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FINITELY GENERATED PROJECTIVE EXTENSIONS
OF UNIFORM ALGEBRAS

JOAN VERDERA

Let A and B be uniform algebras and suppose that B is
an extension of A, finitely generated and projective as an

.̂-module. Let π denote the natural projection from the
maximal ideal space of B onto the maximal ideal space of
A. We show that K is a generalized peak interpolation set
for B if and only if π{K) is a generalized peak interpolation
set for A. Then we give a topological description of the
maximals sets of antisymmetry of B in terms of those of
A. Finally, we prove that if B is strongly separable over
A, then the algebra of JB-holomorphic functions is strongly
separable over the algebra of A-holomorphic functions.

I* Introduction* The main motivation for this work comes
from a series of results discovered over the last twenty years con-
cerning the structure of certain types of integral extensions of
(commutative complex unital) Banach algebras. More precisely, the
results which we are refer ing to group roughly in two classes. On
one hand, we have the theory of the so-called algebraic or Arens-
Hoffman extensions [1, 2, 7, 8]. These are extensions of the form
Λ[x]/(a(x)), where a(x) is a monic polynomial with coefficients in the
base algebra A. Moreover, part of this theory was recently extended
[12] to the case where the extension is finitely generated and pro-
jective as an A-module. On the other hand, we have results coming
from the study of strongly separable extensions [4, 9], i.e., exten-
sions which are finitely generated and projective as A-modules and
separable as A-algebras.

Still a word on method. As we showed in [12], given a finitely
generated projective extension δ of a Banach algebra A and an
element b e B, one can pick out, among all monic polynomials a(x) e
A[x] such that a(b) = 0, a canonical one, which enjoys some useful
properties (see Lemma 1 below for a precise statement). Then, our
method consists in obtaining information about B from information
about A (and conversely) by means of these canonical integrity
equations.

We fix now some notation. M{ } and 3( , denote, respectively,
the character spectrum and the Shilov boundary operators on Banach
algebras; / is the Gelfand transform of /. A will denote a fixed
uniform algebra on a compact space X, and B a finitely generated
projective extension of A. It is known that B can be endowed with
a canonical Banach algebra structure [9, Th. 4, p. 138 and 12, §3].
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However, for our purposes, it will not be necessary to handle any
specific Banach algebra norm on B and only the existence of such a
norm will be required. We will also assume, except in Theorem 1,
that B is a uniform algebra.

We write π for the projection from MB onto MA defined π(ψ) =
njr\A, iίreMB.

If a(x) — Σ?=o oLjX1 is a polynomial with coefficients in A and
φeMAf then we write

Σ ΦίaiW e C[x]
0

<Xφ(x) = Σ

and

Z(aφ) = {X e C: aφ(X) = 0} .

Our arguments are based on the following result from [12]:

LEMMA 1. Assume that B has a well defined rank over A, say
n. Then for each b e B there exists a monic polynomial a(x) e A[x]
of degree n such that a(b) = 0 and

(1) Z(aφ) = b(τr\φ)) , φeMlA.

The notation and terminology we use are standard (see [6] and
[11]). For basic facts about protective modules and (algebraically)
separable algebras the reader is referred to [5].

2* Peak interpolation sets* Before stating our first result we
recall some well known definitions.

Let 33 be a Banach algebra, Z a closed boundary for S3 and K
a closed subset of Z. Then K is said to be a peak set for 93 on Z
if there exists /e23 such that / = 1 on K and | / | < 1 on Z\K. If
K is an intersection of peak sets for S3 on Z, we say that K is a
generalized peak set for S3 on Z. We call K an interpolation set for
S3 if, given any heC(K), there exists /eS3 such that / = h on K.
If K is both a (generalized) peak set for S3 on Z and an interpola-
tion set for S3, then it is called a (generalized) peak interpolation
set for S3 on Z. When S3 is a uniform algebra on Z, the explicit
reference to Z is usually dropped, so that one simply speaks of
(generalized) peak (resp. peak interpolation) sets for S3.

As we said before, in the following theorem we just assume
that 5 is a finitely generated protective extension of A, endowed
with some Banach algebra structure. The corollary in [12, § 2]
implies that Y = π~\X) is a closed boundary for B.

THEOREM 1. If Ka Y is a generalized interpolation set for B on
Y, then τt{K) is a generalized peak interpolation set for A.
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COROLLARY. If KczY is a peak interpolation set for B on Y,
then τt(K) is a peak interpolation set for A.

This corollary follows immediately from the theorem and from
the fact that π preserves Gv sets.

Proof of Theorem 1. Without loss of generality, we may assume
B to have a well defined rank over A. This is so because there are
mutually orthogonal idempotents eu , ep in A such that e1+ +
ev — 1 and, for each if etB is a finitely generated protective exten-
sion of βtA, with a well defined rank over e€A [5, 4.11, p. 31].

Let Bo be the uniform closure in C(MB) of JB. Then MBQ — MB

and dBo = dB. Moreover, as it is easily seen, Bo satisfies the conclu-
sion of Lemma 1. We shall regard Bo as a uniform algebra on Y
and we shall prove the theorem under the weaker hypothesis that
if is a generalized peak interpolation set for BQ.

If H = π(K), then, by the Bishop-Glicksberg characterization of
generalized peak interpolation sets [11, 20.10, p. 210], we have to
show that \μ\(H) — 0 for any complex regular Borel measure μ on
X orthogonal to A, In order to see this, it is clearly sufficient to
prove the following:

for each φeH there exists a closed neighborhood (in

X) Uo of φ such that \μ\(U0 Π H) = 0 .

Fix φeH and let ψu — ,ψm be the different points in π~\φ).
Apply the structure theorem for π [12, Th. 1] to find mutually dis-
joint open neighborhoods (in Y) Vu •••, Vm of ψlf •• ,ψ w and an
open neighborhood (in X) U of φ such that

π(Vt) - U for each i , π~\U) ^ J
i

and

where m( ) is the multiplicity function defined in § 1 of [12].
Let Z7o be a compact neighborhood of φy contained in Z7. We

have UQ Π H = \Jiπ(Kf] π~\UQ) Π Vt), and so, it order to prove (2),
we can assume that K is included in a Vi9 say Vt.

We claim now that there exists g e Bo satisfying

(4) g{π~\H) n Vd - {1} and g{π~\H) n Vt) = {0} , i > 1 .

To prove the claim, write I = {f e A: f(H) = {0}}, J = {/ e Bo:
f(K) = {0}}, and observe that Bo/J is an integral extension of A/I.
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Hence, each character in MA/I is the restriction to A/1 of a character
of Bo/J [14, p. 259]. On the other hand, our hypothesis on K implies
that Bo/J ^ C{K), and thus

H = π{K) = π(MBo/J) = MA/J .

Now, B/IB is a finitely generated protective extension of A/I
and so it is a Banach algebra under some norm. Since MB/IB = π~\H)
(because H — MA/I) and π~\H) is the disjoint union of the closed
subsets π~\H) Π Vi9 the Shilov idempotent theorem [10, 8.9, p. 73]
can be applied to get geB satisfying (4).

To end the proof we still need some auxiliary tools. For ψ e MB

and for each neighborhood V (in MB) of ψ, we define

cψ{V) = max card (π~\θ) Π V)
θeπ(V)

and

r(ψ) = minc^(F)
VV

where V ranges over all neighborhoods of ψ. The number r{ψ) may
be interpreted as a ramification index for π at ψ.

For θ € H we define

Niβ) = max r(<f) .

Now we can complete the proof of (2). We will proceed by
induction on N(φ).

Suppose N(φ) = 1. In this case, we will prove directly that H
is a generalized peak interpolation set for A. As r(^) = 1, shrinking
VΊ and U if necessary, we can also assume that π\VΊ is an homeo-
morphism onto U. Given an open neighborhood W of H, W c U,
and given ε > 0, then, by hypothesis, there is a peak set Kr for Bo

such that KaK' <zπ~~\W). Choose feB0 which peaks on K' and
satisfies

and then consider the function h defined by

θeX.

If a(x) = Σ"= o otiX' is a polynomial related to 6 = fg as in Lemma
1, then h = —an^eA by (1). Writing k = h/m^), we obtain

k(θ) = 1, θeH

\k(θ)\^ε, θeX\W

\\k\\x^n\\g\\v.
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Thus H is a generalized peak set for A.
Let hoeC(H). If feB0 is such that f(ψ) = ho(π(ψ))9 ψeK, and

k is constructed from / and g as above, then k\H = h0 and ί e i .
Now, assume that N(φ) > 1 and that (2) holds for those Θ e H

with N(θ) < N(Φ). Since iV(̂ ) = r(ψx)f we may suppose that N(φ) =
^(VΊ). If we put

11, = {θe H: r(ψ) < r(f,) for each ψ e π~\θ) n # }

and

Ho = {θe H: π~\θ) Π Fx is a singleton} ,

then |μ|(iϊi) — 0 by the inductive hypothesis. Moreover, Ho is closed
and H = JHΓ0 U iϊi We claim now that £Γ0 is a generalized peak inter-
polation set for A. To see this, observe that Ko = π~\H0) Π if is a
generalized peak interpolation set for Bo and that π is an homeo-
morphism from Ko onto Ho. Then, the same argument as above can
be used to deduce the desired conclusion. Thus, \μ\(H0) = 0 and the
proof is complete.

REMARKS, (a) The projectivity hypothesis on B cannot be re-
laxed, as shown by the following example.

EXAMPLE 1. Let B the disk algebra, and put A = {/ e B: /(0) =
/(I)}. Then B is an extension of A, finitely generated as an A-
module, but 1 is not a peak point for A, although it is a peak point
for B.

(b) It would be interesting to find out whether Theorem 1 is
true when A is a semisimple Banach algebra, and also whether an
analogous statement for peak sets holds. In both cases, the main
difficulty seems to be the reduction to a local statement.

From now on, B will be assumed to be a uniform algebra on Y.
Recall [12, Th. 3] that this is the case if and only if m{ψ) = 1,
ijredB, and then, in particular, dB is a covering space of dA with
projection π.

THEOREM 2. Let K be a subset (resp. a Gδ subset) of Y. Then,
K is a generalized peak interpolation (resp. a peak interpolation)
set for B if and only if π(K) is a generalized peak interpolation
(resp. a peak interpolation) set for A.

Proof The "only if part" is contained in Theorem 1.

Assume H = π(K) to be a generalized peak interpolation set for
A. If I = {/ e A: f(H) = {0}}, then B/IB is a finitely generated pro-
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jective extension of A/1 = C(H). Since m(ψ) = 1, ψedB and HadA,
we can write

m(ψ) = 1 , ψetf^Cff) - M 5 / / 5 .

But this means that B/IB is separable as C(iϊ)-algebra (use [5,
Th. 7.1, (c) -> (a), p. 72]), and hence, applying [3, Th. 2, p. 30], we
conclude that B/IB = C(π~\H)). As π~\H) is obviously a generalized
peak set for B9 the proof is complete.

COROLLARY. // yA and j B denote the Choquet boundaries of A
and B respectively, then yB = 7U"\yA).

REMARKS, (a) The "if part" of Theorem 2 is not true without
uniformity assumptions on B. For example, if A = C[0, 1] and B —
A[x]/(x2 — / ) , where /(£) = ί for each t e [0,1], then B is not a uni-
form algebra according to [12, Th. 3]. Therefore, Y itself is not
an interpolation set for B.

(b) The statement in the "only if part" of Theorem 2 is not
true for interpolation sets as shown by the following example.

EXAMPLE 2. Consider a uniform algebra A with the following
property (for example the disc algebra): there exist interpolation
sets Ko, Kx for A such that Ko U Kλ is not an interpolation set for
A. Put B = A[x]/(x2 - 1), so that we may identify MB with MA x {0, 1}.
Now, K =- Uϊ=o -K̂  x {j} is an interpolation set for B, but π(lΓ) =
JKΌ U Ifi is not an interpolation set for A.

(c) The arguments used in the proof of Theorem 2 can be ap-
plied to deal with some examples arising from the theory of several
complex variables.

EXAMPLE 3. Write

n a positive integer. Then

π

/y > \Φ.. . . . 2J * Z^i
** \*Ίf t ^p — lf *W3>/

is an ^-sheeted covering map, ramified along {z: zp = 0}. Let A (resp.
U) be the algebra of continuous functions on Dx (resp. Dn) which are
holomorphic in the interior of Dι (resp. Dn). We claim that Theorem
2 is true in this case. To prove the claim, take first a peak inter-
polation set K for B. Then if is a zero set for B, that is, there is
f eB with K = /"^(O). Since Lemma 1 also works in this case, τr(JBΓ)
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is a zero set for A, and hence a peak interpolation set for A [13,
Th. 1.1, p. 484]. Assume now that K is a peak interpolation set
for A. Since π is a local homeomorphism on Dn\{z:zp = 0}, one can
prove that π~\H) is a peak interpolation set for B for each compact
subset H of K\{z: zp = 0}. But on K Π {z: zp = 0} J5 and A are the
same algebra, thus π " 1 ^ ) is a peak interpolation set for B.

In particular, we have shown that on dB zero sets, peak sets
and peak interpolation set are the same, although, for n > 1 and
p > 1, the interior of Dn is not strictly pseudoconvex.

3* Antisymmetric decompositions*

LEMMA 2. If A is an antisymmetric algebra, then the maximal
sets of antisymmetry for B on MB are the connected components of
MB.

Proof We show first that if MB is connected, then B is anti-
symmetric. To see this, let f eB and assume / to be a real func-
tion. Since A is antisymmetric, there are not nontrivial idempotents
in A, and thus B has a well defined rank over A [5, 4.12, p. 32],
say n. If a(x) — Σ*=o ccix

ί is a polynomial obtained from / by apply-
ing Lemma 1, then each at is a real function (by (1)), so constant.
Therefore, f{MB) is finite, but since MB is connected, f(MB) is in fact
a point.

Consider now m different connected components of MB, say
Ci, , Cm, and separate them by means of mutually disjoint open
and closed sets Ulf , Um. As MA is connected, one has τr(J7<) = MA

for each i, and this implies that m <; n. Thus, MB has only a finite
number of connected components Clf , Cm, which are open and
closed sets. Let et be the idempotent in B whose Gelfand transform
is the characteristic function of C*. The first part of the proof,
applied to etB, tells us that C* is a set of antisymmetry for B. If
Ci §i S, then et is real and nonconstant on S, so Ct is, in fact, a
maximal set of antisymmetry for B on MB.

THEOREM 3. Let (Ki)ieI be the family of maximal sets of anti-
symmetry for A on X. Then the family of maximal sets of anti-
symmetry for B on Y is (CiS Π Y)t,, f where, for each iel, {C^)^^^
is the collection of connected components of π~\Kl), Kt being the A-
convex hull of Kt. Moreover, snpieIpi < ©o.

Proof. Assume first that X = MA, so that If* = Ki9 iel. For
each iel, At = {f\Ki: f eA} is an antisymmetric uniform algebra,
MAi = Kt and dΛicKtndΛ [6, Th. 11 (c), p. 167]. If we set I, =
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{/ 6 A: f(Kt) = {0}}, then Bt = BjIJS is a finitely generated projective
extension of A/It ^ At and MBi = π~\Kt). By the corollary in §2
of [12], we have

Now, since B is a uniform algebra, we get [12, Th. 3]

and thus, in particular, m(ψ) = 1, ψedBi. Again appealing to [12,
Th. 3], we conclude that Bt is a uniform algebra, hence that J3* =
{/Iπ-W/eB}.

By Lemma 2, for each j e{l, 2, , p j , C4i is a set of antisym-
metry for B. Let S be the maximal set of antisymmetry for B on
MB containing Ctί. If π(S) Φ Kif then there would exist an α e i
which would be real and nonconstant on π(S). But then aeB would
be real and nonconstant on S, which is impossible. So π(S) = Kit

Prom this we obtain Ci5cScπ~\K^), and, since S is connected, we
get S - Cti.

In order to prove the general case, notice that (K^)ieI is the
family of maximal sets of antisymmetry for A on MA [6, Th. 15,
p. 171]. But the maximal sets of antisymmetry for B on Y are the
intersection with Y of these for B on MB [6, Th. 14, p. 171], and
thus from the first part of the proof we can draw out the desired
conclusion.

In the following theorem we write EA (resp. EB) for the essen-
tial set of A (resp. B).

THEOREM 4. We have EB = π~x(EA). In particular, B is essen-
tial if and only if A is essential.

Proof. One can prove, using an elementary argument based on
the structure theorem for π, that

( 5) π-XCl F) = Cl π~\F) , for each FczX ,

where Cl denotes topological closure.
Let PA (resp. PB) be the union of all one point maximal sets of

antisymmetry for A (resp. B), so that, by Theorem 3, PB = π~\PA).
Using (5) and [6, Corollary 2, p. 65] we obtain

EB = Cl (π~\X\PA)) = TΓ-^CI (X\PA)) = π~\EA) .

4* I?-holomorρhic functions* If 35 is a uniform algebra and
U an open subset of M99 then a complex function on U is called a
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locally 3S-approximable function if each point in U has a neighbor-
hood on which / is uniformly approximate by functions in 33. We
write L s for the algebra of the locally 23-approximable functions
defined on all Λfs, and we denote by H% the smallest subalgebra of
C(Λf») which contains 33 and is closed under local uniform approxi-
mation.

At this point, some remarks on the relation between Lΰ and H%
are in order. A simple inductive argument [10, 8.1, p. 19] shows
the following:

There exists an ordinal μ such that to each ordinal v <̂  μ there
corresponds a subalgebra H% of C(Mϋ) with the following properties:

( i ) Hξ = S3, Hξ = H%, and H£ g Hi for 0 ^ a < β ^ μ.
(ii) lί 0 <v <> μ then Hi = LSv, where S3, is the uniform

closure in C(M9) of the algebra U ^ f f i -
Let us observe that, by a theorem of Rickart [10, 40.3, p. 116],

we have M*y = ikfs for each v, so that, according to (ii) and to our
notational conventions, Hi is a subalgebra of C(ikQ.

Functions in H% (resp. jff̂ ) are called 23-holomorphic functions
(resp. 93-holomorphic functions of class v) by Rickart [10, §17].

THEOREM 5. If B is a strongly separable A-algebra, then
(a) HB (resp. LB) is a strongly separable HA (resp. LA)-algebra.
(b) If A = HA (resp. A = LA), then B = HB (resp. B = LB).

We divide the proof of Theorem 5 into three lemmas.

Let S be an extension of a commutative unital ring R. If S is
finitely generated and projective as an ϋί-module, then one can define
a distinguished .β-module homomorphism from S into R, called the
trace map. Then one proves [5, 2.1, p. 92]:

LEMMA 3. The extension S of the commutative unial ring R is
strongly separable over R if and only if there is an R-module homo-
morphism t from S into R and elements of S xu - , xm) ylf , ym

with
( i ) ΣaWi = l
(ii) x = Σy t{xyά)x5f xeS.

Moreover the map t is always the trace map from S to R.

LEMMA 4. If B is a strongly separable A-algebra and has a well
defined rank over A, then for each φ e MA there exists a monic poli-
nomial a{x) e A[x] and a deA with d{φ) Φ 0, such that Bd is isomor-
phic, as an Ad-algebraf to Ad[x]/(a(x)) (here Ad and Bd stand for the
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quotient rings of the multiplicative system of the powers of d).

Proof. Given φ e MA, consider an element 60 of B which separates
the points of π~Xφ), and a polynomial a(x) e A[x] given by Lemma 1
applied to 60. Define d as the discriminant of a(x), so that d(φ) Φ 0.
Let φ be the unique ^-algebra homomorphism from Ad[x]/(a(x))
into Bd satisfying φ([x]) = bo/l, where [x] is the class of the poly-
nomial x.

Suppose that, for certain nonnegative integers mif

Σ (ajdm*)(bt/l) = 0 , α, e A , n = rank^ B .

Then, for a large nonnegative integer m,

Σ
«=0

If d(ω) Φ 0, ω e MA, then the complex polynomial

n-1

i=0

is annihilated by the n elements of bo(π"\ω)). From this we obtain
ddt^O, OSii^n-1. Thus

ajdmi = 0 in Ad , O ^ i ^ . n - 1 ,

that is, φ is injective.
Write Bo = Im 9. Then Bo is a strongly separable A^-algebra

[5, Problem 8, p. 85] with a well defined rank n over Ad. Since Bd

is a finitely generated protective ^-module, we conclude, owing to
the lifting property of protective modules over separable algebras
[5, 2.3, p. 48], that Bd is a finitely generated projective I?0-module.
But the rank of Bd over Ad is n, so the rank of Bd over Bo is 1,
and thus Bd — Bo. Therefore φ is an isomorphism.

LEMMA 5. With the same hypothesis on B as in Lemma 4, the
following holds:

If V, U are open set in MB and MA respectively, and if π\V is
an homeomorphism onto Z7, then, for each beB, β — bofjrlV)'1 is
locally A-approximable on U.

Proof. Consider φ e U and let 60, a{x) and d be as in the proof
of Lemma 4. Shrinking U and V we may assume that d(oή Φ 0 for
each ωeU.

By Lemma 4, we have
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β = Σ (ajdm*)βi

where β0 = b0o(π\V)~ι, ateA and mt is a nonnegative integer for
each i.

A standard argument shows that δr1 is a locally A-approximable
function on U. That /30 is also locally A-approximable on U follows
from the fact that, d never being zero on U, β0 may be locally ex-
pressed as a uniformly convergent power series in the coefficients
of a(x).

Proof of Theorem 5. According to Lemma 3 there exist elements
of B xl9 - , xm; yu , ym such that Σ xtyt = 1 and

(6) t(f) = Σ>t(fVi)xif feB.

We may assume 5 to have a well defined rank n over A (use
the argument in the first paragraph of the proof of Theorem 1).
This assumption and the strong separability of B imply that MB is
an w-sheeted covering space of MA with projection π [9, Th. 5, p.
138]. In this context, the trace map is given by

(7) *(/)(*)= Σ f(Ψ), feB, φeMΛ.

But C(MB) is a strongly separable extension of C(MA) [3, Th. 2,
p. 30] and, consequently, its trace map is given, for feC(MB), by
(7). Moreover, relation (6) is true for feC(MB). Therefore, by
Lemma 3, we only have to show that

(8) t(f)eHA if feHB.

We will prove, by transfinite induction, that

(9) t(f)eHϊ if f e m , for each v .

If v > 0 is an ordinal such that (9) is true for all a < v, then
clearly we have

t(f)eAv if feBv.

Therefore, replacing Av and Bv by A and B, we are led to prove
that

t(f)eLA if feLB.

Given f eLB, fix ^ e MA and consider mutually disjoint open
neighborhoods V* of the points in π~\φ), and an open neighborhood
U of φ such that
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( i ) π\ Vi is an homeomorphism onto U for each i.

( i i ) / i s uniformly approximable on each Vt by functions in B.

Given ε > 0, consider fyeB w i t h \\f — bt \\Vί < ε, 1 <Ξ i <Ξ w. Thus

*(/)-Σ/i

where β4 — 6έ o (π | FJ""1, 1 <; i <£ w. Now Lemma 5 says that t(/) 6 L^.
This completes the induction and so the proof of (8).

REMARK. The above proof shows that a slightly more general
statement is true. In fact, we have proved that Hi is a strongly
separable ίf^-algebra and that A — Hi implies B = Hi for each
ordinal v.

Finally, we point out two problems whose solution we do not
know.

PROBLEM 1. In the standard hypothesis of this paper, that is,
A c By A and B uniform algebras, B finitely generated and projec-
tive as an ^.-module, is HB (resp. LB) finitely generated and projec-
tive as an HA (resp. LJ-module?

PROBLEM 2. With the same hypothesis on A and B, does A =
HΛ (resp. A = LA) imply B = HB (resp. B = LB)Ί.
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