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ON THE REPRESENTATION THEORY OF RINGS
IN MATRIX FORM

EDWARD L. GREEN

We study the category of modules for rings of the
form

N\
M Λj

where M is a Λ2 — Λ-bimodule and N is a AL — Λ2-bimodule.
We first obtain a structural result and then study special
cases of such rings. The goal is to reduce the study of
modules over such rings to modules over generalized lower
triangular rings.

Rings of the form

Mi 0

where Λu Λ2 are rings and M is a Λ2 — ̂ -bimodule have appeared
often in the study of the representation theory of Artin rings and
algebras. We list just a few references ([2, §4], [3], [4], [5, §9
and appendix], [6], [7, §2], [9] and [10]). Such rings appear naturally
in the study of homomorphic images of hereditary Artin algebras.
For, if Ω is such an algebra, since Ω must have a simple injective
left module it follows that Ω can be put in the form (0.1) with Λt

a semisimple Artin ring. One of the main reasons rings of the form
(0.1) are so useful is that their modules can be studied by knowing
the Λx and Λ2 modules together with certain homomorphisms. In
particular, we have

(0.2) THEOREM. [4] Let Γ be the ring

A, 0

M Λ2

The category of left Γ-modules is equivalent to the following
category: the objects are triples (X, Y, f) where X is a left Λr

module, 7 is a left Λ2-module and /eHom^ (M®^ X, Y). The
morphisms a: (X, Y, f) -> (X\ Y\ /') are pairs a = (al9 a2) where
ax e Hom^ (X, X'), a2 e Hom^ (Y9 Y') such that the following diagram
commutes
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1M (g)aΛ \a2

In this paper we study rings of the form

(0.3) I* *

where M is a Λ2 — ̂ -bimodule and iSΠs a Λx — ̂ -bimodule. I. Palmer
developed results on the homological and projective dimensions of
such rings in [8]. The first section of this paper contains notation
and a structure result which is analogous to Theorem (0.2). The
remainder of the paper studies rings of form (0.3) in special cases.
The goal is to reduce the study of modules over such rings to modules
over generalized lower triangular rings. Under certain hypothesis
this is done in the case where Λ1 is a semisimple Artin ring or a
left Artin ring whose Jacobson radical is square zero. A study of
more general cases is conducted in §3. In §4, we give a useful
application of the results of §2 and a number of examples.

l Notation and a structure result* Throughout this paper
we keep the following notation. Let Λlf Λ2 be rings. Let M be a
Λ2 — Λi-bimodule and let Nhe a Λx — yί2-bimodule. Let φ\ M(&ΛlN—>
Λ2 be a Λ2 — Λ2-bimodule homomorphism and let ψ: NQΛzM-^ Ax be
a Λx — Λi-bimodule homomorphism. Let

Ax N

M

We define addition of elements of Γ componentwise and multi-
plication by

lxx n\ lx[ nr\ fxjxΊ + ψ(n ® m') xxn
f + nx2

\m xj \mt x'J \mx[ + x2m
r x2x2 + φ(m (x) n)

For Γ to be an associative ring we must have

(1.2) φ(m (g) n)m' = mψ(n ® m') and nφ(m 0 n') —

for all m,mfeM and n, nr e N.
We henceforth assume (1.2) is always satisfied by φ and ψ.

With the above definitions Γ is an (associative) ring.
If R is ring, we let Mod (R) denote the category of left R-

modules. We now introduce a category which we will show is
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equivalent to the category Mod(Γ). Let jy(Γ) be the category
whose objects are tuples (X, Y, f, g) where X e M o d ^ ) , YeMod(/ί2),
fe ΈίomA2 (M&Λl X, Y) and g e Hom^ (MQA% Y, X) so that the follow-
ing diagrams commute:

(1.3)

The morphisms of Jϊ?{Γ), a: (X, Y, f, g) -> (X', Y\ /', g') are
pairs of homomorphisms a — (al9 a2) where aλ e Hom^ (X, X') and
a2eΉ.omA2(Y, Yr) so that the following diagrams commute:

AΛ X - ^ Y N®A9 Y ~^-> X

/ i Λ\ I I I I
(1.4) I M Θ ^ I a2\ , 1Λ^Θ»2 «I

i ff I i , i
N®Al X' -?—> Y' N®Λ2 Yr -£-> Xf

Although the proof of the following result is just a generaliza-
tion of the proof of Theorem (0.2) and implicitly contained in [8],
since it is of central importance to the remainder of the paper, we
include a sketch of the proof for completeness.

(1.5) THEOREM. The category Mod (Γ) is equivalent to the
category

Proof. We first define a functor F: Mod (Γ) -> j^(Γ). Let
A e Mod (Γ). Define F(A) to be (exA, e2A, fM gA) where ex = (\ 2), e 2 -
/0 0\ ^
(Λ i )> fA'^®A1^iA-^e2A is induced from the multiplication map

0 0

M 0

and gA: N0Λ2e2A > eλA is induced from the multiplication map

(°
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Note that fA and gA satisfy (1.3) by (1.2). If A, Be Mod (Γ) and
δ e HomΓ (A, B) define F{δ) to be (δlf δ2) where δt is induced from δ
noting that ίfoA) = e^{etA) £ ej?. Condition (1.4) is satisfied by F(δ)
since δ is a Γ-homomorphism.

We now define G: J&(Γ) -> Mod (Γ) as follows. Let (X, Γ, /, #) 6

jy(Γ). Define G(X, F, /, g) to be {( * ): x e X, y e F J . Let Γ act on

G(X,Y,f,g) by

The reader may easily verify that G(X, F, /, sf) is in fact a left Γ-

module. If (alf oQ: (X, Γ, /, g) -> (X', Γ', /', g') is an j^(Γ)-morphism

we define G(alf a2) by G(alf α2)( J ) = ( J ( J ) ) for ^e J , 2/e7. Again

it is easy to verify that G(alf a2) is a Γ-homomorphism.
Finally we leave it to the reader to check that GF is naturally

equivalent to lMod<n and FG is naturally equivalent 1^(Γ). •

Note that if either M = 0 or iSΓ = 0 then (1.2) and (1.3) are
vacuously satisfied. Thus, in either of these cases, Theorem (1.5)
reduces to Theorem (0.2). We will need another structure result.
Consider the generalized lower triangular ring

(1.6)

where each J?* is a ring, U is an R2 — i?rbimodule, V is an Rs — R2-
bimodule and W is an R3 — i^-bimodule. Addition in Σ is defined
componentwise and multiplication is defined by

0 OWrί 0 0\ ir^ 0

(1.7) ίu r2 0 uV 0 I = lur[ + r2u
f r2r2

v rj\w' vf r'J \wr[ + ψ(v(x)u') + r [

where ψ: V®R2 U—> W is an Rs — ̂ -bimodule homomorphism.
If Σ is of form (1.6) we define &(Σ) to be the category whose

objects are tuples (X, Y,Z,f,g,h) where X e M o d ^ ) , FeMod(J?2),
ZeMod(R5), feKomB2(U®RlX, Γ), geKomB3(V®B2 Y, Z) and he

RχX, Z) so that the following diagram commutes
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The morphisms of &{Σ) are triples (au a2, α3): (X, Y, Z, f, g, h) —>
(X\ Y\ Z\ /', g\ h') where a, e Horn*, (X, X'), a, e Horn*, (Y, Y') and
α3 e Hom^ (Z, Z') so that the following diagrams commute:

U®RlX -U Y V®R2 Y -*-> Z ι

(1.9) lffφαil α2 , I F ® * * ! α8 , liτ®«i «β I

— Y' V®R2 Y' -^ Z'

We get

(1.10) THEOREM. Let Σ be a ring of the form (1.6). The
categories Mod (Σ) and &{Σ) are equivalent.

Proof. The reader may either apply Theorem (0.2) twice, toR ^ °(R 0 \
Γ r r> ) and then to \\U Rj 0 or directly prove the result in

ΛW9 V) RJ
fashion analogous to Theorem (1.5). •

The remainder of this paper is devoted to showing that under
suitable hypothesis, the study of Mod (Γ) where Γ is of form (0.3)
may be reduced to the study of Mod (Σ) for some "simpler" ring
[of the form (1.6)]. We call such results "separation" theorems for
obvious reasons.

2* The main separation result* (2.1) Let Γ be a ring of form
(0.3). For the remainder of the paper we study Mod(Γ) under the
assumption that φ: M&ΛlN->A2 is the zero map. Note that if φ = 0
then property (1.2) is equivalent to the image of ψ is contained in
(ann MΛ) Γ) (annJt N) where ann Λf^resp. annJχ N) denotes the right
(resp. left) annihilator of Af(resp. N) in Ax.

In this section we will be concerned with the case where Ax is
a left Artin ring with Jacobson radical r where r2 = 0. Before
proceeding we state the following basic result:

(2.2) THEOREM. [1, §4]. Let Abe a left Artin ring with Jacobson
radical r so that r2 = 0. Let Gr(Ajr, r) be the category whose objects
are triples (X, Y,f) where X, Y e Mod (A, r) and fe Hom^ (r ®A/r X, Y)
is a surjection. The morphisms of Gr(A/r/r) are pairs of maps
(αlf a2):(X, Y, f)->{X\ Y\ /') where ax e Horn /r (X, Xr) and a2e
Ή.omΛ/r(Y, Y') so that the following diagram commutes

r®Λ/rX - ^ Y
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Let H: Mod {A) —> Gr(A/r, r) be the functor defined by H{A) =
(A/rA, rA, fA) where fA: r ®j/r A/rA —> rA is induced from the multi-
plication map r φΛ A -> rA. Then H is representation equivalence;
that is, H is full and dense and AeMod(A) is indecomposable if and
only if H(A) is indecomposable in Gr(A/r, r). Π

For the remainder of this section we assume that
(2.3) (a) Ax is a left Artin ring with Jacobson radical denoted r.

(b) r2 = 0
(c) MΛl is a right semisimple Λ-module
(d) JV̂  is a left semisimple A^module
(e) the image of ψ is contained in r.

Note that under the above conditions (2.1) is satisfied. Let T
be the ring

(2.4)

where A — ΛJr and T has multiplication given by

ldγ 0 0\ ld[ 0 0\ ldγd\ 0 0

\m λ 0 U r n ' λ' 0 | = ίm<Zί + λm' λλ' 0

\χ n dj W nf d'J \xd[ + ψ(n (g) mr) + d2x' n\r + d2n' d2d'2f .

We are now in a position to state and prove the main result of
this section.

(2.5) THEOREM. Let Γ be a ring of the form (0.3) and suppose
φ is. the zero map. Suppose further that conditions (2.3) are satisfied.
Let T be the ring given by (2.4). There is a canonical additive
functor F: Mod (Γ) —>Mod(Γ) which has the following properties:

(1) if AeMod(Γ) then F(A) = 0<=>A = 0.
(2) for all but a finite number of nonisomorphic indecomposa-

ble T-modules9 if B is. an indecomposable T-module then there exists
a Γ-module A so that F(A) — B as T-modules.

(3) if A, A! 6 Mod (Γ) then F(A) ~ F{Ar) as T-modules if and
only if A = A! as Γ-modules.

(4) if Ae Mod (Γ) then F(A) is indecomposable as a T-module
if and only if A is indecomposable as a Γ-module.

Proof. We identify Mod (Γ) with ^f{Γ) and Mod (T) with
Define the functor F: Mod (Γ) -> Mod (Γ) as follows. Let (X, Y, /, g) e
Mod (Γ). Set X' = X/rX and X" = image of g. Let p: X-* X' be
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the canonical surjection. Let X'" = p(X") and X, = X'/X'". Let
X2 = (image of g) + rX, (viewing image of g and rX as submodules
of X). First we note that I 1 φ I 2 = fl«I = 0, Next we show
that / induces a 4rhomomorphism f1:M&jXί-*Y. Since MAί is
semisimple, / induces a 4rhomomorphism / ' : M(j&ΔX

f —> Y. Now,
since ?> = 0 it follows by (1.3) that f(M®Λl (image of g)) = 0. We
get the following commutative diagram

(image of

Thus there exists a unique map /Ί: M®j Xx —> Y" making the above
diagram commute. Next, it is clear that g induces a map: gx\ NφΛ2

Y —> X2 since (image of g) £ X2. Now we have a Λi-homomorphism
given by multiplication r 0 ^ X —> rX. This induces a J-homomor-
phism fcf:r®jX'->rX. We claim h\r®άX'") = 0. We have a
split exact sequence

0 > rX n im g > im g > Xtn > 0 , where im g = image of r̂ .

This sequence is split since im g £ left socle of X which follows
from the assumption that ΛXN is a semisimple ^-module. Thus the
multiplication map r ® ^ im g —> rX is zero. From this it follows that
Λ'(r ® j X'") = 0. Since 0 -> X'" -^ X ' -> Xx -> 0 is a split exact
sequence (X' is a semisimple .^-module), Λ'(r ®jX"') = 0 and r X £ X2,
we get a canonically induced map hλ: r ® Δ Xt —* X2. It can be verified,
using (1.3) that the following diagram commutes

We define F(X, Γ, /, ff) - (Xi, Γ, X2, Λ, ffi, Λi).
We define JP on morphisms as follows. If (alf a2): (X, Y, /, gf) -•

(X', F' , / ' , ί/') is a Γ-morphism then αx(im gr) £ im #' by (1.4),
ax{rX) £ rX' and hence αx(ίc2) £ X2'. Thus we get an induced map
S2:X2-»X2\ Since at induces a map at: X/rX —> Xf\rXr so that
α^in gr/rX Π im #) C im gr/rX' Π im g* we get an induced map
δt: X±-> X[. We set F(au α2) = (δlf α2, δ2). Again the reader can
verify that (8l9 a29 δ2) is a Γ-morphism.

We now verify properties (l)-(4). Property (1) holds since
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X x 0 X 2 = 0<=>X = 0. We now verify (2). Let B = (X, Y, Z, /, g, h) e
Mod (Γ). If im (g) + im (A) Φ Z, since J is semisimple we have B =
(X, Γ, im # + im A, /, #', A') 0 (0, 0, Z/im g + im h, 0, 0, 0) where g*
and A' are induced from g and A. The semisimplicity of A implies
there are only a finite number of nonisomorphic indecomposable Γ-
modules of the form (0, 0, Z, 0, 0, 0). Hence we may assume B has
the property that Z = im (0) + im (A). We write Z = Z1ξ&Z2 where
J£2 = im h. We construct A = (17, V, u, v) e Mod (Γ) as follows. Let
π:P->X be the ΛΓprojective cover of X. Then since r®ΔX =
r ®Λ P/rP = r ®^ P ~ rP we have the following exact sequence of
Λ-modules:

0 >r®X >P-?->X >0 .
Δ

Let U' be the pushout of

Z1 = im (A) .

Finally set U = IT 0 Z2 and F = Γ. Note that rU = rU'=z Zx

and U/rU=X($Z2. We define u: Jf® v i ί7-^F to be the composition
Arβ iι 1 l7^;Arβ Jϋ/rl7-*Jtf® JX->V r . We define v:N®A2V->Ubγ
N®ΛzV =N®Λ2 Y^im{g) £ Z,®Z2 QU' 0 Z2 = U. Using (4.3) one
immediately verifies that A = (17, V,u, v) eMod(Γ). We now claim
JP(A) = B as Γ-modules. But im (v) + r J7 = ^ 0 Z2 and Z, = rU.
Thus im(ί )-* U-^ U/rU has image Z2 and so JF(A) = (X, V, Z,φ
Z2, ul9 vu u2). It is a straightforward calculation to show that
F(A) ^ B as Γ-modules.

Next we prove property (4). Let A = (X, Γ, /, 0) 6 Mod (Γ). We
let F(A) = (Xlf Y, X2,/i, Ou hi) a s above. We assme F(A) decomposes:

(2.6) F(A) - {XI, Y\ XI fl g[, h\) 0 {XI Y\ X2

2, y?f βJ, ΛJ),

where X, = X/(g) XI, for i - 1, 2, Γ = F 1 φ F , /4 - ( ^ ^ ) for i = 1, 2
and ί/i = (0' ^) S e t Vi = imΛ} for i = 1, 2. Now* for i = 1, 2,
fltf: ^ ® J 2 iΓ ί ->1^2 and ΐ^ £ X2\ Since im gx + im ^ = X2, for i = 1, 2,
im $ + im ftί = X2\ Let ^ £ X2* so that X2' = Vi(&Z2 and im $ =
(im g\ Π Vi) 0 (im #j D ̂  ). This is possible since X} is a semisimple
J-module. Finally, let V= Vx 0 F2 and Z = Zx 0 Z2. Then F = im fcx.
Now X2 £ X. In particular, Z £ X. By choice of Z, we have that
Z is a semisimple ^-module and Z g i m ^ J . But i m ^ ) = rX, by
construction of λlβ Thus X = Uξ&Z and we have the following
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easily verified properties:
(a) r ϊ 7 = i m A 1 = V
(b) U/rU^X,
(c) the map hx: r ® Δ X1 —> V is induced from the multiplication

map r<&ΛlU->rU. We now apply Theorem (2.2). We see that
H(U) — (Xlf V, hj. The decomposition (2.6) yields a decomposition

H(U) = (XI, Vu h{) © (XI V2i hΐ) .

By Theorem (2.2), we get a decomposition U = Ux 0i7 2 so that JEΓCZT"*) =
(Xi, Vif hf) for i = 1, 2. We now leave it to the reader to check
that (J7i 0 Zl9 Yί9 f\ g1) φ (U2 φ Z2, Γ2, /

2, #2) is a decomposition of
(X,Y,f,g) where / ' : J l ίφ^ (IT, ® Zτ) -> Γ4 is defined by the com-
position

and gι: N®Λ^ Yi-^Uiφ Zt is defined by the composition

Finally, we sketch a proof of property (3). Let A, A' e Mod (Γ)
so that F(A) = F(A') as T-modules. Let A - (X, Y, f, g), A' =
(X',Γ',/',ff'), ^(A) = ( U Λ Λ ϊ J i ) and F(A0 - (Xl9Y'9Xi,f'»g[,f[).
Let («!, α2, α8): ̂ (-A) —»F(̂ 4') be a T-isomorphism. As in the proof
of property (4), one may write X = U®Z where Z is a semisimple
^-module, /(ΛΓ®i<1Z) = 0 and Z £ i m g . Similarly X'=U'@Z'.
Using the functor H: Mod (^J -> Gr(zf, r), as in (4), it is not difficult
to show (alf a2, a3) induces an isomorphism H(U) -> H{U'). This lifts
to an isomorphism U—>U' by (2.2). Furthermore, by appropriate
choice of Z'', (alf a2, α8) induces an isomorphism Z->Z\ Thus we
get a ^-isomorphism a: U@Z-> U' φ Z\ Lastly, one verifies that
(a, a2): A -> A! is a Γ-isomorphism. •

We say a ring i2 is of (left) finite representation type if there
are only a finite number of nonisomorphic indecomposable finitely
generated left ϋί-modules. If R is not of finite representation type
we say R is of infinite representation type. As an immediate con-
sequence of Theorem (2.5) we get

(2.7) THEOREM. Let Γ = (Afr ̂ ) be such that φ = 0 and (2.3)

holds. Then Γ is of finite representation type if and only if T =
/r 0 0 \

M Λ2 0 I is o/ /̂mΐte representation type, where r = Jacobson
r N ΛJr/

radical of Λt. •
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This result has many useful applications. For, assume the
hypothesis of (2.5) hold. In general, Γ need not have finite left
global dimension. But by [9, §4], T has finite left global dimension
if Λ2 does. See example (5.3). If, for example, Λ2 is a semisimple
ring then T is a factor ring of a left hereditary ring.

For the remainder of this section, we deal with the case where
Λι is semisimple and φ = 0. We show that we automatically get a
separation result.

(2.8) LEMMA. Under the above hypothesis, the map ψ: NφAi

M-^Λ1 is the zero map.

Proof. By (2.1), the image of ψ = I is contained in annikf^ Π
annίjL N. But Γ == Jim f. Thus Γ = I f (iNΓ®j2 M) = 0. Since I is a
two-sided ideal in a semisimple ring we conclude / = 0. •

It now follows that properties (a)-(e) of (2.3) are automatically
satisfied. Furthermore, since the Jacobson radical of Λ1 is 0, T is
the ring

A,

M

0

0

A
N

0

0

A

with the obvious multiplication.
Thus, Theorem (2.5) becomes:

(2.9) THEOREM. Let Γ be the ring (Afc ^) with ψ = 0 and Λ1

/Λi 20 0 \
a semisimple ring. Let T be the ring I M Λ2 0 I. There is an

\0 N ΛJ
additive functor F: Mod (Γ) —> Mod (T) so that the following properties
hold:

(1) if AeMod(Γ) then F(A) = Q<=»A = 0
(2) for all but a finite number of nonisomorphie indecomposa-

ble T-modules, if B is an indecomposable T-module, there is an Γ-
module A so that B ~ F(A) as T-modules.

(3 ) if A9A'e Mod (Γ) then F(A) = F{A') as T-modules if and
only if A ~ A! as Γ-modules.

(4) if Ae Mod (Γ) then F(A) is an indecomposable T-module if
and only if A is an indecomposable Γ-module. •

(2.10) COROLLARY. Keeping the hypothesis of (2.9). Γ is of
finite representation type <=> T is of finite representation type. •
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3* The general case with φ = ()• For the remainder of this
section we keep the following notations:

^ = (& " ) w i t h " = °
/ = image of ψ

m =
n —

(3.1)
(a)
(b)

: ann MAl
Λ7

: ann .̂ is.

LEMMA. We have that
Im = 0
nl = 0.

Proof. We only prove

Let

Im =

(a).

[A
= \M

\l

0

A
N

m-.

0

0

A

- o . •

and

M/m 0 0

Γ2 = ( M Λ% 0

\ / J^ ΛJnl

with the obvious ring structures (see §2). We get

(3.2) PROPOSITION. For i = 1,2 ίfoere are canonical additive
functors Gt: Mod (Γ) -» Mod (Γt).

Proo/. We identify Mod (Γ) with j ^ ( Γ ) and for i = 1, 2, Mod (T,)
with &(Tt). Since the proof is analogous with the first part of
Theorem (2.5) we only define the functors on objects and leave the
rest to the reader. For ί = 1 define Gx: Mod (Γ) -»Mod(TΊ) as follows:
if A - (X, Γ, /, g) e Mod(Γ) let GX(A) - (X, Γ, im(ff), /, g, h) where A is
induced from the multiplication map /ξ$ΛιX—>X. For i = 2, define
G2: Mod (Γ) -> Mod (Γ2) as follows: if Λ = (X, Γ, /, g) e Mod (Γ) let
G2(A) = (X/mX, Y, im (g), /, ^, A), where / is induced from / and h
is induced from the multiplication map 1 ® ^ X—>X. Note % im (#) = 0
since n im (g) = ng(N®Λ% Y). •

Unfortunately, neither of these functors seem to yield much
information in general. But the following result shows that when
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ψ = 0 one can say something. Note when ψ = 0, 2\ is the ring

Λt 0 0

J 2 0

0 N Λj

(3.3) THEOREM. Let Γ = ("h ^) with φ = 0 and ψ = 0.
M 0 0 \ V M Λ /

Tι = \M Λ2 0 . 2%ere is α functor K: Mod (2\) -• Mod (Γ) so that
\0 tf Λ/

i/2?eMod(2\), B is a direct summand of GXK{B). In particular,
if Γ is of finite representation type then so is Tt.

Proof. We identify Mod (Γ) with J*(Γ) and Mod (2\) with ^ ( Γ J .
Define iί: Mod (Γt) -> Mod (Γ) as follows: if £ = (X, Y, Z,f, g) e Mod (ΓJ
let K{B) = ( 1 0 ^, Y, /*, fir*) where / * : ikf ® / χ ( I φ Z) -> Γ by
f*(m®(x,z))=f(m<g)x) and #*: iV®/? Y->X@Z by g*(n®y) =
(0, #(w (x) j/)). Now let α = (au a2, a3): B —• GλK(B) be defined by

α2: Γ ^ Γ, and α3: Z^XφZ. Then α is a Tr

monomorphism which is split by β = (βlf β2, fi8): GJi{B) —> JS where

H l , ^ : F ^ Γ and / 3 3 : X 0 ^ — ^ . Thus 5 is a
direct summand of G^B). The last part of the theorem follows
immediately. •

By example (4.2) we see that Γ may be of infinite representation
type and yet ϊ\ is of finite representation. We conclude this section
by giving an application of Theorem (3.3).

(3.4) THEOREM. Let Γ = (jfc ^) be such that φ = 0. Then if

Γ is of finite representation type so is the ring

IAJI

= M

\o

0

A,

N

0

0

ΛJl

Proof. Since / £ m Π n by (2.1) M is a right ΛJI-modxde and N

is a left ΛJI-module. Let J be the two-sided ideal in Γ given by

J = (J Q). Note J 2 - 0 since J2 - Iψ(N<g) M) = 0. Let Γ = Γ/J.

Then if Γ is of finite representation type so is Γ. Furthermore,

Γ — ( jL 4 ) with φ, ψ the maps induced from φ and ψ in Γ. But

φ = 0 ==> ^ = 0. Since I = im (ψ), ψ = 0. The result now follows

from Theorem (3.3). •
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Example (4.2) shows that the converse is not true.

4* Applications and examples* We begin with an application
of Theorem (2.9).

(4.1) Let Ω be a left Artin ring and let P be a left protective
ideal in Ω such that

(a) Endβ (P) is a semisimple ring
(b) if Q and Q' are indecomposable projective left 42-modules

and /: Q —»Qf is a nonzero i2-morphism then / factors through P <=*
either Q or Qf is isomorphic to a direct summand of P.

Then Ω is of left finite representation type if and only if the
ring

/End*(P) 0

Σ = I Horn,, (P, P*) Ends (P*)

\ 0 Horn., (P*,P)

is of finite representation type where P φ P* is a finitely generated
projective generator for Ω such that no direct summand of P* is
isomorphic to a direct summand of P.

Proof. By the Morita theorems, Mod (42) is equivalent to
Mod (Endβ (P Θ P*)σp) where i20P denotes the opposite ring of R.
Now End ίPffiP*") — /Endβ(P) Homβ (P, P*)\ w^t^o . this as
U N\ ~ ^H o m* (P*> ?) E n d ^ ίP*)/ W r i t m g t m s a s

\M Λ ) w e s e e *^a^ P r°Per^y (a) implies Λx is a semisimple ring and
property (b) implies that the multiplication map Λf φ ^ JV—> Λ1 is zero.
Finally noting that a left Artin ring is of finite representation type
implies that the ring is right Artin and of finite representation
type, we can see the result follows from Theorem (2.9). •

(4.2) We now give an example which verifies a number of
remarks made in earlier sections.

Let Γ = (JJA) where Ax = Λ2 = k[X]/(X2), ϋ is a field. Let
M = N = k where k is the simple &[X]/(X2)-bimodule. We write
elements in k[X]/(X2) as a + bX where a,bek. We define multipli-
cation in Γ by

/a + bx e \ ίa' + b'x ef \ ___ (aa' + (ab' + a'b)x ae' + ec' \
V / c + dx)\ f cf + d'x) ~\ fa' + cf cc' + {cdf + c'd)X) '

Note that the maps φ:M®N-^Λ2 and ψ:N®M-^Λ1 are both

( xk k \j Ί and its square is zero.
lϋ XfC/

Thus applying [5, appendix], since the separated quiver of Γ is
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Γ is of infinite representation type. We now consider 2\ of §4.
Namely

IA 0 0"

Λ o

0 N Λl

The ring 2\ has radical square zero but its separated quiver is

0 v 0x 0

0 0 Ό

Hence Tx is of finite representation type [5, appendix] and we conclude
that the converse of Theorem (3.3) does not hold. We now apply
the results of §2. Let T be the ring

Ik 0 0\

\k k[xyx* o]

\k k kl

as in §2. Its separated quiver is

Ό 0

and hence is of infinite representation type (as is also shown by

Theorem (2.5)).

£ A with

9 = 0 and ψ = 0. Let Λ2 = k. For i = 1, 2 let S* be the simple left

Λ-module given by St = ( Q ) and S2 = ( j j ) . [Note that by Theorem

(2.9), the study of Mod (ΛJ reduces to the study of Mod (T) where

with the obvious multiplication.] Let M = N — k where MAl = (0, k)
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and Now consider the ring Γ = i.e.,

with multiplication given by

dιd2 + CL2O2 + &3C2

iαj + b2b[ 6^2 + δ2&2

0 cj>2 + czc2

We note that φ:M(& XN->A2 is the zero map. One easily verifies
that Ax has radical square zero and that conditions (2.3) are satisfied.
Thus Theorem (2.5) implies that the study of Mod (Γ) can be achieved
by studying Mod (T) where Γ is the ring

Ik
0

0

0

\k

0
k
k

k

0

0
0

k

k

0

0
0

0

k
0

°)
0

0

0

kl

We show
( i ) Γ has infinite left global dimension

Γ is of radical cubed zero
T is an hereditary Artin algebra (i.e., gl. dim. T = 1)
T is of finite representation type
Γ is of finite representation type.

(ii)
(iii)
(iv)
(v)

/(k\\
I\O/J = S.First we show (i). Consider the simple F-module

(That is, S^S, as ^-modules and (°M ^ S = 0.) Let 0

P —> S —> 0 be an exact sequence of Γ-modules with P-+ S the Γ1-
//0\\

projective cover of S. Then ϋΓ = S' = \ ̂  / ) where S' is the simple
\ 0 / /o M

jΓ-module which as a /ί-module is isomorphic to S2 and ί ̂  ^ IS' = 0.
Now let 0 —> L —> Q —> Sr —> 0 be an exact sequence of Γ-modules so
that Q —> S' is the Γ-projective cover of S'. Then S is a direct
summand of L and we conclude that the left projective dimension
of S is infinite. Properties (ii) and (iii) are immediate. Applying
[5, appendix], since the quiver of T is
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we conclude that T is of finite representation type. Property (v)
follows from (2.7). It is worthwhile noting that without Theorems
(2.5) and (2.7) there is no known method of attacking the question
of whether or not Artin rings of radical cubed zero are of finite
representation type.
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