0. Then we use induction on
e,. If ¢, =0, n,(w, E) clearly depends only on w, E, ¢, and S since
n(w, B) = p(w, K) in this case. By Theorem 2, n,(w, E) = p(w, E) —
> na(1; e, — ksy, .-, e, — ks,)p(j, k). Since k>0 and s >0, ¢ —
ks, < e,. Now our result follows using the inductive hypothesis on
the factors n,(i; e, — ks, - -+, e, — ks,).

If one has two S-sequences (with the same S) the easiest way
to calculate n.,(w, E, q, S) for one of the sequences may be to
calculate it using the a-set for the other sequence (and Theorem 3).
Also the identity in (8) can be used to show that a given sequence
may not be strong. We next illustrate these two types of applica-
tions of Theorems 2 and 3.

First, let @ ={q, q., - -+, 9.} be a fixed (n + 1)-tuple of non-
negative integers with ¢, + ¢, + -+ + ¢,.. =9 = (g) and let T =
{9, ¢ +1, ---}. For teT, let x, be a linear combination over F, of
all products ,;, - -+ ¥,;, with j, +---+ j, = ¢ such that those products
with 7, = q, for 1 < 7 < » have nonzero coefficients. By the results
in §2-5, the sequence {z;} for the ideal J = (z,, %,,, ---) is strong,
has an a-set A, and is an S-sequence with S=1[1,1, ---, 1].

Next, let ¢ = <§) and W, .., be the kth derivative of the

Wronskian W, of » independent differential indeterminates y,, - - -, ¥,.
Then W,; is homogeneous with signature S =1[1,1, ---,1] and
isobaric with weight j. Also the work in Mead’s paper [9] shows
that {W,;} is an S-sequence. Hence we have the following:
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THEOREM 4. JNV(w, E) and [W,]NV(w, E) have the same
dimension given by either side of the equation:

p(w, B) — n.(w, E) = 3, n,(1;6, — k, - -+, e, — k)p(4, k)

where the sum is over all nonnegative integers i, j, k with
C ‘N
v+ + k( > =w
\ 2

and

1=k=m=min{e, ---,¢,}.

In [3], the author stated that Theorem 4 could be proved and
used this result to obtain many identities on combinatorial generat-
ing functions.

Secondly, Theorem 2 can be used to show that a given sequence
{z;} is not strong, and hence to indicate the existence of syzygies.
For example, consider the differential ideal [x] = («,, x,, ---) Where
¥,.; is the jth derivative of z = y}y, + Ty,y:. The recursive calcula-
tion, using (8), of w.(w, E) based on the assumption that {x,} is
strong leads to the contradiction that the cardinality of AN V(w, E)
is negative for some w and E. The following is a partial printout
from a computer program designed to compute n.(w, E, g, S) and
p(w, B) — n(w, E, q, S) [denoted by =, and n; resp. in the table]
for this example where we have

(9) n=1, ¢=2, S=][s]=][3].
deg
1 2 3 4 5 6
wgt

Ne NP Ne NP Ne NP Ne NB Ne NB Na M8
0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 1 0 1 0 1 0
2 1 0 2 0 1 1 1 1 1 1 1 1
3 1 0 2 0 2 1 1 2 1 2 1 2
4 1 0 3 0 3 1 2 3 1 4 1 4
5 1 0 3 0 4 1 2 4 1 6 1 6
6 1 0 4 0 6 1 4 5 1 9 1 10
7 1 0 4 0 7 1 5 6 1 12 0 14
8 1 0 5 0 9 1 8 7 2 16 -1 21

The negative entry —1 for =, in the table for weight 8 and
degree 6 shows that no sequence {z,} satisfying properties (9) is
strong, and also indicates that any such sequence has some syzygies
involving only polynomials with the weight bounded by 8 and the
degree bounded by 6.
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9. Bibliography. The many fields of mathematics in which
tableaux and skew-tableau play an important role are described in
the papers of the report [2]. The set of all linear combinations of
partitions is shown to be isomorphic to the differential polynomial
ring in one indeterminate in [4]. The ordered pairs of generalized
tableaux used by Mead in [9] appear in a more general setting in
[1]. The different proof of Mead’s Theorem 2 in that paper could
be eliminated by a reference to D. Knuth’s generalization of the
Robinson-Schensted insertion into tableau algorithm in [6]. The
ordering of power products described in §2 above made possible the
generalization, given here, of the results of [5] and [7].
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