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EQUIVALENT NILPOTENCIES IN CERTAIN GENERALIZED
RIGHT ALTERNATIVE RINGS

HARrY F. SmITH

A nonassociative ring is called generalized right alterna-
tive if it satisfies the identity (w=z, y, 2) + (w, %, [y, 2]) =
w(x, ¥, 2) + (w, ¥, z)x. Generalized right alternative rings
which also satisfy ([w, z], ¥, 2) + (w, =, y2) = y(w, x, z) +
(w, 2, ¥)z or (x, ¥y, 2) + (¥, 2, %)+ (2,2, y) =0 are known as
generalized alternative or generalized (—1, 1) rings, respec-
tively. For both these varieties it is proved that either
left or right nilpotence implies nilpotence. However, char-
acteristic =2 is required for generalized (—1, 1) rings in the
case of right nilpotence.

1. Introduction. Using the standard notation (x, ¥, 2) = (xy)z —
2(yz) for the associator and [z, y] = 2y — yx for the commutator, a
nonassociative ring which satisfies the identity

(1) (wz, y, 2) + (w, x, [y, 2]) = wx, y, 2) + (w, ¥, 2)x

is called generalized right alternative. Such rings which also satisfy
(2) ([w, ], ¥, 2) + (w, x, y2) = y(w, @, 2) + (W, &, Y)2

are known as generalized alternative, and those that satisfy (1) and
(3) @, 9,2 + W22+ 2y =0

are called generalized (—1, 1). The studies of these three varieties
were each initiated by E. Kleinfeld [2-4], with the strongest result
on the structure of generalized right alternative rings per se due
to Hentzel and Cattaneo [1].

Let A be any nonassociative ring. If for some positive integer
n every product of % elements from A is zero, no matter how the
elements are associated, then A is said to be nilpotent. In this case
the least such integer = is referred to as the index of nilpotency of
A. Setting A™ = A and defining inductively A™ = AA™1, then less
restrictively A is called left nilpotent of index » if A" = (0) and n
is the least such integer. Right nilpotence is defined analogously.
In addition, if we let A® = A and define inductively A® = (4%),
then A is called solvable of index = if A™ =(0) and A" = (0).
It is immediate that nilpotency implies left and right nilpotency,
and that left or right nilpotency implies solvability.

As the name generalized alternative suggests, identities (1) and
(2) are both satisfied by any alternative ring. In [10] Zhevlakov
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proved that a left or right nilpotent alternative ring must be
nilpotent. In this paper we shall extend his result to the variety
of generalized alternative rings.

By definition any (—1, 1) ring satisfies (3), and provided character-
istic # 2 such rings likewise satisfy (1). (That this restriction on
characteristic is necessary can be seen using example 2 from [5].)
Thus a (—1,1) ring with characteristic == 2 is generalized (—1, 1).
In [8] there is a proof due to Slin’ko that for (—1, 1) rings left
nilpotency implies nilpotency. We shall extend this result to gener-
alized (—1, 1) rings. Also, Pchelincev [6] and Dorofeev each proved
that a right nilpotent (—1, 1) ring with characteristic = 2 is nilpotent.
This result extends as well to the variety of generalized (—1,1)
rings. However, as demonstrated by an example, characteristic = 2
is required there too.

In [7] Pokrass proved that for flexible generalized right alterna-
tive rings left or right nilpotency is equivalent to nilpotency. Our
approach parallels that used by Pokrass, but the argument applied
here is more general in that it does not utilize any sort of result
concerning the product of ideals in either of the varieties considered.

2. Main section. Let A be a nonassociative ring. For ac A,
L, and R, denote the operators of left and right multiplication by
a, respectively. The notation S, is used when the operator S can
be either L or R.

We begin by writing (1) in expanded form. After some cancel-
ling of terms, we have

(1) 0 = [(wr)ylz — (wx)(zy) + wlx(zy)]
— wl(@y)z] — [(wy)z]r + [w(yz)]x .

Then taking in turn w, », y, and z as the argument, (1) in operator
form gives

0 = RnyRz bt Rszy + Rz(zy)

4
( ) - R(xy)z - RuRsz + RyzR:c ’
5) 0 = L,R,R. — LR, + R.,L.
- RszLw - L(wy)z + Lw(yz) ’
(6) 0= szRz - Lszx + LzLauLw
- LszLw - LszRx + RszRa: ’
(7) 0= L(wx)y - Ruwa + RnyLw

-L,,L,—- L,R,+ L,L,R,.

Also. expanding (3) and taking x as the argument gives
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(8) 0=R,R,—R,,+L,,—LL,+ LR, — R,L, .

Since identities (4)-(7) hold in any generalized right alternative ring,
they are wvalid for both generalized alternative and generalized
(—1, 1) rings. Identity (8), of course, is only valid for generalized
(—1,1) rings.

We note, too, that if the ring A is generalized alternative,
then due to the symmetry between identities (1) and (2) the opposite
ring of A is likewise generalized alternative. In particular, this
means if such an A satisfies some relation involving multiplication
operators, then A also satisfies the opposite relation where L’s and
R’s are interchanged.

Letting B denote the ideal A%, we first prove

LEmMMA 1. If A is a generalized right alternative ring, then
(B*A)B < B*** for k = 1.

Proof. To show (B*A)B < B**'* we induct on k. For k=1,
(BA)B < B* since B is an ideal. Now assume (B‘A)B < B'** for
1< i<k and consider (B*A)B where k1 =2. Let 11k —1.
Then from (1) we obtain [(B'B**)A]|B< (B‘B**)(AB) + (B'B**, A, B)C
(B'B*)(AB) + (B%, B*™", [A, B]) + B{(B*", A, B) + (B', A, B)B*"* < B*",
using B is an ideal and the induction assumption. Since B* =
Skt B'B¥¢, this proves (B*A)B & B**' and completes our induction.

In Lemmas 2-7 the ring A can be either generalized alternative
or generalized (—1, 1).

LEMMA 2. Let T = S,,S,,S.,S., where for each 1 =1 <4 either
x2,€B or x,,,€ B. Then (BT < (B*)>,S--- S.

Proof. If x e B the result is obvious. Thus we assume %, =
a ¢ B, so that by assumption «, = be B. Depending on the R’s and
L’s in S,,S,, there are now four possible cases. First suppose S, S,,=
R,R,. Then by Lemma 1 (BY)T = (B")R,R,S,S,, < (B**")S.,S,, as
required.

We next suppose that S,S, = L.R,, and begin by assuming
2, =b eB. In this case, using (6) with x =a, 2=0, w =0 we
have

L,R,L, = Ly,R, — L,Ly, + L,L,L,, — L,R,R, + R,L, R, ;
or using (6) with w = a, 2 =0, £ = b’ we have

L,R,R, = LR, — L,L,y + L,Ly L, — LyR,L, + R,L,R,; .
Hence in either situation (B¥Y)T = (B¥L.R,S;S,, S (B**)>,S--- S as

2y =
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required. On the other hand, if z,=a’'¢ B then 2, =b'¢B by
assumption. In this case we first use (5) with w =a, y =0, 2 =o'
to obtain

LaRbRa’ = LaRa’b - Ra'bLa + RbRa’La + L(ab)a’ - La(ba') .

Thus if S, = R,, then (BYT = (BYL,R,R,S, < (B*)>,S---8
utilizing our previous calculations for L.R,S,. Next we use (6) with
x=a, 2=0>0, w=a to obtain

La,RbLal = La,’aRb - LbLa'a, + LbLaLa’ - La’RbRa + RbLa’Ra .

Then for S,, = L, we have (BT = (B*L,R,L,S, < (B*")3>,S--- 8
using our preceding calculation for L,R,R,.S,. Hence we now have
shown that if T'=L,R,S,,S.,, then (B)TS(B***)3.,S---S as required.

Thus far the argument applies for both generalized alternative
and generalized (—1, 1) rings. For generalized alternative rings the
two remaining cases, S, S,, = R,L, and S, S,, = L,L,, now follow by
symmetry. Therefore at this point we can assume the ring A is
generalized (—1,1). Let S, S, = R,L,. Then by (8) we have (B*)T =
(BYT = (B)R.L.S.,S.,= (BB, Ry— Ry + Lyy— LyL,+ L,R,18. S.,. Since
we have already established (B*)R,R,S,,S,, < (B*™"S,,S,,, this shows
(BYR.L,S, S, = (B*) > S ---S. Finally, let S,S,, = L,L,. Then
again by (8) (B)T = (BYL.LS,S., = (BYR,R, — Ry + Li, + LR, —
R,L,S.S,,. Since we have also established (B*)L,R,S.S,, =
(B¥*) >, S --- 8, this shows (BY)L,L,S,S,, & (B**) 3> S --- S, which
completes the proof of the lemma.

LEMMA 3. Let T=S,, ---S,,S, where be B and n=1. Then
T can be expressed as a sum of terms each of the form S,.S, --- S,
or 8,88, -+ S,, where b’ e B.

Proof. The proof is by induction on n. For » =1 the lemma is
true immediately. Thus we assume » = 2 and that the lemma holds
for all values less than ». Then T'=S, ---8,,_,S.,S;, and depend-
ing on the R’s and L’s in S, .S, S, there are eight possible cases
to consider. Using our induction assumption, first B, R, R, follows
from (4) if we set =0, y=2,,, z=w, Similarly B, R, L,
follows from (5) taking w=0, y=w,,, 2=2, and L, R, R,
follows from (5) with w =«,_,, y = «,, 2 = b. Then letting w = «,,
t=0>b, 2z=2,, in (6), R, L, R, reduces to L, R, R, which was
just established.

So far our argument applies to both generalized alternative and
generalized (—1, 1) rings. For generalized alternative rings the four

remaining cases, R, L, L, L, R,L, L, L,R, and L, L,L,

Tn—1 Tn—1

Tn—1 Tn—1 Tn—1 Tn—1
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now follow by symmetry. Therefore at this point we assume the
ring A is generalized (—1,1). Then using (8) and the induction

assumption we see that
R La:ﬂLb = Rznﬂl[RbRxn - Rba:,,, =+ Lba:n + anRb - RbLa:n]

L, R, and that

Tn—1

reduces to R

Tp—1

LcnnﬁlRanb = an_l[Ranb - Rz,,bb + anb - LbLz,n =+ LbRx,,,]
reduces to L, R, R, both of which have already been established.
Similarly,

L‘”n—lLﬁan = [R-’EMRW&—I - R“nxn~—l + L”fn-"n—l + L”'n.—len - R—"ann—l]Rb

reduces to earlier cases, and then

L anLb =L [RbLG - Rbf”n + be% + La;”Rb - Rben]

Tp—1 Fn—1

reduces to L, L, R, This completes the proof of the lemma.

In—1

LEMMA 4. LetT =S, ---S,, be such that k of the x,€ B where
1=k=mn. Then T can be expressed as a sum of terms each of the
form S, --- S, S---8 where at least k of the y,€ B, and for each
1 <4< m either y,€ B or y,,., € B.

Proof. The proof is by induction on k with the case k=1
implied by Lemma 3. Thusassume T'=S.-- 8, ---8,,_ -+ Sy, --- 8
where the b, € B, and that the lemma holds for values less than k.
Then we apply this assumption to express S --- S, -+ Sy,_, as a sum
of terms S, --- 8§, S---S each having the desired property for
k — 1. This means T is now expressed as a sum of terms each of
the form S, --- S, S-S, ---S. If y,eB, we apply Lemma 3 to
S8, If y,¢B, then y, ,e€B, and we apply Lemma 3 to
S,, S+ 8,,. In either case, T is then expressed as a sum of terms
each having the desired property.

LEMMA 5. Let B*=(0). If T=S, ---8,, where 4k + 1 of the
x,€B, then T = 0.

Proof. For any ac A, (a)Te(B)S,, -+ S,, where at least 4k of
the #,¢ B. By Lemma 4 S, --- S, can be expressed as a sum of
terms each of the form S, --- S, S---S, where at least 4k of the
y,€ B and for each 1 <1 < m either y,€B or ¥,.,€B. Then by
Lemma 2 (a)T' € (B) XS, - - - S,;,, where in each term at least 4(k —1)
of the z;€ B. Again by Lemma 4 these 4(k — 1) b’s can be brought
forward, if necessary, and again by Lemma 2 ()T € (B°) 3. S,, - -- S,;,,



464 HARRY F. SMITH

where in each term at least 4(k — 2) of the w;e€ B. Repeating this
process k times, we arrive at (@)Te(B*) >,S--- S=(0). Thus T =0,
which completes the proof of the lemma.

At this point we adopt the following notation. If for operators
T and T we have T — T' = >, T,, where each operator 7T, has a
factor of the form S,, with b,€ B, we shall write T'= T".

LEMMA 6. IfT =S, ---S,; where m = 1 of the S’s are L’s, then
r=xL,---L,, S---8S.

Proof. For j=1 or 2 the lemma is clearly true. Thus we
assume j = 3 and that the lemma holds for values less than 5. Now
for an operator of the form LS --- S our induction assumption ap-
plies to the subword S---S. Hence we can assume 7= RS --- S
and consider the initial subword RSS of T. We shall show that in
each of four possible cases, namely RRR, RRL, RLR, and RLL, we
can make substitutions that reduce T to the form 7T =>,LS.--S.
But then, as we have just indicated, the induction assumption can
be applied to complete the proof.

First from (5) we see RRL = LRR, and from (7) RLL = —LLR.
Next (6) implies

(i) RLR = LRL + LRRE — LLL .

Now if the ring A is generalized alternative, going to the opposite
ring (i) gives

(ii) RRR = RLR + RLL — LRL .

But RLR and RLL have already been reduced, so in this case the
reduction of 7 to the form 7 = >,LS---S is complete. On the
other hand, if A is generalized (—1, 1), then using (8) we have

(iii) RRR = [LL — LR + RL]R .

This likewise completes the reduction of 7, and thereby the proof
of the lemma.

LEMMA 7. If the ring A is left nmilpotent and B s milpotent,
then A itself is milpotent.

Proof. Suppose A is left nilpotent, so every product of say
m =1 L’s is zero, and consider an operator I'=S, --- S, .,
Thinking of T' as a product of m + 1 blocks, each of length 8, it
follows that T has an L in each block or else three consecutive R’s
in one or more blocks. In this latter case we can use (ii) or (iii) to

substitute for each RRR, so that in either case T = 3, T, where
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each T, has m + 1 blocks of length 38 and each block has at least
one L. Then by Lemma 6each T, =3 L, --- L, S---S. Buteach
L,---L, =0,s0 T'=0if T is a product of 3(m + 1) S’s.

Now by assumption B is nilpotent, so suppose B* = (0). By the
preceding argument it follows that every product of 3(m + 1)(4k + 1)
S’s is a sum of terms each containing 4k + 1 factors S,, with ;¢ B.
Hence by Lemma 5 such a product is zero. This shows A*, the as-
sociative ring generated by left and right multiplications of A, is
nilpotent. Thus by Theorem 2.4 in [9] A itself is nilpotent.

THEOREM 1. If A s a left or right nilpotent generalized alterna-
tive ring, then A is nilpotent.

Proof. We assume first that A is a left nilpotent generalized
alternative ring. Then A is solvable, and to prove A is nilpotent
we induct on the index of solvability of A. To start, A is clearly
nilpotent when A*= A® = 0. Then by induction we can assume
B = A*? is nilpotent, since B is a left nilpotent generalized alterna-
tive ring with solvable index less than that of A. Hence by Lemma
T A itself is nilpotent, which completes the induction.

On the other hand, if A is a right nilpotent generalized alterna-
tive ring, then the opposite ring of A is also generalized alternative
but left nilpotent. Thus by the preceding argument the opposite
ring of A must be nilpotent, which of course means A is nilpotent
as well. This completes the proof of the theorem.

Now since Lemma 7 also applies to generalized (—1, 1) rings,
the above proof actually shows a left nilpotent generalized (—1, 1)
ring is likewise nilpotent. However, since the opposite ring of a
generalized (—1, 1) ring need not be generalized (—1, 1), the above
proof for the right nilpotent case does not apply to generalized
(—1,1) rings. Consequently, we shall henceforth assume A is a
generalized (—1, 1) ring with characteristic = 2. For such an 4 we
shall show we can replace left by right in Lemma 7. Then replacing
left by right in the proof of Theorem 1, and again inducting on the
index of solvability of A, it follows such a right nilpotent A is
nilpotent. To make the indicated modification of Lemma 7, we first
need to modify Lemma 6.

LEMMA 6'. If T =S8, ---8S,; where m =1 of the S’s are R’s,
then T= >R, ---R,,_S---8S.

Proof. The proof, which is by induction, is completely analogous
to that of Lemma 6. However, this time our goal is to show that
for T = LS --- S we can substitute for the subword LSS to reduce
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T to the form 7' = >, RS --- S, whence as in Lemma 6 the induction
applied to the subwords S --- S completes the proof.

We first use (5) and (7) to see LRR = RRL ann LLR = —RLL.
For operators 7 and 7” we then introduce the notation T ~ T" if
T=T+3RSS+ > LRR + >, LLR. Using (8) we have L.L,L, =
|R,R, + L.R, — R,L,]L,, so that

(iv) LL,L,~ LR,L,.
Using (8) again L,L L, = L[R,R, + L.R, — R,L,], so that also
(v) LLL,~—-LRL,.

Next letting w =y in (6) we obtain L, L,L,= L,RL,+ L,R.E, —
R.L,R,, which is

(vi) L.L,L, ~ L,R.L, .

Now applying (@iv), (v), (vi), and (iv) in succession, we see that
LLL,~LRL,~—-LLL,~—LRL,~ —L,L,L, Thus

(vii) LLL,~ —L,L,L,.

Then applying (vii) repeatedly we obtain L, L, L, ~ —L,L,L,~
LL.L,~ —L,L,L, or 2L,L,L, ~0. Since characteristic # 2, this
implies LLL = 3>\, RSS + 3. LRR + >, LLR; and so by (iv) also
LRL = 3\RSS + 3, LRR + 3, LLR. But the cases LRR and LLR
have been established, and consequently this completes the proof of
the lemma.

LEMMA T'. If the ring A is right nilpotent and B is milpotent,
then A itself is milpotent.

This is Lemma 7 with left replaced by right. Interchanging L’s
and R’s, the proof of Lemma 7’ is the same as Lemma 7 with the
following two adjustments. One uses (i) in order to substitute for
each LLL, and Lemma 6 is used in place of Lemma 6. As indicated
after proving Theorem 1, we can now conclude

THEOREM 2. Let A be a generalized (—1, 1) ring. If A is either
left nilpotent, or right nilpotent with characteristic # 2, then A 1is
nilpotent.

In [6] Pchelincev constructed the following example of a right
nilpotent but not left nilpotent (—1, 1) algebra with characteristic = 2.
Let A be the vector space over Z, with countable basis {e, e, - --}.
We define a multiplication on A by ee;, = ¢,.,, €6 = €y, and all
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other products of basis elements are zero. A straight forward
verification shows that A is also a generalized (—1, 1) algebra. Con-
sequently, the restriction on characteristic in the right nilpotent
case of Theorem 2 is necessary.
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