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A MODULI REPRESENTATION FOR THE CLASSIFICATION
OF TWISTED TENSOR PRODUCTS

ELYAHU KATZ

A differential Lie algebra L(B, A) is associated to a differ-
ential graded coalgebra B and differential graded algebra
A. Taking the quotient of the “‘integrable’ elements I(B, A)
of L(B, A by the action of L(B, A)° via the exponential
map exp, we get a moduli space E(B, A)=I(B, A)/exp L(B, A)°
which represents the equivalence classes of (B, A) twisted
tensor products. For computations we may apply methods of
algebraic geometry. This is applied to find an approximation
for the cardinality of equivalence classes of Serre fibrations.

1. Introduction. To classify (B, A) twisted tensor products,
we introduce a differential graded Lie algebra L(B, A), which con-
sists of the (B, A) twisting cochains. The equivalence classes of
twisted tensor products turn out to be isomorphic to the orbit space
of the integrable elements in L(B, A) by conjugation with the auto-
morphisms of B® A which preserve the extended module and
comodule structures of B® A. So far all this can be done over
any commutative ring. To apply methods of algebraic geometry,
we have to restrict our attention to field coefficients of characteristic 0.

In §2 we prove that the bundles are the skeleton of the
category of twisted tensor products, and also motivate the construec-
tion of the Lie algebra in §3 and the classification of twisted
tensor products in §4. In §5 we introduce the classifying moduli
space and §6 is devoted to stating some relevant algebraic geometry
theorems and addaptations to our situation. The last two sections
concern the approximation of fibrations by twisted tensor produects.
The basic references for this paper are: Schlessinger-Stasheff [6]
and Gugenheim [3].

I would like to thank Professor James Stasheff for introducing
me to methods in algebraic topology which involve Lie algebras and
Algebraic Geometry, for suggesting the problem and for going over
the first draft of this paper. I am indebted to Professor Michael
Schlessinger for useful discussions on Algebraic Geometry. I would
like also to thank Professor Jefferey Caruso for useful discussions
with regard to this paper.

2. The relation between bundles and twisted tensor products.
In this section we consider principal bundles and twisted tensor
products and relate them to each other in a way that was done by
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Gugenheim [3]. While there mainly the structure of the bundles
and the twisted tensor products was considered, here we also focus
on the morphisms. We prove that the bundles are the skeleton of
the category of twisted tensor products.

We denote by .& the category of connected differential graded
augmented algebras, and by <# the category of connected differ-
ential graded augmented coalgebras.

DEFINITION 1. We denote by <7 #.%7 the category of principal
bundles. An object (M, D, ¢, 4) is a connected differential graded
module such that ignoring differentials it is B® A with extended
right A module structure ¢ and extended left B comodule structure
4. We also require the following diagram to commute:

MRAB B M® A

(1) ol 11®¢
M L.BRM.
We simplify this notation and call it a (B, A) bundle M.

A morphism in the category (F, 8, a): M — M’ has to make the
following diagrams commutative:

MRABS A
(2) ﬂ V
F

M = M,

v .

(3) "1 V'
‘8®F 14 4
BMuMZE oM,

where F: M — M’ is a differential graded map, e €. and g€ .<Z.

Next we introduce the elements which make up the category
of twisted tensor products.

Let f:B— A’ be a graded linear function of degree k. We
define FN:BQA—B Q@A by FN=1Q® B FQ @ a). This
is defined for a¢e.o and ge.<#. Of course the resulting map /N
is also of degree k. Note that we use here ¢ and + as the algebra
structure of A and the coalgebra structure of B respectively. The
context will always make it possible to distinguish this from the
module and comodule structures of a (B, A) bundle.

ProposiTION 1. ([3)) Let (M, D)e Z_#.%7. Then D = D, + 0,
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where Dy =d@®@1+1Rd, v is a degree —1 linear map 2: B— A
defined by * = (e @ 1)DA KR ), ¢ and 7 are the unit and counit of
A and B respectively. B A with this differential will be denoted
by B, A.

PROPOSITION 2. Let (F,B,a):M—M" be a morphism in the
category F.#.7. Then F=pRQa+ f/'N =N where f'=
ERDEF —BRXAALXN), and f= (¢ QHF1EKR ).

REMARKS 1. The way we prove Proposition 2 (see below) can
be modified to a proof of Proposition 1 which was originally proved
differently.

2. A slight modification of the proof of Proposition 2 also
proves the following: Let M, M’ be elements of .22 2Z.57 and
G:M—-M a map of degree k=+0, —1, such that when F is
replaced with G in diagrams (2) and (3) we obtain commutativity.
Then we have G = gn, with ¢ = (¢ X 1)G1 Q7). Precisely maps
of this form, gn, will be used in the sequel to form the Lie algebra
we are interested in.

Proof of Proposition 2. Consider the following commutative

diagram.
BRARA®S B Q@ A'Q A
(4) 1®¢l 184’
BRA . rea
Applying commutativity on elements of the form 1® 1R a, b &R
1®a, bR a, Q a, we obtain
F(a) = a(a), F(b® a) = Fb)a(a), F(b R a,a,) = F(bQ a)a(a,) .

We can restrict the diagram:

BRA . B®A
(5) #@11 lw@
rg®F ’ ’ 14
BRBRAZLB OB ® A,
to the following one:
B L poa
(6) s |rer

BB BB A .
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The latter diagram translates to the fact, that F restricted to B
(which we also denote by F') is a comodule map from the B como-
dule B to the extended B’ comodule B’® A’. Because of the
adjointness of the functors V—— |B® ( ), the forgetful and the
extended comodule functors, we get:

F=@®Hy=FfN:B— B @A

where f= (" Q1F:B— A" [4]. Since F(1) =1 we get f(1)=1.
Denote f'(b) = f(b) for |b| = 1, and f'(1) = 0(/b| = degree b). Then

F=pQa+ f'n.

Now if we give B® A the filtration induced by the degree in
B, f'N obviously reduces filtration. Thus if both @« and g are 1—-1
or onto, then F is 1 — 1 or onto respectively. In particular if both
a and B are isomorphisms so is F. The original requirements for
F to be a morphism in <& #.97 provide the commutativity of the
following two diagrams, which makes it clear that F~' is also a
morphism in <& _#Z.97"

F-'®Q a1

MRA T2 wea
(7) 8| 1«5'
0’ F—l
M I W
M M
(8) vl jvﬂ
BM B pom.

Using Proposition 2 for F !, there exists a degree 0 linear map
9: B’ — A such that F™' = gn. Composition gives us the following
equalities:

1=F*'F=gnfn.
Similarly 1 = FF* = fngn. If a=1, =1 the above reduces to:
GufH)Nn =1 or gUf=&.

And gU f = fUg is now obvious. Summarizing the above we get:

PROPOSITION 3. Let (F, 3, a): M — M’ be morphism in B #.7.
If a, B are isomorphisms then F ' exists and is a morphism in
B If a=1, =1, F=fN and F'=gN then gU f =&
and fUg =gUf.
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It is now natural to introduce the following notation:

DEFINITION 2. (i) Let T.T. denote the category whose objects
are of the form B @ A and whose morphism are F'=(g, o, f): BQA—
B'® A’ such that F' = fN where 4, ac.&, B, 3<% and f: B— A’
is a degree 0 linear map. (ii) Let D.T.T. denote the above cate-
gory such that objects possess a differential D = D, + £\ where D,
is the usual differential induced from the differential of A and B
and xz: B— A is a degree —1 linear map. We already denoted this
object by B@®, A. The morphisms in the category are those of
T.T. with the extra requirement that they commute with the
differentials.

REMARK 3. The requirement for D =D, + xN to be a differ-
ential is equivalent to

de +xd +xUx=0.

If B,a f):BQR,A—>B' Q, A" is a map in D.T.T. then f has to
satisfy the equation:

df —fd=fUax — '8 U S,

We have established in this section:

THEOREM 1. The category of bundles Z_#.57 is the skeleton of
the category of twisted temsor products D.T.T.

3. A Lie algebra for a bundle. By Remark 2 it is not hard
to be convinced that all maps of degree k, which respect the strue-
ture of the objects in &Z #Z.%7 i.e., make diagrams (2) and (3) com-
mutative, are precisely the maps of the form z(, where z is a
linear map of degree k. We exploit these functions in our const-
ruction of a differential algebra from which we obtain the associated
desired Lie algebra.

Let Be &, Ae.v

Hom* (B, A) = {all linear maps of degree k},
and
LB, A ={zN|reHom™* (B, A)} keZ.

We define multiplication in L as composition of maps, which pro-
vides us with an associative algebra structure with unit, because
composition turns out to be the cup product of the defining linear



408 ELYAHU KATZ

maps:
T,NT, N = <T2UT1)O .

The tensor product differential D, of B & A induces a natural differ-
ential on L, and makes it into a differential graded algebra, where:

o) =[Dy, tN] =z — (=DPd)n |z|=k.

It is straight forward to check that 6°=0 and that it is a derivation.

We concentrate on the differential Lie algebra associated with
the above algebra having in mind applications of algebraic geometry
techniques. The multiplication expressed explicitly is:

[zn,7N]l=CU — (=¥’ U7)N ,

where |t =k |7'| = 1. Because of the naturality of the definition
we have:

THEOREM 2. There is a functor from <& X .7 to the category
of differential graded Lie algebras, contravariant in the first varia-
ble and covariant in the second, which assigns to the object (B, A)
the differential Lie algebra L(B, A). If g:B’'—~Be<#, a: A—
A'e.o7, them we get a differential Lie algebra homomorphism
L(B, A)—» L(B’, A") defined by TN — atBN.

4, Classification of bundles and twisted tensor products.

DEFINITION 3. (i) Two (B, A) bundles M and M’ are equi-
valent if there is a (B, A) boundle isomorphism F: M — M’ in
Bt S

(ii) Two twisted tensor products B®,A and BQ, A are
equivalent if there is a map 1+ fN: BQ.,A—BQ., AcD.T.T.

Using the information given by Theorem 1 we get that the
equivalence classes of (B, A) bundles and equivalence classes of
twisted tensor products of the form B®@,A with B and A fixed,
are isomorphic. Thus we will be concerned with twisted tensor
products. We show next that maps of the form F =1 + N f which
are morphisms in T.T. act on the elements of D.T.T. under consi-
deration, and form the desired equivalence classes.

Let F=14+ fn, F'=G=1+¢gn and D= D, + zN a differ-
ential. We prove that GDF is also a differential of BX® A, and
turns B® A into an element of D.T.T.. We also find the explicit
expression of GDF.

Consider the diagram:
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BRAR A B 4

FR1 F

(8) 1®1Qd+DR1 D

BRAR A -2
GR1 G

BRARQAZSBRA .

Each of the small rectangles commutes, which leads to the com-
mutativity of the outer rectangle. This and an analogous argument
provides us with the following commutative diagrams:

BRAR A BR A

(9) GDF®1+1®1®dl lg DF
BRAR A, B A
B A BoB® A

(10) GDFJ( l1®GDF+d®1®1

BRAY BRBRA.
Thus (BQR A, GDF) is an element of <7 .o/, Applying Proposi-
tion 1 we get that GDF = D, + 2'n. We compute 2’ in terms of
2, f and ¢:

GDF =1+ gn)D, +2n)A + fN)
=Dy +@+ocUf+gUaxs+gUzcUf+df +9d+gdU f
+gudf)n .

Note that this equivalence relation is actually not made explicit,
since g is not explicit. We overcome this in the next section via
the “log” function. We have established:

THEOREM 3. The collection of isomorphisms F =1+ N f):
BRA—->BXAcT.T. acts on the collection of objects (B A.
D=D,+xn)eD.T.T. via conjugation of the differential, i.e.,
(BRA,D)— (BQA, F''DF). The orbits of this action form the
equivalence classes of (B, A) twisted temsor products.

REMARK 4. Note that if D in the above discussion is replaced
by N with ceHom* (B, A) then from similar considerations and
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Remark 2 above we get that G(zN)F is also of the form z'N, ' ¢
Hom* (B, A).

5. The classifying moduli space of twisted tensor products.
At this point the connection between the Lie algebra L(B, A),
defined in §3, and the classification of (B, A) bundles or (B, A)
twisted tensor products does not seem remote any more. Next we
clarify this relation.

As already pointed out in §2, D, + xN is a differential in D.T.T.
only if x is integrable, or more explicitly:

DEFINITION 4. The variety of elements of L(B, A)' which corres-
pond to differentials of elements in D.T.T. will be denoted by:

IB, A) = {xn e L(B, A} |[D,, ] + %[xm, 2N = 0} .

Any fN e€L(B, A) applied to an element b @ acB® A reduces
the B-degree filtration of the element obtained, and makes the
action of L(B, A) on L(B, A) complete. This justifies the following
definitions on elements of L(B, A)’ and morphisms BQA—->BRAec
T.T. as the summations turn out to be finite when applied on ele-
ments of B® A. We should also point out that at this stage we
have to restrict ourselves to a characteristic 0 field, since next we
are going to employ fractions.

DeriNITION 5. (i) Let fN € L(B, A)’. Then
exp(fn) = SO —14 50+ Lrunn+ -
+__]'T(fu...uf)m 4.,
n.

(ii) Let F=1+ fn: BA—>B® AeT.T.. Then

log (1+ £ = LD = pa —2runn + -

i—l-—(fU"-Uf)ﬂ 4+ e,
"

REMARK 5. We make the following observations about the
functions just defined:

(i) exp(fN) is an isomorphism: BR A —BQ AecT.T.

(ii) log (1 + fnN)eL’(B, A)

(iii) exp(log(1 + fN) =14+ N
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(iv) log(exp(fN)) = fnN
(v) exp((—f)N)=exp(—fN)=exp(fN)™"
Let fN e€L(B, AY. Then direct computation yields the following:

exp[fN, 1D, +2n)= %[fﬂ, ]:E{)o +2N)

= (L), + o5 L1

=exp (fN)D, + xN)exp(—fN).

Note that exp (fN)=F:B® A—>B® A is an isomorphism in
T.T.. Using Theorem 8 and Remark 4 we obtain an operation of
L(B, A on L(B, A) via exp. It is also straight forward to check
that L(B, A)® operates on I(B, A). Since exp is an isomorphism from
the set L(B, A)’ to the set of all morphisms: BQRA—-BRAcT.T.,
we have proved:

THEOREM 4. The set of equivalence classes of (B, A) bundles,
or equivalence classes of (B, A) twisted tensor products is isomorphic
to the moduli space E(B, A) = I(B, A)/exp L(B, A)’, where the action
is via conjugation.

6. Computation of E(B, A). At this stage the computation
of the equivalence classes reduced to calculating a moduli space
associated to a Lie algebra. Thus we can apply algebraic geometry
deformation theory to the later. For the convenience of the reader
we simplify the notation and state some of the relevant theorems
[6].

We denote by L the Lie algebra L(B, A), by I the integrable
elements I(B, A), and by E = E(L) = I/exp L’ the moduli space.

THEOREM A. If f: K— L is a map of differential graded Lie
algebras which are decreasingly filtered, complete and bounded from
above in each degree such that f induces

a monomorphism H*(K)—— H*(L)

an isomorphism H'(K)—— H'(L)
and

an epimorphism H'(K)-—— H(L),

then f induces an isomorphism from E(K) to E(L). Under these
hypotheses we say that K and L are homotopy equivalent in degree 1.

THEOREM B. If dim H'(L) is finite, then E has a representation
E = W/F where:
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(i) W is a formal variety defined by n formal power series
equations fi(x, ---, x,) = 0 where m = dim H'(L) and » = dim H*L).

(ii) FF— W x W is an equivalence relation in which the orbit
of the origin in W is trivial.

(iii) Any wversal I is equivariantly isomorphic to W X Z, where
Z 1is some affine space with trivial equivalence relation.

(iv) If L= H(L) in degree 1, then W 1is the pure quadratic
variety {{ e H'(L)|[I, 1] = 0} and E = W/exp H(L).

The above citation leads us to compute H*(L(B, A)). Define the
following function:

S: L(B, A) —> Hom™* (B, A)

by S(fN) = f for any fN € L(B, A)*. If we examine the associative
algebras of L(B, A) and of Hom™* (B, A), where the laters algebra
structure is the cup product, we realize that S is an algebra homo-
morphism. With the usual differential given to Hom* (B, A4), i.e.,

D(f) =df — (=D*fd |fl=k,

S is also differential. Thus S can be considered as a differential
Lie algebra isomorphism. We have:

HYL(B, A)) = H (Hom™* (B, A)) = H_,(Hom (B, A))
= Hom_, (H(B), H(A)) = (H*(B) ® H,(4))_,

where H,(A), the augmentation ideal is of finite type.

7. Twisted cartesian and tensor products. In this section we
attempt to relate twisted cartesian products to twisted tensor pro-
ducts. Whatever we achieve here, will be used in the next section
to connect the classification of twisted cartesian products or actually
principal fibrations to the classification of twisted tensor products.

To make this paper self contained, we recall briefly some con-
cepts from [3]. We use the same notation for both simplicial sets
and maps and their normalized chain complex and chain map respec-
tively.

The simplicial set B x ,A is called a twisted cartesian product
where the base B is a simplicial set, A is a simplicial group and
2: B— A is a degree —1 twisting function. A map F = (g, a, f):
B x ,A—B x , A" defined by F(b, a) = (B(b), f(ba(a)), where a:
A — A’ is a simplicial homomorphism, 8: B— B’ is a simplicial map
and f:B— A’ is a function which keeps F' simplicial. If f is the
constant funection to the unit we denote it by ¢ and say that F is
untwisted. We denote the resulting category by T.C.. Let //: BR
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A—~B»x A fiBXA—>BXA, ¢:Bx A— B x A be the Eilenberg
Zilber theorem maps which satisfy: fF =16V =0, f6 =0, 6 =0
and Ff=1+d¢ + ¢d. Gugenheim defined a functor 7”:T.C.—
D.T.T. by perturbing the E.Z. maps, where T.C'. is T.C. with the
twisted morphisms deleted. For each twisting function z he defined
a twisting cochain which we also denote by 2. The functor 7 is
thus defined by I"(B x ,A)=BQ .4, I''(B, a, &)=L K a. The twisted
E.Z. maps satisfy the original equations and carry the same nota-
tion, i.e., F: B® ,A — B X ,A.

We extend I” to I": T.C. - D.T.T. by keeping ['""(B x ,A) =
(B » ,A) and setting I'"(F) = f'/FI':BQ ., A—B X ., A

To justify our construction we have to show:

(i) I'" is an extension of /.

(11) I'(F) is a morphism in D.T.T..

(iii) I'" is a functor.

(i) is easy to show, (ii) is lengthy and (iii) we are not able to
show. However we take care of this requirement by replacing 1
by 7.

(i) We have to show that /"(8, a,e) = 8@ a. In the con-
struction of the twisted / it was kept natural for untwisted maps,
ie. (8> af=I"(a®B). Thus I'"(B, a, e)=f"(B X afF = fT'(BR«a)=
B & a.

(ii° Let F: B x ,A-»B" x ,A’. Consider the following diagram:

11
-~ Mo
BX.AQA = B& . A
BraA®@A —H A
Qe F@ “i 11«‘ o)
BYA@A —21  pn
J @ T
_ 7
B®AQA B® A

where f¢, is the extended module structure map and f is the com-
position of the appropriate untwisted map /7 and the group multipli-
cation of A:

Bx ARA— B X AXA— B X ,A.

The commutativity of the upper and lower trapezoides is proved in
[3]. The two remaining trapezoides commute by the definition of
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I'". There is left to prove the commutativity of the inner rectangle.
Consider the following diagram:

Bx ARQA-L-Bx AXxA—Bx A
(12) F®al lpm lF
B x AQA LB 5 A'x A —B x A",

The right hand side rectangle commutes trivially. The left hand
side commutes because of the naturality of / in the untwisted case.
Some diagram chaining gives us the commutativity of the outer
rectangle in (11).

Next consider the diagram:

(13)
A,
B®A B®BQ® :A
BXzA 4, B® BX.A
I''(F) F lB@F BQI"(F)
B'X A’ E B'® B'X . A’
f Py 1@%\
B ® A : B ®B QA

where \, is the extended comodule structure map, and )\, is induced
by the diagonal map of B and the appropriate untwisted E.Z. map
f. The commutativity of the exterior rectangle is obtained similarly
to the previous case. We conclude that I'’(F') is a morphism in
B#.7, i.e., can be represented by a morphism in D.T.T.

(iii) In checking if I'” is a functor we find that I'” behaves
well only when one of the morphisms composed is untwisted:

(B, a,F) = f"(8 x )FV = (BQa)f'FV =I"(3, a, e)["(F) ,
I"(F(B, @, 0) = f"F(B x a)f = f"FI'(B® a) = I'""(F)["(, a, €) .

However if F' and F’ are twisted we get:
I'(F'F)= f"F'FV
FII(F’)F’I(F) — fIIFIVIleV

which do not have to coincide. We make some identifications of
morphisms in D.T.T. Let G, &, G, G; be morphisms in D.T.T. and
F; morphisms in T.C.. Define on elementary equivalence by:
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G.fFVfFFG, ~ G.fF,F VG, .

An equivalence G = G’ takes place if there exists a sequence of
elementary equivalences:

G=G~G~- - ~G, =G.

This relation defines a quotient category of D.T.T., which we denote
by ho.D.T.T.. We proved:

THEOREM 5. There exists a functor I'": T.C.—ho.D.T.T. defined
as follows:

I'(Bx,A)=BR,A,
I'(F)=[fFrj,

where [ ]| denotes the equivalence class in ho.D.T.T. of a morphism
of D.T.T..

8. On the classification of fibrations. It is well known that
Serre fibrations can be represented by Kan fibrations and they in
turn to twisted cartesian products [1, 5]. Gugenheim [3] following
Brown [2] associated to the later a twisted tensor product going
first through bundles. There is no loss of generality by treating
only principal objects, as passing to the none principal case involves
just tensoring with the fiber over the group.

We try to use the classification of twisted tensor products for
the classification of principal fibrations via the functor I”, introduced
in the previous section. Observe that the category of principal
fibrations is the skeleton of the category T.C.. Thus the equivalence
classes of (B, A) principal fibrations are isomorphic to the equivalence
classes of (B, A) twisted cartesian products. Thus the equivalence
classes of (B, A) principal fibrations is approximated by the equivalence
classes of the (B, A) bundles in ho.T.T.. This relationship becomes
precise in the following situation:

Consider the (S*, S°® x S°) principal fibrations, over the rationals
@. Using the computations of §6 we get:

H(L) = HL) =0H(L) =Q P,
—— E(S, S8 x 8 =QdQ.

This is compatible with the fact:
T, (B(S* x S%) =n(BS* x BS» =Z® Z .
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