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ON THE REPRESENTATION THEORY OF RINGS
IN MATRIX FORM

EDWARD L. GREEN

We study the category of modules for rings of the

form

(/11 N )

M 4,
where M is a A, — A,-bimodule and N is a 4, — 4,-bimodule.
We first obtain a structural result and then study special
cases of such rings. The goal is to reduce the study of

modules over such rings to modules over generalized lower
triangular rings.

Rings of the form

0.1 I = 4 0)
0.1) —(M A

where 4,, 4, are rings and M is a 4, — A,-bimodule have appeared
often in the study of the representation theory of Artin rings and
algebras. We list just a few references ([2, §4], [3], [4], [5, §9
and appendix], [6], [7, §2], [9] and [10]). Such rings appear naturally
in the study of homomorphic images of hereditary Artin algebras.
For, if £ is such an algebra, since 2 must have a simple injective
left module it follows that 2 can be put in the form (0.1) with 4,
a semisimple Artin ring. One of the main reasons rings of the form
(0.1) are so useful is that their modules can be studied by knowing
the 4, and 4, modules together with certain homomorphisms. In
particular, we have

(0.2) THEOREM. [4] Let I' be the ring
(o )
M 4,)°
The category of left I'-modules is equivalent to the following
category: the objects are triples (X, Y, f) where X is a left A,-
module, Y is a left /4,module and fecHom, (M@, X,Y). The
morphisms a: (X, Y, f) > (X', Y, f') are pairs a = (a,, @) where

a, € Hom, (X, X'), a,€ Hom,, (Y, Y') such that the following diagram
commutes
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MR, x L v

1x ® all laz

M, x Ly, O

In this paper we study rings of the form

4, N
0.3) (M /12)

where M is a A, — A,-bimodule and N is a 4, — 4,-bimodule. I. Palmer
developed results on the homological and projective dimensions of
such rings in [8]. The first section of this paper contains notation
and a structure result which is analogous to Theorem (0.2). The
remainder of the paper studies rings of form (0.3) in special cases.
The goal is to reduce the study of modules over such rings to modules
over generalized lower triangular rings. Under certain hypothesis
this is done in the case where 4, is a semisimple Artin ring or a
left Artin ring whose Jacobson radical is square zero. A study of
more general cases is conducted in §3. In §4, we give a useful
application of the results of §2 and a number of examples.

1. Notation and a structure result. Throughout this paper
we keep the following notation. Let 4,, 4, be rings. Let M be a
4, — A-bimodule and let N be a 4, — 4,-bimodule. Let ¢o: M@, N —
4, be a A, — A-bimodule homomorphism and let y: N@,, M — 4, be
a A, — A,-bimodule homomorphism. Let

4, N x, 'n)
I = = : A, M, N; .
(M /12) {(m 2 x; €, meM,ne }

We define addition of elements of I' componentwise and multi-
plication by

x, n) (m{ n') _ (wlxj + ¥(n Q@ m') xn + na, )

m x, m me, + xm' 5 + @P(m QR n)

1.1 (

For I' to be an associative ring we must have

1.2)  @pm@@n)m =myn@m) and np(mQn') = y(n @ m)n'

for all m, m' e M and n, n’ € N.

We henceforth assume (1.2) is always satisfied by @ and +.
With the above definitions I is an (associative) ring.

If R is ring, we let Mod (R) denote the category of left R-
modules. We now introduce a category which we will show is
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equivalent to the category Mod (I"). Let .o (I") be the category
whose objects are tuples (X, Y, f, g) where X e Mod (4,), Y € Mod (4,),
feHom,, (M@, X, Y)and g ¢ Hom, (M @,, Y, X) so that the follow-
ing diagrams commute:

N@, M@, X 2L N, v—1 =X

¥ ®\ m al

4,@4, X

(1.3)

1y
MR, N®,v 2L ye, x—L v

1,Q@.,Y

The morphisms of .o&7(I"), a:(X, Y, f,9)— (X', Y, f',g) are
pairs of homomorphisms « = (a,, @) where a,€Hom, (X, X’) and
a,€Hom,, (Y, Y') so that the following diagrams commute:

MR, x L v N®,Y - X
(1.4) ly®alj azl , 1N®a2l lal
N®, x' L v N®, YV -L> X’

Although the proof of the following result is just a generaliza-
tion of the proof of Theorem (0.2) and implicitly contained in [8],
since it is of central importance to the remainder of the paper, we
include a sketch of the proof for completeness.

(1.5) THEOREM. The category Mod (I') s equivalent to the
category o7 ().

Proof. We first define a functor F:Mod (") — .7 (I"). Let
AeMod(I'). Define F(A) to be (¢4, ¢,A, f., g.) where ¢, = <(1) g), e,=

(8 2>, fa: M@, e,A — e, A is induced from the multiplication map

5 Joas

and g,: N®,,e,A — ¢, A is induced from the multipjication map

(g l:)@,A——»A.
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Note that f, and g, satisfy (1.3) by (1.2). If A, BeMod (") and
0 €cHom, (4, B) define F(§) to be (4, d,) where 4, is induced from &
noting that d(¢;4) = ¢,6(¢,A) < ¢;B. Condition (1.4) is satisfied by F(6)
since ¢ is a I'-homomorphism.

We now define G: &7 (I") — Mod (I') as follows. Let (X, Y, f,9)¢

&7 (I"). Define G(X, Y, f, g) to be {(g) zeX,ye Y}. Let I" act on

G(X, Y, f, 9 by
<x1 n)(m) _ <)»1x + g(n@y))
m M/ \y fim @ @) + Ny
The reader may easily verify that G(X, Y, f, g) is in fact a left I'-
module. If (o, a.): (X, Y, f, 9) > (X', Y', f, ¢') is an .o (I")-morphism
we define G(a,, a,) by G(a,, a2)< ;) = (glgg> for xe X, ye Y. Again
it is easy to verify that G(a, a,) is a I'-homomorphism.
Finally we leave it to the reader to check that GF is naturally
equivalent to lyoar, and F'G is naturally equivalent 1,.,. |

Note that if either M =0 or N =0 then (1.2) and (1.3) are
vacuously satisfied. Thus, in either of these cases, Theorem (1.5)
reduces to Theorem (0.2). We will need another structure result.
Consider the generalized lower triangular ring

R, 0 O
(1.6) 3= (U R, 0)
W V R,
where each R; is a ring, U is an R, — R,-bimodule, V is an R, — R,-

bimodule and W is an R, — R,-bimodule. Addition in ¥ is defined
componentwise and multiplication is defined by

r 0 O\/r. 0 O 7 0 0
a.mn (u 7 0)(u’r ; O) = (ur{ + ru’ P57 0 )

w v T \w v o7 wr, + P @u’) + raw' vr,+ rv’ rery
where ¥: V @z, U— W is an R, — R,-bimodule homomorphism.

If ¥ is of form (1.6) we define <#(X) to be the category whose
objects are tuples (X, Y, Z, f, g, h) where X e Mod (R,), Y € Mod (R.),
ZeMod (R;), fe Homg, (U@z, X, Y), gcHom, (V@3 Y, Z) and he
Homg, (W @z, X, Z) so that the following diagram commutes

1y
V®n U@y X2y @, v —2

1/7®N /

W@z X
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The morphisms of <#(3) are triples (@, @, @.): (X, Y, Z, f, g, h) —
X, Y, Z', f, 9, 1) where a, e Homg, (X, X'), a,€ Homg, (Y, Y') and
a, € Homg, (Z, Z') so that the following diagrams commute:

U®nX 1Y V@Y - 2 W@unX— 2

(1.9 1U®011l 021 , 1V®azl asl , 1W®all asl
U@n X' 15 Y V@,V -2 WX 2z
We get

(1.10) THEOREM. Let X be a 7ring of the form (1.6). The
categories Mod (2) and <& () are equivalent.

Proof. The reader may either apply Theorem (0.2) twice, to

R 0 (R1 0) 0
< ! ) and then to [\U R,/ 0 ] or directly prove the result in
U R, (W, V) R,

fashion analogous to Theorem (1.5). O

The remainder of this paper is devoted to showing that under
suitable hypothesis, the study of Mod (I") where I" is of form (0.3)
may be reduced to the study of Mod (¥) for some “simpler” ring
[of the form (1.6)]. We call such results “separation” theorems for
obvious reasons.

2. The main separation result. (2.1) Let I be a ring of form
(0.3). For the remainder of the paper we study Mod (I") under the
assumption that @: M @,, N — 4, is the zero map. Note that if ¢ =0
then property (1.2) is equivalent to the image of 4 is contained in
(ann M,) N (ann, N) where ann M, (resp. ann, N) denotes the right
(resp. left) annihilator of M(resp. N) in 4,.

In this section we will be concerned with the case where 4, is
a left Artin ring with Jacobson radical » where 72 = 0. Before
proceeding we state the following basic result:

(2.2) THEOREM. [1, §4]. Let A be a left Artin ring with Jacobson
radical » so that r* = 0. Let Gr(d/r, r) be the category whose objects
are triples (X,Y,f) where X,Y e Mod (4, r) and fe Hom,, (r @,. X,Y)
18 a surjection. The morphisms of Gr(d/r/r) are pairs of maps
(o, 0): (X, Y, f)— (X", Y', f') where a,c¢Hom , (X, X") and a,€
Hom,, (Y, Y’) so that the following diagram commutes

r®u, X 1o ¥

17' ® all laz

”'®A/,X’ Y.
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Let H:Mod (4) — Gr(Afr, ) be the functor defined by H(A) =
(AfrA, rA, f,) where fi:r@u, AlrA —rA is induced from the multi-
plication map r @, A —rA. Then H is representation equivalence;
that s, H 1s full and dense and A € Mod (4) s indecomposable if and
only 1if H(A) is indecomposable in Gr(dlr, r). O

For the remainder of this section we assume that
(2.83) (a) 4, 1is a left Artin ring with Jacobson radical denoted 7.
(b) =0
() M, is a right semisimple /4,-module
(d) Ny is a left semisimple 4,-module
(e) the image of + is contained in 7.
Note that under the above conditions (2.1) is satisfied. Let T
be the ring

4 0 0
(2.4) (M 4, 0 )
r N 4

where 4 = A,/r and T has multiplication given by

d 0 0\ /d 0 O d.d; 0 0
(m py 0>-<m’ A 0) = (md{ + am’ AN 0
x n df \&' n d; xd; + Pin @ m') + da’ n\N + don’ dydy/ .
We are now in a position to state and prove the main result of

this section.

(2.5) THEOREM. Let I be a ring of the form (0.3) and suppose
@ 1. the zero map. Suppose further that conditions (2.3) are satisfied.
Let T be the ring given by (2.4). There is a canonical additive
Sfunctor F:Mod (I') — Mod (T') which has the following properties:

(1) 2f AeMod (I') then F(A) =0 A =0.

(2) for all but a finite number of nonisomorphic indecomposa-
ble T-modules, if B 18 an indecomposable T-module then there exists
a '-module A so that F(A) = B as T-modules.

(8) if A, A’eMod (I') then F(A) = F(A") as T-modules if and
only if A= A’ as I'-modules.

(4) if AeMod (I") then F(A) is indecomposable as a T-module
if and only if A is indecomposable as a I'-module.

Proof. We identify Mod (I") with .7 (I") and Mod (T') with <& (T).
Define the functor F: Mod (I") — Mod (T') as follows. Let (X, 7Y, f, 9) €
Mod (I"). Set X' = X/rX and X" = image of g. Let »: X — X' be
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the canonical surjection. Let X' = p(X") and X, = X'/X"”. Let
X, = (image of g) + X, (viewing image of g and X as submodules
of X). First we note that X, P X, =0= X =0. Next we show
that f induces a A,-homomorphism f: M@, X, —Y. Since M, is
semisimple, f induces a /;-homomorphism f: M@,X' —Y. Now,
since @ = 0 it follows by (1.3) that f(M @, (image of g)) =0. We
get the following commutative diagram

ol ) o
M@, (image of 9) "L y @, x- 2Ly @, X' —T~MQ, X,

T VT

Y=<~

Thus there exists a unique map fi: M@, X, —Y making the above
diagram commute. Next, it is clear that g induces a map: g: N@,,
Y — X, since (image of g) £ X,. Now we have a 4,-homomorphism
given by multiplication » @, X — rX. This induces a 4-homomor-
phism A':r @, X' —rX. We claim A(r@,X")=0. We have a
split exact sequence

0—rXNimg img X" 0, where img = image of g .

This sequence is split since im g < left socle of X which follows
from the assumption that 4,N is a semisimple 4,-module. Thus the
multiplication map » @, im ¢ — X is zero. From this it follows that
Wr@s;X")=0. Since 0-X"—->X'">X,—0 is a split exact
sequence (X’ is a semisimple 4,-module), h'(r @, X"") = 0 and »X £ X,,
we get a canonically induced map k,: » @, X, — X,. It can be verified,
using (1.8) that the following diagram commutes

1

N®,12M®41 X1 @S N®/’2 Y 91 X2

) ®N‘ /

"'@A X,

We define FI(X, Y, f,9) = (X, Y, X,, 13, 95, hy).

We define F' on morphisms as follows. If (@, a,): (X, 7Y, f, 9) —
(X', Y', f',g) is a I'-morphism then a(img)Zimg by (1.4),
a,(rX) S rX’ and hence a,(x,) £ X,. Thus we get an induced map
0;: X, — X,. Since «, induces a map &;: X/rX — X'/rX’ so that
a(in grXNimg) S img/rX'Nimg’ we get an induced map
0: X, — X/!. We set Fla, a,) = (0, a,, §,). Again the reader can
verify that (9, a,, 8,) is a T-morphism.

We now verify properties (1)-(4). Property (1) holds since
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XPX,=0=X=0. Wenow verify (2). Let B=(X, Y, Z, f,g,h) ¢
Mod (T). If im (g) + im (k) # Z, since 4 is semisimple we have B =
(X,Y, img+ imh,f ¢, k)H 0,0, Zimg + imh, 0,0,0) where ¢’
and A’ are induced from g and A. The semisimplicity of 4 implies
there are only a finite number of nonisomorphic indecomposable T-
modules of the form (0,0, Z, 0,0, 0). Hence we may assume B has
the property that Z = im (¢) + im (h). We write Z = Z, D Z, where
Z, =imh. We construct A = (U, V, u, v) e Mod (I") as follows. Let
w: P— X be the A4,-projective cover of X. Then since r@, X =
r @ P/rP=r@, P=rP we have the following exact sequence of
A-modules:

T

0—r@X P X 0.
4

Let U’ be the pushout of

’r@X——»P
0|
Z,=im (h) .

Finallyset U=U"@ Z, and V =Y. Note that »U =rU" = Z,
and UrU=XP Z,. We define u: M@,U—V to be the composition
MR LU MQ,U/rU—-MQ,X—V. We define v: NQ,, V—U by
N®,V=NQ®,Y%im(g) S 2P 2 cU'@Z = U. Using (4.3) one
immediately verifies that A = (U, V, u, v) e Mod (I"). We now claim
F(A) = B as T-modules. But im(v) +*U=2,P Z, and Z, =rU.
Thus im (v) » U — U/rU has image Z, and so F(4) = (X, V, Z, P
Z,, Uy, ¥y, Uy). It is a straightforward calculation to show that
F(A) = B as T-modules.

Next we prove property (4). Let A=(X, 7Y, f,9)eMod (). We
let F(A) = (X, Y, X,, f,, 9, h.) as above. We assme F(A) decomposes:

(2.6) F(4)=(X, Y, X, fl, o ) DX, Y, X5, f7, 65, ),

where X, = XI@ X!, for i = 1,2, Y =Y' @Y?, f, = ({;J?) for i =1,2
and g, = (§ g‘i). Set V,=imh for i =1,2. Now for i=1,2,
0 NQ@.,, Yi—>lX;' and V, < X;. Sinceimg, + imh, = X,, fori =1, 2,
imgét +imhi = X;. Let Z, S X} so that Xj =V, P Z, and im g =
(imgin V) @ (imgi N Z;). This is possible since Xy is a semisimple
d-module. Finally,let V=V, V,and Z=2Z,PZ,. Then V =im#h,.
Now X, £ X. In particular, Z < X. By choice of Z, we have that
Z is a semisimple A-module and Z & im (h,). But im (&) = rX, by
construction of h,. Thus X = U Z and we have the following
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easily verified properties:

@ *rU=imh, =V

by UNrU=X

(¢) the map h;:7r@®,X,— V is induced from the multiplication
map 7@, U—rU. We now apply Theorem (2.2). We see that
H(U) = (X, V, h). The decomposition (2.6) yields a decomposition

H(U) = (X}, V,, ) & (X, V,, hi) .

By Theorem (2.2), we get a decomposition U = U, QU, so that H(U,) =
(XY, Vi, hY) for i =1,2. We now leave it to the reader to check
that (U, Z, 7Y, /,9)DU.DPZ, Y, 1% ¢*) is a decomposition of
(X, 7Y, f,9) where f=M@, (U, PZ)—Y, is defined by the com-
position

M@ (U@ 2) 0 M@ U~ M@ X! 1 Y,

Ay 4

and ¢" NQ®, Y, > U, @D Z, is defined by the composition

NQY.-v.@z =109z "%y gz, .

Finally, we sketch a proof of property (3). Let A, A’eMod (I)
so that F(A) = F(A') as T-modules. Let A=(X,Y,f,9), A =
XY 1.9, F(A) = (X,,Y,X,,f1,9:, f.) and F(4A") = (X/,Y', X;,f1,9., f2)-
Let (a, a,, a,): F(A) — F(A') be a T-isomorphism. As in the proof
of property (4), one may write X =U @ Z where Z is a semisimple
A-module, f(M@, Z) =0 and Z< img. Similarly X'=U'§Z'.
Using the functor H: Mod (4,) — Gr(4, r), as in (4), it is not difficult
to show (a, a,, @;) induces an isomorphism H(U) — H(U’). This lifts
to an isomorphism U-— U’ by (2.2). Furthermore, by appropriate
choice of Z’, (a, a,, a,) induces an isomorphism Z — Z’. Thus we
get a A,-isomorphism a: U Z — U' P Z'. Lastly, one verifies that
(a, a,): A — A’ is a I'-isomorphism. []

We say a ring R is of (left) finite representation type if there
are only a finite number of nonisomorphic indecomposable finitely
generated left R-modules. If R is not of finite representation type
we say R is of imfinite representation type. As an immediate con-
sequence of Theorem (2.5) we get

(2.7) TuEOREM. Let I' = (ﬁl fl" ) be such that @ =0 and (2.3)

holds. Then I is of finite representation type if and only if T =
AJr 0 0

(M 4, 0 > 18 of finite representation type, where r = Jacobson
r N 4)r

radical of A,. Ol
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This result has many useful applications. For, assume the
hypothesis of (2.5) hold. In general, I' need not have finite left
global dimension. But by [9, §4], T has finite left global dimension
if 4, does. See example (5.3). If, for example, 4, is a semisimple
ring then T is a factor ring of a left hereditary ring.

For the remainder of this section, we deal with the case where
A4, is semisimple and @ = 0. We show that we automatically get a
separation result.

(2.8) LEMMA. Under the above hypothesis, the map +: N @y,
M — A, 1s the zero map.

Proof. By (2.1), the image of v = I is contained in ann M, N
ann, N. But I* = Iim+. Thus I' = Iy(N@,, M) =0. Since I is a

two-sided ideal in a semisimple ring we conclude I = 0. O

It now follows that properties (a)-(e) of (2.3) are automatically
satisfied. Furthermore, since the Jacobson radical of 4, is 0, T is

the ring
4 0 0
(M 4, 0 )
0 N 4

with the obvious multiplication.
Thus, Theorem (2.5) becomes:

(2.9) TrEoREM. Let I' be the ring (%5 ol ) with =0 and 4,
2
4 0 0
a semisimple ring. Let T be the ring | M A, 0). There 1is an
0 N 4,

additive functor F: Mod (I") — Mod (T') so that the following properties
hold:

(1) +f AeMod (I') then F(A)=0=A =0

(2) for all but a finite number of monisomorphic indecomposa-
ble T-modules, tf B is an indecomposable T-module, there is an I'-
module A so that B ~ F(A) as T-modules.

(8) af A, A’eMod (I') then F(A) = F(A’) as T-modules if and
only if A= A" as I'-modules.

(4) if AeMod (I") then F(A) is an indecomposable T-module if
and only if A is an indecomposable I'-module. !

(2.10) COROLLARY. Keeping the hypothesis of (2.9). I is of
finite representation type = T is of finite representation type. O
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3. The general case with @ = 0. For the remainder of this
section we keep the following notations:

r=(ﬁ,_1,f1\2’) with @ = 0

I = image of

m = ann M,

n = anny N.

(3.1) LEMMA. We have that
@ Im=0
(b) =I=0.

Proof. We only prove (a).
Im = (N@., M)m =0 . O
Let

and

A/m 0 0
Tzz(M p o)
I N A4/n

with the obvious ring structures (see §2). We get

(3.2) PROPOSITION. For i =1,2 there are canonical additive
Junctors G;: Mod (I"') — Mod (T,).

Proof. We identify Mod (I") with .o~ (I") and for ¢ = 1, 2, Mod (T)
with <Z(T;). Since the proof is analogous with the first part of
Theorem (2.5) we only define the functors on objects and leave the
rest to the reader. For ¢ = 1 define G;: Mod (I") — Mod (T,) as follows:
if A=(X, Y, f, 9)eMod(I") let G,(4) =(X, Y, im(g), f, g, h) where h is
induced from the multiplication map I @, X — X. For i = 2, define
G,: Mod (I') > Mod (T,) as follows: if A= (X,Y,f, g9)eMod (") let
Gy(A) = (X)mX, Y, im (g), f, g, h), where f is induced from f and A
is induced from the multiplication map /@, X — X. Note nim (g) =0
since nim (g) = ng(N @4, Y). |

Unfortunately, neither of these functors seem to yield much
information in general. But the following result shows that when
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4 = 0 one can say something. Note when o =0, T, is the ring

4 0 0
(M 4, 0 ) .
0 N 4,

A4, N .

(3.3) THEOREM. Let I' = (%} with ® =0 and =0. Let

A4 0 0 (3 1. v

T, = J(l)l .31\27 0 ). There is a functor K:Mod (T) — Mod (I") so that
A,

if BeMod (T,), B is a direct summand of G, K(B). In particular,

iof I' is of finite representation type then so is T,.

Proof. We identify Mod (I") with .oz (I") and Mod (T',) with <& (T)).
Define K: Mod (T',) — Mod (I") as follows: if B = (X, Y, Z,f,9) € Mod (T))
let KB)=(X@ZY, f* g*) where f*MQ XPZ)—Y by
frm® (@, 2) =f(mQ@2) and g*: N@., Y —>XDZ by g*(n Q) =
0, g(n §<) ). Now let a = (a, a,, a;): 0B — G,K(B) be defined by

alzx—‘?)—»X@z, Y2 Y, and a: Z— X@ Z. Then a is a T-
monomorphism which is split by g8 = (8, B, 8;): G.K(B) — B where
e X® 2% X, 6, Y2y and g Xx@2z%%Z Thus B is a
direct summand of G,K(B). The last part of the theorem follows
immediately. O

By example (4.2) we see that I" may be of infinite representation
type and yet T, is of finite representation. We conclude this section
by giving an application of Theorem (3.3).

(3.4) THEOREM. Let I' — (j‘w ) be such that  =0. Then if
2
I is of finite representation type so is the ring

AJI 0 0
T3=(M A, 0).
0 N AJI

Proof. Since IZ mNnby (2.1) M is a right 4,/I-module and N
is a left 4,/I-module. Let J be the two-sided ideal in I" given by
J = ({, 8) Note J* = 0 since I* = IW(NQ@ M) = 0. Let I = I'/J.
Then if I' is of finite representation type so is I'. Furthermore,
r= (%I Z ) with &, 4 the maps induced from @ and 4 in I". But
@=0=3=0. Since I =im(y), 4 =0. The result now follows
from Theorem (3.3). O
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Example (4.2) shows that the converse is not true.

4. Applications and examples. We begin with an application
of Theorem (2.9).

(4.1) Let 2 be a left Artin ring and let P be a left projective
ideal in 2 such that

(a) End, (P) is a semisimple ring

(b) if @ and @ are indecomposable projective left 2-modules
and f: Q@ — @ is a nonzero 2-morphism then f factors through P <
either @ or @’ is isomorphic to a direct summand of P.

Then 2 is of left finite representation type if and only if the
ring

End, (P) 0 0
Y = |Hom, (P, P*) End, (P*) 0
0 Hom, (P*, P) End, (P)

is of finite representation type where P P* is a finitely generated
projective generator for Q2 such that no direct summand of P* is
isomorphic to a direct summand of P.

Proof. By the Morita theorems, Mod (2) is equivalent to
Mod (End, (P  P*)°?) where R°? denotes the opposite ring of R.

w _ (End, (P) Hom, (P, P*) . .
N/ZWNEndg (P P* = (Homg,, (P*, P) E!;ld,, (P*))' Writing this as

M /1> we see that property (a) implies 4, is a semisimple ring and
2

property (b) implies that the multiplication map M @, N — 4, is zero.
Finally noting that a left Artin ring is of finite representation type
implies that the ring is right Artin and of finite representation
type, we can see the result follows from Theorem (2.9). ™

(4.2) We now give an example which verifies a number of

remarks made in earlier sections.
A, N

Let I' = <M %) where A, = 4, = X)(X), k is a field. Let
M = N =k where k is the simple k[X]/(X?-bimodule. We write
elements in k[ X]/(X?) as a + bX where a,bck. We define multipli-
cation in I" by
<a+bx e )_(a’+b’x e ) _ {aa’+(ab +a'b)x ae' +ec’ )
f ct+dx frod+dx) ( fa'+ef! e+ (cd'+d)X) "
Note that the maps @: M@ N — 4, and «: NQ M — /4, are both

zero. Now I’ has Jacobson radical <ik &) and its square is zero.

Thus applying [5, appendix], since the separated quiver of I is
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<

0 0
I’ is of infinite representation type. We now consider 7, of §4.
Namely

4 0 0

T, = (M A4 0) .
0 N 4

The ring T, has radical square zero but its separated quiver is

NN

Hence T, is of finite representation type [5, appendix] and we conclude
that the converse of Theorem (3.3) does not hold. We now apply
the results of §2. Let T be the ring

k 0 0
(lc X)X o)
k k k

as in §2. Its separated quiver is

RSN

and hence is of infinite representation type (as is also shown by
Theorem (2.5)).

(4.83) We conclude with a final example. Let 4, = (I,IZ Ilfz) with

p=0andy =0. Let4, =k Fori=1,21let S, be the simple left
A,-module given by S, = (g) and S, = (2) [Note that by Theorem

(2.9), the study of Mod (4,) reduces to the study of Mod (T') where

E 0 0
T=<k k 0)
0 k& k

with the obvious multiplication.] Let M = N = k where M, = (0, k)
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and , N = ({‘;’) Now consider the ring I' = <A1 N); i.e.,

M 4,
k k &
(k k 0)
0 &k &

with multiplication given by

a, a, a\ e a; a a,a; a,a; + ab; + a,e, a.a; + a.c;
b, b, 0){b: b, O] =|b.a; + bb. bas + b.b; 0
0 ¢ ¢/ \0 ¢ c 0 ¢.b; + csc C4Cs

We note that : M@ , N — 4, is the zero map. One easily verifies
that 4, has radical square zero and that conditions (2.3) are satisfied.
Thus Theorem (2.5) implies that the study of Mod (I") can be achieved
by studying Mod (T') where T is the ring

E 0 0 0 O
0 00O
0 k 0O
0k kE kO
k0 0 0 &k

We show

(i) I has infinite left global dimension

(ii) I is of radical cubed zero

(iii) T is an hereditary Artin algebra (i.e., gl. dim. T =1)
(iv) T is of finite representation type

(v) I is of finite representation type.

Nk
First we show (i). Consider the simple I'-module (0) =8S.

0
<That is, S= S, as 4,-modules and <(J)W 51\7) S = 0.) Let 0 - K—
2

P—S—0 be an exact sequence of I'-modules with P— S the I'-

0
projective cover of S. Then K= § = (k> where S’ is the simple

0
I'-module which as a 4-module is isomorphic to S, and <(])ll jV)S’ = 0.
2.

Now let 0 > L —-Q — S —0 be an exact sequence of I-modules so
that @ — S’ is the I'-projective cover of S’. Then S is a direct
summand of L and we conclude that the left projective dimension
of S is infinite. Properties (ii) and (iii) are immediate. Applying
[5, appendix], since the quiver of T is

/-’————“\
0 00— 0—90 0
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we conclude that T is of finite representation type. Property (v)
follows from (2.7). It is worthwhile noting that without Theorems
(2.5) and (2.7) there is no known method of attacking the question
of whether or not Artin rings of radical cubed zero are of finite
representation type.
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