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THE CLASSIFICATION OF UNIFORM ALGEBRAS
ON PLANE DOMAINS

WILLIAM R. ZAME

Let Ω be an open subset of the complex plane. Denote
by έ?(Ω) the algebra of all holomorphic functions on Ω,
equipped with the topology of uniform convergence on com-
pact set. The object of this paper is to provide a complete
classification of all the closed subalgebras of έ?(Ω) which
contain the polynomials, and apply this classification to
several concrete problems, including localness of these
algebras, continuity of homomorphisms, and number of
generators. It should be emphasized that no assumptions
are made as to the connectivity of Ω. In fact, in the
cases of most interest, Ω will not be connected and some
of the connected components of Ω will not be simply con-
nected.

The most natural way in which such a classification might proceed
would be to show, for such an algebra A, that the space ΔA of non-
zero, continuous complex-valued homomorphisms of A, can be equipped
with the structure of a one-dimensional complex-analytic space. Un-
fortunately, this is not generally the case. However, we can realize
A A as the quotient of a certain Riemann surface, and equip it with
a "pseudo-analytic structure", and this data serves to classify the
algebra A. This is accomplished in §§ 1 and 2.

As with any classification scheme, it is natural to ask whether
the scheme described here is a satisfactory one. This is partly a
question of taste, but we suggest that a reasonable criterion is ap-
plicability to the solution of concrete problems. Following a sugges-
tion of Kaplansky [11, p. 12] we consider three "test problem" which
arise naturally in the study of uniform algebras:

(1) Is the algebra local on its homomorphism space?
(2) Is every complex-valued homomorphism of the algebra

necessarily continuous?
(3) Is the algebra finitely-generated?

In § 3, we use our classification scheme to show that the first two
test problems always have affirmative solutions, and that the third
test problem has an affirmative solution if Ω has only a finite number
of connected components. We also give another application, suggested
by work of Gamelin [8] and Bjork and de Paepe [7].

Some of our methods work in more general contexts, although
the sharpest results do not obtain. In § 4, we indicate the sort of
result which can be obtained, and some limitations.
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Algebras of holomorphic functions on plane sets (or on Riemann
surfaces) have been extensively studied by a number of authors,
including Wermer [17, 18] Bishop [3, 5, 6], Royden [14], Bjork and
de Paepe [7], Gamelin [9] and the author [19]. (This list is by no
means complete.) The work described here is based on [19], which
in turn is based on Bishop's development of Wermer's ideas on ana-
lytic structure.

Some of these results were announced in [20].

1* Stable algebras and homomorphism spaces* Throughout,
we will let Ω denote a non-empty, open (not necessarily connected)
subset of the complex plane C. We denote by έ?(Ω) the algebra of
all holomorphic functions on Ω. Equipped with the topology of uni-
form convergence on compact subsets of Ω, έ?(Ω) is a Frechet algebra;
i.e., a complete, metrizable, locally convex, locally multiplicatively-
convex topological algebra. (For general information about such
algebras, we refer to [15].) Evidently, any closed subalgebra of
έ?(Ω) is again a Frechet algebra.

If A is a closed subalgebra of ^(42), we let A A denote the set
of non-zero continuous, complex-valued homomorphisms of A. For
/ e i , we let /: A A —> C denote the Gelfand transform of /; i.e., the
map given by f(<p) = φ(f) for each φ e AA. We give AA the finest
topology which renders each of the maps / continuous. We let
δ: Ω —> A A be the map which assigns to each point xeΩ the homo-
morphism dx(f) = f(x). If A contains the polynomials, then δ is a
homeomorphism onto its range; we shall usually suppress δ and simply
regard Ω as a subset of A A.

Our classification of subalgebras of δ(Ω) will utilize the structure
theory of certain simple subalgebras of ^(β) and we begin by
describing these. We say a closed subalgebra B of ^(Ω) is stable
if it contains the polynomials and is closed under differentiation with
respect to the coordinate function z. Stable algebras may be con-
structed in the following way. Let Ω — U Ωa be a partition of Ω
into (disjoint) open and closed subsets (so that each Ωa is a union of
connected components of Ω). For each α, let Ω'a be a connected open
subset of C which is the union of Ωa with some of the bounded,
connected components of C\Ωa. (Note that the sets Ω'a need not be
disjoint.) Let B be the set of holomorphic functions / on Ω such
that f\Ωa belongs to ^(β9

a) \ Ωa for each a. It is evident that B is
a stable subalgebra of έ?(Ω), and that AB is the disjoint union of
the sets Ω'a, so AB naturally carries of a (not necessarily connected)
Riemann surface. The following result shows that all the stable
subalgebras of ^(Ω) arise in this way. Virtually the same result
was given in [19], although formulated for compact sets rather than



UNIFORM ALGEBRAS ON PLANE DOMAINS 233

open sets, so we shall omit the proof.

THEOREM 1. Let B be a stable subalgebra of &(Ω) and let ΔB —
U Ya be the decomposition of ΔB into connected components. Then:

( i ) for each a, z\Ya is a homeomorphism onto a connected open
subset of C;

(ii) for each a, Ωa — z(YaΓ\Ω) is an open and closed subset of Ω
and Ω'a = z(Ya) is the union of Ωa with some of the bounded, connected
components of C\Ωa;

(iii) B = {/ e ^(Ω): f\Ωae <?{Ω'a) \ Ωa for each a).

Now let A be a closed subalgebra of 6?{Ω) which contains the
polynomials and let B be the smallest stable subalgebra of έ?(Ω) which
contains A. It is evident that B is the closure of the algebra gen-
erated by the elements of A and all their derivatives (of all orders).
Let p: ΔB —> ΔA be the restriction map. It will be convenient to
suppress the Gelfand transform for functions acting on ΔB and retain
it for functions acting on ΔA. Thus we regard an element / e i a s
a function on ΔB, while its Gelfand transform / is a function on ΔA,

For each compact subset K c ΔB we define a semi-norm || \\κ

on B by:

II/IU = sup{|/(α)i: * e i q .

The 2?-convex hull of the compact set K is

KB = {xeΔB: \f(x)\ ^ \\f\\κ for each feB} .

We say that an arbitrary subset E c ΔB is i?-convex if KB is a subset
of E whenever K is a compact subset of E. (We make the obvious,
similar definitions for any algebra of functions on any space.) Note
that an open subset W of ΔB is 2?-convex exactly when ΔB\W has
no compact, connected components.

The following result expresses the relationship between ΔB and
ΔA. Again, virtually the same result was given in [19], so we omit
the proof.

THEOREM 2. Let A, B and p be as above.
( i ) If V is an open, relatively compact, B-convex subset of ΔB

then p(V) is a relatively compact, A-convex subset of ΔA;
(ii) the mapping p:ΔB-^ΔA is continuous and onto;
(iii) if x, y are in ΔB and p{x) = ρ(y) then z{x) = z{y);
(iv) the set g"0 = {(x, y)eΔB x ΔB: x Φ y and p(x) = p{y)} is a

countable, discrete subset of ΔB x ΔB;
(v) if p is one-to-one, then A — B.
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A number of remarks are in order at this point. Note first that
it is not asserted that p:ΔB->ΔA is a quotient map; i.e., that the
topology on ΔA is the finest which renders p continuous. (In fact,
we do not know whether or not this is the case, although if W is
an open, relatively compact subset of ΔB then it is easy to see that
p: W-+ p(W) is a quotient map.) This will cause some inconvenience,
but is not really a serious problem. Second, although i?0 is a dis-
crete subset of ΔB x ΔB, the sets Σ = {y e ΔA: p~\y) is not a single-
ton} and p~\Σ) — {x e ΔB: p~ιp(x) Φ {x}} need not be discrete. This
can be seen from the following example, which illustrates the sort
of pathology which may be present.

Let Dk denote the open disk with center 0 and radius k; let Dk

be its closure. Set Ω — A U (A\A) and set

B = {fe <?ψy. f\ (A\A) e ̂ (A) I(A\A)}.

Thus for each / e B there is a unique fe έ?(D2) such that /|(A\A) =
/|(A\A) It is evident that B is a stable subalgebra of ^(Ω) and
that ΔB may be identified with the disjoint union of A and A
Choose an infinite discrete subset {xn} c A and set A = {/ 6 B: f(xn) —
f(xn) for each n). It is easy to see that ΔA is the space formed
from the disjoint union of A and A by identifying each of the points
xn e A with the corresponding point xneD2. Notice that neither Σ
nor p~ι(Σ) are discrete sets. (In fact, by using a similar construc-
tion with an infinite family of disks, it is possible to construct an
example in which both Σ and p~\Σ) are dense.) It is evident that
ΔA cannot be equipped with the structure of a complex-analytic space,
since the set of singularities would not be discrete. However, the
image in ΔA of each relatively compact, open subset of ΔB does
admit the structure of a complex-analytic space; this observation is
the key to our classification scheme.

Finally, we note that Theorems 1 and 2, taken together, provide
us with a method of computing the stable algebra B directly from
A. This may be seen most easily by considering a special case. As
above, let Dk be the open disk with center 0, radius k, let Dk be its
closure, and set Ω — A U (A\A) It is easily seen that there are
precisely three stable subalgebras of

B2 - {/ e <?φy. f\ (A\A) e ̂ (A) KA\A)}
J5 3 -

Given a closed subalgebra A of ^(Ω) which contains the polynomials,
it is a simple matter to determine B, the smallset stable algebra
containing A. For it follows from Theorem 2 that the functions in
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B must have precisely the same extension properties as functions in
A, so there are precisely three situations which can arise:

(1) every function in A extends to D2, in which case B = Bt;
(2) for every function / i n A, f\(A\A) extends to a function

fe^(D2), and there is function geA such that g does not agree
with g on Dx; in this case B = B2;

(3) there is a function feA for which /|(A\A) does not ex-
tend to a function in έ?(D2), in which case 5 = J53.

The same sort of analysis may be carried out in the general case,
although we shall not do so. The point is simply that the algebra
B can actually be recovered simply from A by extension properties
and is not an additional construct. (Note: the possibility of recover-
ing B from extension properties of functions in A will also play an
important role in the proofs of Theorems 3 and 7.)

2* PseucUvanalytic structures and the classification theorem*
As was mentioned in the introduction, the most natural way to
classify the closed subalgebras A of ^{Ω) which contain the poly-
nomials would be to endow ΔA with the structure of a one-dimen-
sional complex-analytic space. As we show in § 1, this is not always
possible because ΔA may have too many singularities. It turns out
however, that if we restrict attention to a relatively compact open
subset W of ΔB, then the image p(W) under the natural restriction
p: ΔB —> ΔA can indeed be endowed with the structure of a one-
dimensional complex-analytic space. If we cover ΔB with such open
sets, we obtain a collection of "local" analytic space structures on
ΔA; of course these structures are "local" relative to ΔB, not relative
to ΔA (since p is not an open mapping). Patching these structures
together produces what we will call a pseudo-analytic structure.
There is one slight bit of inconvenience, since we do not know
whether or not ΔA carries the quotient topology. It turns out to
be simpler to deal with the quotient topology; recall, however, that
for a relatively compact open subset W of ΔB, the quotient topology
on p{W) does agree with the induced topology from ΔA.

It will be convenient to formulate the general notion of a
pseudo-analytic structure so as to be applicable to algebras on Riemann
surfaces. To this end, let R be a (not necessarily connected) Riemann
surface and let i? be an equivalence relation on R, thought of as
a subset of RxR. We say that g7 is admissible if g7 if a closed
subset oί RxR and the intersection of i? with the complement of the
diagonal is a countable discrete subset oί RxR. If g* is an admis-
sible equivalence relation on R, let i?/£? denote the quotient space and
π: R —> R/& the quotient map. We give R/& the quotient topology;
i.e., the finest topology which renders the map π continuous. (This
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topology is Hausdorff, but need not be metrizable or locally compact.)
By a pseudo-analytic structure on i?/ί?, we mean a subset Sf of

the sheaf of continuous functions on ϋί/g7, such that (π(W),
is a one-dimensional complex-analytic space and π\W—>

π{W) is holomorphic for each open, relatively compact subset W of
R. (Here, we regard &"\π(W) as a subset of c^πW)\ i.e., the ele-
ments of S^\π(W) are to be thought of as germs of continuous
functions on π(W).) We emphasize that it is not assumed that &*
is a subsheaf of ^ / ^ in fact, £f will not generally be an open
subset of ^B/y. We denote by Γ(R/&, ^R,^) the space of sections
of ^Bi% (which we usually regard simply as continuous functions),
and by Γ(R/ g*, £f) the subspace of sections which lie in Sf at each
point. Notice that {/°ττ: / eΓ(R/&, £f)} is a subset of the algebra
έ?(R) of all holomorphic functions on R.

In order to treat algebras on open subsets Ω of the complex
plane, we introduce one further notion. By a regular triple for Ω
we mean a triple (R, g7, £f) where R = ΔB is the homomorphism
space of a stable subalgebra of £?{S) (we regard Ω as an open subset
of R)f g

7 is an admissible equivalence relation on R = ΔB such that
z(χ) = z(y) whenever (x, y) e g7, and Sf is a pseudo-analytic structure
on 22/g" such that zo^"1 is holomorphic on π(W) for each open,
relatively compact subset W of ΔB. (Note that z ° π""1 is well-defined
because of our restriction on g\) We can now give our Classification
Theorem for closed subalgebras of έ?(Ω) which contain the polynomials.

THEOREM 3. Let Ω be an open subset of the complex plane. The
map

τ.(R, έf,^)ι >{foπ:feΓ(R/&,

is a bijection between the regular triples for Ω and the closed sub-
algebras of έ?(Ω) which contain the polynomials.

Proof. It is convenient to begin by constructing the inverse of
7, which is a map from algebras to triples. To this end, let A be
a closed subalgebra of <^{Ω) which contains the polynomials. Let B
be the smallest stable subalgebra of έ?(Ω) which contains A and set
R = ΔB, §f = {(x, y)eR x R: f{x) - f{y) for all / e A}. In view of
Theorems 1 and 2, R is a Riemann surface, g7 is an admissible equiva-
lence relation on R and z{x) = z(y) for (x, y) in g*. Note that R\c£
and ΔA agree as sets, although the topology of iϋ/g7 may be finer
than the topology of ΔA. For each f eA, we may regard the Gelfand
transform / a s a continuous function on iϋ/g7. Let π: JB—> 22/gf be
the quotient map.

We now wish to construct a pseudo-analytic structure on ϋ^g7.
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We first use [10, VII, C7] to choose and fix functions fl9 f2 in A such
that φ = (z,fuf2): R\cg -> C3 is a one-to-one map. Now let W be an
open, relatively compact, jB-convex subset of R = ΔB. We are going
to construct an analytic structure on π(W) by imbedding it in CN

for sufficiently large N.
Since W is relatively compact, π and ψ identify only a finite

number of pairs of points in W. Hence π(W) is locally compact and
φ\π(W) is a homeomorphism onto the locally compact subset φ(π(W))
of C\ We can therefore find an open subset Q of Cz such that
φ(π(W)) is a closed subset of Q. Thus, φoπ is a proper mapping of
TF into Q, so Y — φoπ(W) is a closed subvariety of Q. Since the
first component of φ o π is z, it follows that φ ° π* maps the connected
components of if in a one-to-one biholomorphic fashion onto the
irreducible branches of Y9 which are therefore non-singular.

Now, every g eA defines a continuous function g = g°(φo π)~ι =
g°φ~x on Y, which is holomorphic at the regular points and thus in
particular is weakly holomorphic on Y. Let A = {g: g e A}. Since
Y has only a finite number of singularities, the space έ?(Y) of holo-
morphic functions on Y is of finite co-dimension in the space ^W(Y)
of weakly holomorphic functions on Y [13]. Hence i fl ^ ( 7 ) is also
of finite co-dimension in A Π ̂ W(Y) — A. Let /3, , / r be elements
of A such that /3, , fr and i n ^ ( Γ ) span A. Set Φ = (z, fl9 /2, , / r ) :
π(W) —> Cr+1. As above, we see that Φ is a homeomorphism of π(W)
onto a closed subvariety V = Φ(7r(W)) of some open set ?7 £ Cr+1.
Let ^V be the structure sheaf of V and set S^W) — Φ^^^V), so that
(π(W), Si{W)) is a one-dimensional complex-analytic space. Clearly,
π:W ->π(W) is holomorphic, and z°π~u. π(W)-+C is also holomorphic.

Our construction guarantees that the elements of A are holo-
morphic on π(W), separate points and determine the analytic struc-
ture. Moreover, since Theorem 2 guarantees that π(W) is iί-convex
(recall that the topologies ΔA and 22/g7 agree on π(W)), the Oka-Weil
theorem allows us to conclude that Ά\π(W) is dense in the algebra
Γ(π(W)9 £*%iw)) of all holomorphic functions on π(W).

Notice that if W is another open, relatively compact, jB-convex
subset of JB, then the sheaves S^{W) and SίiW>) agree on π(W) Π π(W')9

since they are each determined by elements of A.
We can now define the desired subset £f of ^B/#. For each

point x in R\ g", we let ΛSf be the set of all elements a in the stalk
x^R/tf such that a\π(W)exS^W) for each open, relatively compact,
jB-convex subset W of ΔB. We then set £f = \J a£t Our previous
remaks guarantee that S^\π(W) = S^W) for each open, relatively
compact, B-convex subset W of ΔB. This guarantees that y is a
pseudo-analytic structure on JB/S?; by our previous remarks, (R, ξf,
is in fact a regular triple for Ω.



238 WILLIAM R. ZAME

We now assert that, regarding A as an algebra of functions on
R = ΔB, we have A = {/°ττ: /eΓ(22/if, S^)}. The containment A c
{/°π} follows directly from our construction. On the other hand,
if / e Γ{Rj if, S?) and K is an arbitrary compact subset of ΔB, we
can choose an open, relatively compact subset W of ΔB which con-
tains K. Since A\π(W) is dense in Γ(π(W), &*\π(W)), we can choose
a sequence {gn} of elements of A such that gn\π(W) converges to
f\π(W) uniformly on compact sets. In particular, gn\K converges
uniformly to foπ\K. Since K is arbitrary and A is closed, we
conclude that / o π e A, which yields the desired equality. If we now
restrict to Ω, we see that we have proved: for each closed subalgebra
A of έ?{Ω) which contains the polynomials, there is a triple (22, if, S?)
which is regular for Ω such that 7(22, £?, &*) = A. That is, the map
from algebras to triples is a right inverse to 7; we need to show
that it is also a left inverse.

To this end, let (22, J?", Jf) be a regular triple for Ω, where
R = ΔB for B Si stable subalgebra of έ?(Ω). Set A = {/°ττ: fe
F{R{^ ^~)}. It follows from Theorem 1 that every connected com-
ponent of R\Ω is compact, so the restriction ^(22) —> &{Ω) is a
homeomorphism onto its range. We can thus identify A with the
subset AIΩ — 7(22, ̂  ^~) of ^(42), and we need to establish five
things:

( i ) A is a closed subalgebra of B == έ?(R);
(ii) the function z belongs to A;
(iii) B is the smallest stable algebra containing A;
(iv) &~ is the equivalence relation associated to A;
(v) ^" is the pseudo-analytic structure associated to A.
That A is a subset of B = ̂ (22) was already observed in the

definition of pseudo-analytic structure; it is in fact a subalgebra since
the sheaves ^Γ \ π(W) are all sheaves of algebras. To see that A is
closed, let {fn} be a sequence of functions in Γ(22/^7 ^f) and sup-
pose that {/n°π} converges to a function G. Since G respects the
equivalence relation &~ and Rj&~ has the quotient topology, there
is a continuous function g on 22/^ such that G = g ° π. Moreover,
for each open, relatively compact subset W of J2?, the sequence
fn\κ(W) converges to g\π(W)9 uniformly on compact sets, so g is
analytic on π(W). Hence geΓ(R/^^"), so G = goπ belongs to A,
as desired. This proves (i).

To see that zeA, note that for each open, relatively compact
subset W of ΔB, zoπ~x is holomorphic on π(W). Hence z<>π~ιe
Γ(R/&, J H so z = z o π"1 o 7r e A.

To establish (iii), (iv) and (v), we first prove the following claim:
If W is an open, relatively compact, 2?-convex subset of ΔB, then

is dense in Γ(π(W), J^~\π(W)). To see this, let Wx be
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another relatively compact, open, J3-convex subset of ΔB with
Wx 2 W. Since ΔB\W has no compact components, it follows that
^(WΊ)\π(W) also has no compact components. Moreover, every irre-
ducible branch of π(W) is an open subset of an irreducible branch
of πiWJ. Thus, Γ(π(Wι)f J?~ | (π(W1)) is dense in Γ(π(W), ^ \ (π(W)).
It now follows by the usual Runge approximation argument that
Γ{R\^^) is dense in Γ(π(W), ̂ ~\(π(W)), as claimed.

To establish (iii), let a: A->C be a continuous homomorphism.
Then there is a compact subset K of ΔB such that |α(/) | ^ \\f\\κ
for each / in A. Choose a relatively compact, open jB-convex set
W ID K. Then a induces a. homomorphism Γ(Rj^~9 J7^)—>C\ since
Γ{RI^^) is dense in Γ(π(W), ^~\{π(W)), we obtain a continuous
homomorphism Γ(π(W), ^~ \ (π(W)) —> C, which is necessarily given
by evaluation at a point of τc(W). Hence a is given by evaluation
at a point of W (which of course may not be unique). That is to
say, the natural map p: ΔB —» ΔA is onto. Since it is clear from the
above claim that p(x) — p{y) if and only if (x, y) e JF*, and J^ is an
admissible equivalence relation, we may use Theorem 2 to conclude
that B is the smallest stable algebra containing A, which is assertion
(iii). The above remark guarantees that J^~ is the equivalence
relation associated to A, which is assertion (iv). Finally, since
Γ{RI^^Γ) is dense in Γ(π(W), ^~\{π{W)) for each open, relatively
compact, 5-convex subset W of ΔB, we see that ^~ is the pseudo-
analytic structure associated to Ay which is assertion (v).

We conclude that the map from algebras to triples is indeed a
two-sided inverse to 7, which completes the proof.

In general, a pseudo-analytic structure may be quite complicated.
However, there is one very important situation in which pseudo-
analytic structures are easy to describe. Let B be a stable subalgebra
of ^(β) and let gf be an admissible relation on ΔB such that z(x) =
z(y) for all (x, y) in g7. Assume that the quotient mapping π: ΔB —>
ΔBj^ has finite fibers. (Note that this will be the case whenever
Ω, and hence ΔB, has only finitely many connected components.) Let
Σ = {y 6 ΔB\^\ π~\y) is not a singleton}. For each yeΣ, write
π~ι(y) = {xlf - , xn) where n ^ 2 (and n may depend on y). Since
g* is an admissible relation, we may choose connected open sets
Wl9 , Wn in ΔB such that x% 6 Wi for each i, and π is one-to-one
on U(^i\{^}) Now choose a local sub variety Vy of Cm (for some
m depending on y) with n irreducible branches Vy, , Vy each of
which is one-dimensional and non-singular, and which meet only at
the origin. After shrinking the W< and Vy if necessary, we can
choose a holomorphic map g:\JWi->Vy such that g maps Wt biholo-
morphically onto Vy and g(xt) — 0 for each i.
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We can define a pseudo-analytic structure Sf on ΔBj%> by set-
ting, for yeΣ, yS^ = (g o π~ι)~\^Vy) where ^ F i / is the sheaf of holo-
morphic functions on Vy. (This makes sense since g o π'1 is a continuous
map from π{\JW%) to Fj, which maps y to 0.) For y$Σ, we set

y ^ = π(π-ί[y)^AB), where ^ B is the sheaf of holomorphic functions
on ΔB. It is easily checked that Sf = U ̂ ^ is a pseudo-analytic
structure on ΛB/g7; in fact (45, if, Sf) is a regular triple for Ω,
and all regular triples arise in this way. Notice that this construc-
tion is merely a more sophisticated version of the example described
in § 1; we have simply specified, at each "singular point" of ΔBI&,
the germ of a one-dimensional analytic space, and decreed that all
other points of ΔB/g* be "regular points".

3* Applications* In order to demonstrate the usefulness of our
classification scheme, we give a number of applications. Throughout,
we let A be a closed subalgebra of <^(Ω), B the smallest stable
algebra containing A and (ΔB, if, S^) the regular triple associated to
A, with π: ΔB —> ΔB/& the quotient map.

We turn first to our first test problem. It is easy to show that
A is local on ΔA; in fact, we establish more: A is not only closed
under "local belonging" but also under "local approximation".

THEOREM 4. Let g be a continuous function on ΔA. Assume
that for each x in ΔA there are a neighborhood U of x and a sequence
{fn} in A such that fn -> g, uniformly on U. Then g is the Gelfand
transform of an element of A.

Proof. Since ΔA and ΔB/'tf agree as sets, and the topology of
ΔB\^ is finer, g is continuous on J2?/g*. Notice that if fn->g
uniformly on U, then fn-> g uniformly on ππ~\U). Hence g is holo-
morphic on each of the sets π(W), for W an open, relatively compact
subset of ΔB, so g eΓ(ΔB/^, 6^). By the classification theorem, g
is the Gelfand transform of an element of A, as asserted.

The solution to the second test problem is just as easy.

THEOREM 5. Every complex-valued homomorphism of A is con-
tinuous.

Proof. Since the zero homomorphism is obviously continuous,
we need only consider a homomorphism φ for which φ(ΐ) = 1. By
[10, VII, C7], we can find functions fu f2, f3 in A sunch that {fu /2, /3):
ΔA —> C3 is a one-to-one map. There is evidently no loss of generality
in assuming that φ(ft) — 0 for each i. If the functions flf f2, fs had
no common zero on ΔA, then by a theorem of Arens [2], the functions
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fu fa f& would generate an improper ideal in A, contradicting the fact
that they lie in the kernel of φ. On the other hand, the functions
fuAffs have at most one common zero (since the map (Λ,/2,/3) is
one-to-one). Hence there is a unique point x in A A at which fu /2, /3

all vanish. Now, for an arbitrary / in A, a similar argument shows
that φ(f) = f(x), so that φ is evaluation at x, and is thus continuous.

The solution to the third test problem is considerably more
involved. We begin by recalling some facts about regular maps and
tangential dimension.

Let (X, ^x) be a complex-analytic space. We say that a holo-
morphic map F: X —> Cn is regular if each point of X has a neigh-
borhood which is mapped biholomorphically by F onto a closed
sub variety of some open set in Cn. Note that if Xf is a local sub-
variety of X, then F\X' is also regular. Moreover, if Xr is also
relatively compact, then there is a positive number ε such that if
G: X-^ Cn is holomorphic and \F(x) — G(x)\ < e for each x in X, then
GI Xr is also regular. By the tangential dimension of X at the point
x, dimts X, we mean the least integer n for which there are an open
neighborhood U of x and a regular map H: U->Cn. By the tangential
dimension of X we mean dimt X = sup {dimt,,. X: x e X}.

Finally, recall that a holomorphic map F: X-^Cn is almost proper
if every connected component of F~\K) is compact for every com-
pact subset K of Cn.

We will make use of the following lemma, which was originally
pointed out to us by Joseph A. Becker. Since a more general result
has been obtained by Tarabay [16], we omit the proof.

LEMMA 6. Let X be a one-dimensional complex-analytic space.
If each irreducible branch of X is non-singular 9 and no more than
k of them meet at any one point, then dimt X ^ k.

We can now present a solution to the third test problem.

THEOREM 7. Let Ω be an open subset of C with k connected
components (1 ^ k <; °o) and let A be a closed subalgebra of έ?(Ω)
which contains the polynomials. If k = 1 or 2, then A is generated
by a set of k + 1 functions; if & ̂  3 then A is generated by a set of
k functions.

Proof. We deal first with the case k ^ 3, and then indicate the
changes necessary to deal with the other case. The proof is basically
a chase through the proof in [10] of Narasimhan's imbedding theorem
[12].
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Let B be the smallest stable algebra containing A. Choose and
fix a sequence {Wά} of open, relatively compact, I?-convex subsets of
ΔB such that Wά c Wj+1 for each j and U Wd — ΔB. We will ignore
the difference in topologies and identify ΔB\^ with ΔA. Let Xά —
π(Wd), regarded as a complex-analytic space via the pseudo-analytic
structure £f associated to A. For each m, let Am denote the product
of m copies of A. Set

*& — {f e A: f: ΔB —> C is an almost proper map} ,

£ίf = {(flt f2) e A2: (z, flf / 2 ) : ΔA —> C is a one-to-one map} ,

{(/i, , Λ-i) e A*"1: (2, Λ, ., Λ-01 Xi is regular} ,

We wish to find a (k — l)-tuple (glf , r̂fe_1) in J ^ such that gt e &,
and (gu g2)eSΓ; A will then be generated by {z9 glf , ̂ fc_J.

In order to do this, we want to see that each of Ŝ 7, J%^, 3Z~ is
a dense Gδ in the appropriate space. For gf, we can apply the argu-
ment of [10, VII, C2] as soon as we make a simple observation. Let
K be a compact 5-convex subset of JU. Then π(K) is a compact
A-convex subset of ΔA, so ^"^(iΓ), which is the A-convex hull of
K in ΔB, is a closed set which is the union of K and a countable
set. Hence there is a relatively compact open subset U of zfί? which
contains K and whose boundary misses π~xπ{K). The standard argu-
ment now allows us to find an analytic polyhedron P in ΔB, defined
by functions in A, such that UZDPZΪK. Proceeding exactly as in
[10, VII, C2] we can conclude that & is a dense Gδ in A,

To see that Sίf is a dense Gδ in A2, we need only apply the
remarks following [10, VII, C8].

To show that J%Γ is a dense Gδ in Ak~\ it suffices (by the Baire
Category Theorem) to show that each Sέ^ is a dense open set. Open-
ness of J^ follows immediately from our remarks about regular
mappings. To see that ^< is dense, fix (flf « , / M ) in Ah'\ Let
ε be an arbitrary positive number and let / be an arbitrary integer
greater than j + 1. Since Ω has k connected components, ΔB has at
most k connected components. Since π is one-to-one on each con-
nected component of ΔB, we conclude that each irreducible branch
of .JΓ̂ +i is non-singular and at most k irreducible branches meet at
a point. It follows from Lemma 6 that dimt X^+1 <Ξ; k. By [10, VII,
Cll] we can find holomorphic functions hlf , hk_x on X^+1 such that
(z, hu , /^-i): X+i -> Ck is regular and ||/^ - /* ||χ, < e/2 for each i.
As we showed in the proof of the classification theorem, A\X/+1 is
dense in &{X^, so we can choose functions gl9 •••, gk^ in A such
that H&—Λill?. <e/2 and (2, ft, , g ^ ) : X^ι-^Clc is regular. Since
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• > i + 1, we conclude that (gί9 , gk_x) e JίΓs and that || fh — /i || ΰ?β =
II 9i — fi\\z; < β Since / and ε are arbitrary, we conclude that 3ίίj

is dense, so 3ίΓ is a dense Gδ, as desired.
We have now concluded that each of gf, §ίfy 3ίΓ is a dense (?δ;

another application of the Baire Category Theorem allows us to con-
clude that there is an element (gl9 , gk^) of Sf such that ^ e g 7

and (glf g2) e Sίf. Let Ao be the closed subalgebra of A generated by
{%, 9ι, •> f̂c-i}; we claim that Ao = A. To see this, we wish to use
the classification theorem.

Let Bo be the smallest stable algebra containing Ao; our first
task is to see that Bo = B. Clearly Bo c B, so by Theorem 1 we
need only show that the restriction r: ΔB —•> JJ50 is one-to-one and
onto. It follows from Theorem 1 that r is one-to-one on each con-
nected component; since ΔB and ΔB0 are manifolds, either r is one-
to-one or it identifies uncountably many pairs of points. But since
£, ffit 9z belong to AQ and separate all but countably many pairs of
points of ΔB, we conclude that r is in fact one-to-one. At this point
it will be convenient to suppose r and simply regard ΔB as an open
subset of ΔB0. Let C be a connected component of ΔB and let C(

be the connected component of ΔB0 which contains C. If C Φ Co, let
x be a boundary point of C in CQ. Regard gΊ as a map from ΔB0

into C, and let D be the connected component of gτx{z\ \ z — gx(x) \ < 1}
which contains x; since ΔB0 is locally connected, D is open. Since
g{i ΔB —> C is an almost proper map, each connected component of
D Π C has compact closure in C. Let A be any such component;
then the boundary of Dγ (relative to CQ) is contained in C. Since Dt

is closed subset of D n C, it follows that the boundary of Du rela-
tive to D, is empty; i.e., A is closed in D. Since A is open and D
is connected, we conclude that A = A which is absurd, since D
contains x and A does not. We conclude that C = Co. Finally,
observe that every component of ΔB0 contains a component of Ω and
hence contains a component of ΔB. We conclude that ΔB = JI?0, so
desired.

It now follows immediately from our construction that the algebras
A and AQ induce the same equivalence relations and pseudo-analytic
structures. By the classification theorem, we conclude that Ao = A,
as desired. This completes the proof in the case k ^ 3.

If k = 2, the same argument as above applies, although we will
still need the function z and two other functions to separate the
points of ΔA, so we will obtain a set of three functions which
generates A. Finally, if k — 1, the function z and any almost proper
function will generate A (see also [19, Corollary 3]).

It is worth noting that the above argument can be easily modified
to provide a necessary and sufficient condition that a closed subalgebra
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A (containing the polynomials) of έ?(Ω) be finitely generated, where
Ω is an arbitrary open subset of C: the algebra A is finitely generated
if and only if sup {dimt π(W)} < °o, where the supremum extends
over all open, relatively compact subsets W of ΔB.

We conclude this section by giving one further application of
our classification scheme; it is suggested by work of Gamelin [8]
and Bjork and de Paepe [7].

THEOREM 8. Let A be a closed subalgebra of έ?(β) which contains
the polynomials and let B be the smallest stable algebra containing
A. Then there are closed algebras Ao, Alf such that:

( i ) B = Ao => Ax ZD A2 Z) - Z) A;
(ii) A = Γ\AΛ

(iii) Aί+1 is of finite co-dimension in Ajf for each j ^ 0;
(iv) Aj+1 is a maximal subalgebra of A5, for each j ^ 0.

Proof. Choose and fix an increasing sequence {Wό} of subsets
of ΔB such that ΔB = \J Wό. Set Ao = B, and for each j ^ 1, let
Aj be the set of functions f in B for which there is a holomorphic
function/on π(Wά) such that f\Wj=f°π\π(Wj). It is easy to see that
each As is a closed subalgebra of B and that As z> Aί+1 for each j .
The classification scheme guarantees that AdAά for each j and that
Π Aj = A, so the algebras {Aj} satisfy (i) and (ii). To see that they
also satisfy (iii), note that for each i ^ 1, the fact that Wt is rela-
tively compact guarantees that π(Wt) is a one-dimensional analytic
space with only a finite number of singularities. Hence the sub-
algebra {g°π: g eέ?(π(Wi))} of (^(Wτ) is of finite co-dimension. It
follows immediately that At is of finite co-dimension in B. Writing
% = j + 1 for j ^ 0, it follows a fortiori that Aj+1 is of finite co-
dimension in Aj, which yields (iii). Finally, if for some indices j ,
Aj+ί is not a maximal subalgebra of A, , we may remedy this defect
by simply interpolating a finite number of algebras between Aj+1

and Ajf thereby achieving (iv).

4* Algebras on Riemann surfaces* It is natural to seek a clas-
sification theorem for uniform algebras on arbitrary (open) Riemann
surfaces which parallels the one given here for algebras on plane
domains. Although we believe that no really satisfactory classifica-
tion scheme exists in this generality, it is actually possible to say
quite a lot.

Throughout this section, we let R be an open (not necessarily
connected) Riemann surface and A a closed subalgebra of έ?(JEt)
which contains the constants and separates the points of R. We let
δ: R —> ΔA be the evaluation map. Our first task is to find a reason-
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able substitute for Theorems 1 and 2. Fortunately, such a result
has been established by Bishop [5] and Royden [14]; it may by
formulated as follows.

THEOREM 9. There is an open Riemann surface S^ containing
R and a continuous map δ: £f —> ΔA with the following properties:

( i ) every connected component of Sf\R is compact;
(ii) every feA has a unique extension fe^(S^);
(iii) δ is onto and δ \ R = δ;
(iv) if W is a relatively compact, open subset of S^ and S^\W

has no compact components, then δ(W) is an A-convex subset of ΔA;
(v) *£A — {(χ> y)€<^ x ^- δ(x) — δ(y)} is an admissible equiva-

lence relation.

The difference between the above result and Theorems 1 and 2
lies in the extent of our knowledge of the Riemann surface S^. In
the previous context, we were able to obtain very precise informa-
tion about Sf~' and drastically limit the possibilities. In the current
context, the possibilities for Sf are limited only by condition (i).
To illustrate just how weak a limitation this is, we present a result
which has the status of a "folk theorem"; it is certainly "well-
known"—at least to many people—but does not seem to be formulated
in the literature.

PROPOSITION 10. Let 6^ be a connected, open Riemann surface.
Then there is an open, connected subset Ω of Sf such that:

( i ) each component of S^\Ω is compact;
(ii) the restriction map ^(<9*) -> ̂ (β) is one-to-one with closed

range, so that έ?(£f) is isomorphic to &(S^)\Ω\
(iii) Ω is biholomorphically equivalent to a plane domain.

Proof. The structure theory of open Riemann surfaces (see [1])
guarantees that we can choose a countable discrete family {Γn} of
disjoint simple closed curves in £f which represent a free basis for
the homology group Ht{S^, Z). Let J be the set of indices n for
which Γn does not separate S^, and set E = \JneJΓn. Since {Γn} is
a discrete family of curves, E is a closed set, Ω — <9*\E is open and
every connected component of £f\Ω is compact. Hence the restric-
tion &{&*) -> έ?(Ω) is one-to-one with closed range. Since {Γn} forms
a free basis for H^S^, Z), and we have removed precisely the curves
which do not separate S^, Ω is connected and every simple closed
curve in Ω separates Ω. Thus Ω is biholomorphically equivalent to
a plane domain, as desired.

Thus, for subalgebras of έ?(R) we will in general be able to say
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very little about the Riemann surface S^ and it is for this reason
that we have formulated our main results for algebras (containing
the polynomials) on plane domains. However, if we are willing to
content ourselves with a poor description of the Riemann surface
Sf, the remainder of the classification scheme is easily obtained.
Since the construction of § 2 goes through virtually without change,
we omit the details.

THEOREM 11. Let R be an open Riemann surface. Then there
is a bisection between the set of closed subalgebras of ^(R) which
contain the constants and separate the points of R, and the triples
G$? if, Sf)9 where S^ is an open Riemann surface containing R and
having the property that each component of S\R is compact, g7 is
an admissible equivalence relation on 3^ and S^ is a pseudo-analytic
structure on

Although we regard this classification theorem as unsatisfactory
(because we cannot obtain a sufficiently precise description of £f),
it is actually good enough for a number of applications. In fact,
the proofs of Theorems 4 and 5 go through verbation. However,
Theorem 7, which is probably the most striking application, no longer
holds in the more general context, as the following simple example
demonstrates. Let N denote the set of positive integers. Let AQ

denote the set of entire functions which vanish to order at least n
at the point n (for each n), and A the closed subalgebra of ^(C)
spanned by AQ and the constants. Then A\ (C\N) is a point-separating
subalgebra of έ?(C\N), and, as is easily seen, is not finitely-generated.
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