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SUPPLEMENTED MODULES OVER
DEDEKIND DOMAINS

JUTTA HAUSEN

The jβ-module M is said to be supplemented if every sub-
module of M has a minimal supplement. For R a Dedekind
domain, we relate this lattice theoretical condition to direct
decompositions of M9 the smallness of the radical J(M) of
M9 the semi-simplicity and lifting of decompositions of
M/J(M), and the existence of quasi-projective covers. If
M is contained in some JK-module as a small submodule, M
is said to be a small module. The structure of all supple-
mented and all small iέ-modules is determined and it is
shown that, for R local, the smallness of J(M)9 the small-
ness of M9 and M being a supplemented reduced module are
equivalent conditions.

1* Introduction* H. Bass calls a ring R semi-perfect if every
epimorphic image of the J?-module R has a protective cover. In
[2] he proved that R is semiperfect if and only if R/J(R) is semi-
simple and decompositions of R/J(R) can be lifted to R. Erika
Mares generalized this concept to modules [15]. Independently, the
same class of modules was considered by Y. Miyashita [16]. Com-
bining results of [12; 15; 16] we obtain the following theorem. Here,
an i?-module M is called supplemented if, given any submodule N
of M there exists a submodule S of M which is minimal with
respect to the condition that M = N + S [7]. Throughout, J(M)
denotes the Jacobson radical of M.

THEOREM [12; 15; 16]. The following properties of the protec-
tive "module M are equivalent.

(1) Every epimorphic image has a protective cover.
(2) M/J(M) is semi-simple, direct decompositions of MfJ(M)

can be lifted to M, and J(M) is small in M.
(3) M is a direct sum of sum-irreducible modules and J(M)

is small in M.
(4) M is supplemented.
( 5 ) M is amply supplemented.

If, in addition, M is a progenerator, then (l)-(5) are equivalent to
(6) Every M-generated module has a protective cover.

Various parts of this result have been generalized by J. S. Golan
[7], G. Hauger [8], and R. Wisbauer [20]. In particular, Golan has
shown that, for M quasi-projective with small radical, (5) implies
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( 7 ) Every non-small submodule of M contains a non-zero direct
summand of M [7; p. 178, 3.3].

In all these generalizations, however, some type of projectivity
condition was imposed upon M. The purpose of this article is to
drop this restriction and determine how properties (l)-(7) relate to
each other for arbitrary ϋί-modules M.

In order to compensate for not requiring M to be projective,
we let R be a Dedekind domain. Attention will be focused on the
supplemented i?-modules. After establishing their structure (Theorem
4.14) we prove that, for M reduced, properties (3), (4), and (5)
remain equivalent; the other properties need to be modified some-
what, changing from projective covers to quasi-projective covers
and from direct decompositions to weak direct decompositions
(Theorem 4.17). If M is not reduced, (4) is still equivalent to
weakened versions (2) and (3) (Theorem 4.20), but (4) and (5) cease
to be equivalent, thus providing a negative answer to the question
whether supplemented modules need to be amply supplemented.

The material is organized as follows. After a preliminary § 2,
we consider the category of small i?-modules in the sense of Leonard
[14]. In § 3, the structure of small i?-modules is determined
(Theorem 3.6). We show that in some instances the smallness of a
module is equivalent to the smallness of its radical (Proposition 3.7).
The results on small modules are applied to questions concerning the
existence of quasi-projective covers. Section 4 is devoted to supple-
mented modules. We prove that, for R not a field, the iϋ-module
M is supplemented if and only if: (i) for each maximal ideal P of
R, the set MP of all elements of M which are annihilated by a
power of P is a direct sum of a bounded and an artinian submodule;
and (ii) M = φ P MP where the summation ranges over all prime
ideals P of R, and Mo Φ 0 implies R is local and Mo is a direct sum
of finitely many torsion-free modules of rank one (Theorem 4.14).
As a consequence we obtain the fact that the class of supplemented
modules need not be closed with respect to submodules, nor need
it be closed with respect to extensions. We then consider the
relationship between M being supplemented and the other conditions
(l)-(7) listed above.

It is not surprising that the strongest analogy to the projective
case occurs under the assumption that M is reduced. After all, for
R a Dedekind domain, a module M over R is reduced if and only
if, for every submodule N of M, N= J(N) implies N = 0. This
corresponds to Axiom 5 in Eilenberg's definition of a "Perfect
Category" [3; p. 331f]. In essence, a category of modules is "perfect"
if every module in it has a projective cover. It was this terminology
that later motivated H. Bass' nomenclature of perfect and semiper-
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feet rings [2; p. 467].

2* Preliminaries* Throughout, R will be a commutative ring
with identity. All modules are unital left ί?-modules. Notation
and terminology will follow [1] unless explained otherwise. If M is
a module, S <^ M signifies that S is a submodule of M. The Jacobson
radical of M will be denoted by J(M). For I an ideal in R, we let

IM= {ra\rel, aeM} ,

and abbreviate I{x} to Ix if x e M. If, for r e Rf rx = 0 implies
r == 0, then x is a non-torsion element) otherwise, x is said to be a
torsion element. A submodule S of M is small in M, in symbol

if T <; ilί and M = S + T imply T = M. Frequent use will be made
of the fact that homomorphisms map small submodules to small
submodules [1; p. 74, 5.18], and that S' <; S < M implies S' < M.
Also, J(M) is the sum of all small submodules of M [1, p. 120,
9.13].

If C^M, i = 1, 2, such that

M = d + C2 and d Π C, < Co i = 1, 2 ,

we say that M is the weak direct sum of d a n d C2, and write

M = d θ C2

to denote this fact. The Ct are called wβαfc direct summands of
Λf. It will follow from 4.1 that M = d ΘIF d if and only if d and
C2 are minimal supplements of each other: a minimal supplement
(in M) of iSΓ g M is a submodule S of If such that (i) M = iV + S,
and (ii) Λf ^ ΛΓ + S' for all S' S S. If every submodule of M has
a minimal supplement in M, then ikf is said to be supplemented; M
is amply supplemented if, given submodules N and i\Γ of M with
M = N -\- N', there exists a minimal supplement S of JV in Λf such
that S ^ iVr. Thus, M is amply supplemented if and only if M =
N+ Nr implies M = C®w C for some C ^ N, C <, Nr.

For the most part, R will be a Dedekind domain. i2 is said to
be proper if R is not a field. Throughout, K will denote the
quotient field of R, and P is the set of all non-zero prime ideals of
R. The relevant facts on modules over Dedekind domains can be
found in Kaplansky's paper [9]. We summarize: for each PeP, let
MP denote the set of all x e M such that Pnx = 0 for some integer
n ^ 0, and let
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Rp = {rs"1 eK\r,seR,s£P}

be the localization of R at P. Then MP is a submodule of M, and
MP can be regarded as a module over RP. Since i?P is a discrete
valuation ring, hence, a principal ideal domain, the theory of
Abelian groups as developed in [10] applies [10; p. 36]. If T denotes
the torsion submodule of M, then

T = 0 MP ,
PeP

and MjT is torsion-free. Every torsion free jB-module NφO con-
tains submodules F and S such that F is free, N/F is torsion, and
N/S is isomorphic to a non-zero submodule of the J?-module K. Since
K/R is torsion,

KjR =
P e P

For PeP, (K/R)P is called ίfee module of type P°°; we will denote
it by J?(P°°). Every divisible i?-module is a direct sum of copies of
K and R(P°°) for various PeP. Divisible submodules are direct
summands. Every j?-module M contains a maximal divisible sub-
module, which we shall denote by dM. If dM = 0 then M is said
to be reduced. A module B is called bounded if IB = 0 for some
nonzero ideal I oΐ R. Since nonzero ideals are finite products of
maximal ideals, this definition is equivalent to rB — 0 for some
O ^ r e β . If 2? is a bounded submodule of M and M/B is torsion-
free then B is a direct summand of M. Bounded modules are direct
sums of cyclics.

Note that, if R is a proper Dedekind domain, J(M)= f}PePPM;
also, R is Noetherian.

LEMMA 2.1. For a module M over the proper Dedekind domain
R, the following conditions are equivalent.

( i ) M is injective;
(ii) J(M) = M;
(iii) M is divisible;
(iv) M is a direct sum of copies of K and R(P°°), for various

PeP.

Proof. By [17; p. 196, 6.1], (i) and (ii) are equivalent; the
equivalence of (i) and (iii) is well known [19; p. 33, 2.6, and p. 108,
4.25]. The proof is completed using [9; p. 335, Theorem 7] and
[19; p. 82, 4.1].

We will need the following rather technical result.
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LEMMA 2.2. Let M be a module over the Dedekind domain R,
let I be a nonzero proper ideal of R and let xeM such that Ix is
a weak direct summand of M. Then Rx is torsion,

Proof. If M = Ix (&w T then Rx = Ix + (RxΠ T) and Ixf] (RxΓ)
T) < Ix. Assume Rx is not torsion. Then Rx ~ R and

(2.3) R = I + J, Jn/<I

for some ideal J of R. By hypothesis, IS Pfor some PeP. From
(2.3) and [13; p. 53. Exercise 2(b)] we obtain

By [13; p. 137, 6.20 (8)], there exists an ideal Jf in R such that

IJ - PIJ' .

But then J = PJ' ^ P [13; p. 137, 6.20(4)] so that P contains both
I and J. By (2.3), this is not possible. The lemma is proven.

The module M is called sum-irreducible if, for any pair A and
B of proper submodules of M, A + B is a proper submodule [16; p.
97]. A module whose lattice of submodules is a chain certainly is
sum-irreducible. Thus, for each PeP, the modules R(P°°) and R/Pn,
n a positive integer, are sum-irredducible and, if R is local, so are
R and K and hence all torsion-free JS-modules of rank one [10; p.
45]. Clearly, factor modules of sum-irreducible modules are sum-
irreducible. Because of

KjR =
PeP

K therefore is sum-irreducible only if R is local. Miyashita has
shown that a module M with J(M) Φ M is sum-irreducible if and
only if M/J(M) is a simple module; in particular, such a module is
cyclic [16; p. 97, 3.5]. Thus, if R is not local, the only sum-irredu-
cible i2-modules are the submodules of R(P°°), PeP.

We collect this information. By definition, P° = R.

LEMMA 2.4. Let M be a module over the Dedekind domain R.
Then M is sum-irreducible if and only if one of the following con-
ditions is met:

( i ) M ^ R\Pn, PeP, n^O an integer;
(ii) M^R(P°°), PeP;
(iii) R is local and M is torsion-free of rank one.

3* Small modules and quasi-projective covers* A small R-
module is any uJ-module S such that S < M for some ίJ-module M
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[14].
(3.1) The class of small iϋ-modules is closed with respect to

submodules, finite direct sums, and epimorphic images [17; p. 189,
3.2].

W. W. Leonard has shown that the j?-module S is small if and
only if S is a small submodule of its injective envelope [14; p. 527,
Theorem 1]. Thus:

(3.2) The iϋ-module S is small if and only if it is a small sub-
module in every injective module containing S [17; p. 190, 4.2].

In order to determine the small modules over Dedekind domains,
we will need the following result.

PROPOSITION 3.3. If R is a hereditary ring, then the R-module
S is small if and only ifT^S and S/T injective imply S = T.

Proof, Let E be an injective envelope of S [1; p. 207, 18.10],
S <. E. Assume S is small and let T <. S such that S/T is injec-
tive. Then S/T is a direct summand of E/T [1; p. 206, 18.7] prov-
ing S/T = 0, by 3.1 and 3.2. For the converse, let C ^ Esnch that
E = S + C. Then E/(S Π C) = S/(S ί l C ) 0 C/(S n C) and, since R
is hereditary, S/(S ΠC) = E/C is injective. By hypothesis, S = Sn
C, hence E = C, completing the proof.

We obtain the following consequence using Lemma 2.1 and [4;
p. 30, 18.3].

COROLLARY 3.4. Let M be a module over a proper Dedekind
domain. Then the following conditions are equivalent.

(i ) M is small.
(ii) If N^M such that J{M/N) = M/N then N = M.
(iii) For all PeP, J?(PTO) is not an epimorphic image of M.
(iv) Every proper submodule of M is contined in a maximal

submodule.

By [4; p. 30f, 18.3(6)], the equivalent properties (ii) and (iv)
imply that J(M) is small in M. Hence:

COROLLARY 3.5. If M is a small module over a Dedekind
domain R then J(M) < M.

Obviously, the converse of 3.5 is false: if J(R) = 0 then J(F) — 0
for every free module F over R [1; p. 196, 17.10] even though F
need not be small.

If R is a field, the only small jR-module is the zero-module. For
proper Dedekind domains we have the following structure theorem.
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THEOREM 3.6. Let M be a module over the proper D.edekind
domain R. Then M is small if and only if M contains a free
submodule F of finite rank such that M/F is a torsion module and,
for each PeP, (M/F)P is bounded.

Proof Let F be a free submodule of M such that M/F is
torsion. Assume, firstly, that M is small. Let P be a nonzero
prime ideal of R. By 3.4, R(P°°) is no epimorphic image of M.
Hence (M/F)P is bounded and, since R(P°°) is countably generated,
F must have finite rank. Conversely, suppose that M is of this
form. Then 0 is the only divisible factor module of M, and the
proof is completed by 2.1 and 3.4.

PROPOSITION 3.7. Let M be a module over the Dedekind domain
R. If either M is torsion or R is local, then the following condi-
tions are equivalent.

( i ) M is small;
(ii) J(M)<M;
(iii) J(M) is small;
(iv) M = ί 7 © φpep MP where, for each PeP, MP is bounded,

and F Φ 0 implies R is local and F is free of finite rank.

Proof. By Theorem 3.6, (iv) implies (i), which in turn, using
3.5, implies (ii), and (ii) implies (iii). Assume (iii). If R is local
with maximal ideal P, then PM = J(M); by Theorem 3.6, J(M)
contains a free submodule F of finite rank such that PnJ(M)QF
and hence Pn+1M £ F for some positive integer n. Since submodules
of free lϋ-modules are free [10; p. 44, Lemma 15], M in this case
is of the form (iv). If M=QP&PMP is torsion then J(M) —
(BperJ(Mp). Since, for each PeP, PMP = J(MP) and J(MP) is
bounded by 3.6, MP is bounded, completing the proof.

Let M and X be iϋ-modules. X is called a protective cover of
M if X is protective and M = X/S for some small submodule S of
X [1; p. 199]. Though dual to the concept of injective envelopes,
protective covers need not exist. For example, the only Z-modules
which have protective covers are the free ones [2; p. 467], Gener-
alizations of protective covers were considered in [7; 8; 18; 20; 21].
Wu and Jans call X a, quαsί-projective cover of M if X is quasi-
projective, if M = X/S for some small submodule S of X, and if
T S S, XIT quasi-projective imply T = 0 [21; p. 443]. We find it
more natural not to require the last condition and use the termi-
nology of [18] instead.

DEFINITION 3.8. The module X is a quasi-projective cover of
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M if -XT is quasi-projective and M = X/S for some small submodule
S of M.

As J. S. Golan has shown, a module has a quasi-projective cover
according to our definition if and only if it has a quasi-projective
cover in the sense of Wu and Jans [7; p. 176, 1.7]. Since we are
concerned with the existence of quasi-projective covers only, the
difference in terminology can be ignored.

We shall need two results on the existence of quasi-projective
covers.

LEMMA 3.9. Let R be a non-local Dedekind domain and PeP.
Then R(P°°) has no quasi-projective cover.

Proof. Suppose X is quasi-projective, S < X and X/S = R{P°°),
for some PeP. We first want to show that S must be torsion.
Assume the contrary. Since R is not local, there exists a free
submodule F of S such that S/F is torsion and

S/F = (S/F)P © T/F, T/F Φ 0 .

Because of R(P°°) = X/S = (X/F)/{S/F),

XIF = (X/F)P 0 T/F, (X/F)P Φ X/P .

Hence X/F = (X/F)P + S/F, and S/F is not small in X/F. This
contradicts S < X and we have shown that S is torsion. Since
X/S = R(P°°)9 there exist decompositions

By 3.5, SP is bounded. From

R(P~) = X/S = XP/SP

we deduce that XP cannot be reduced. Thus

But [6; p. 6, Lemma 4] implies that every proper submodule of A
is a direct summand of X which is impossible. The lemma is proven.

THEOREM 3.10. // M = ®PepMP is a torsion module over a
Dedekind domain such that, for each PeP, MP is bounded then M
has a quasi-projective cover X. Moreover, X = φ P e P J P where, for
each PeP, XP is bounded.

Proof. For PeP, let n be a positive integer such that PnMP =
0. Then MP is a module over the ring R/Pn which is a perfect ring
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[1; p. 315, 28.4]. Thus, there exists a i?/Pn-module XP which is a
protective cover of MP. Regarded as i?-module, XP is quasi-projec-
tive [1; p. 191, Exercise 17] and, thus, a quasi-projective cover of
MP. It follows from [6; p. 6, Lemma 3] that X = φ P e P XP is quasi-
projective. Clearly, X is a quasi-projective cover of M, and each
XP is bounded.

4* Supplemented modules* The following results are contained
in [16; p. 87, 1.3, and p. 90, 1.11] and will be used frequently. For
the time being, R may be any ring with identity.

4.1. If N, S <; M then S is a minimal supplement of N if and
only if

M= N+ S, Nf]S<S .

4.2. If M = N + S, NΠS<S, then J(S) = Sn J{M) and
J(M) = [NΠ J(M)] + [S Π J{M)}.

Combining these with [16; p. 87, 1.3] we obtain
4.3. If M = d ΘTF C2 then J(M) = / ( Q 4- J ( Q , and J(Af) < Λf

implies J ( Q < Cu i = 1, 2.

LEMMA 4.4. Lei M = N + S, NnS <S. If M/N = J(M/N)
then S = J(S).

Proof. Since M/iV and S/(N f] S) are isomorphic,

Sf(NΓίS) - J[SI(NΠ S)] = J(S)/(Nf] S) ,

by [1; p. 121, 9.15]. Hence S = J(S).
The following simple results can be found in [11; p. 245, 11.1.4

(3), p. 268, 4.b)].
4.5. If A<^M and M is supplemented then M/A is supplemented.
4.6. If A, B <Ξ; M and A and 5 are supplemented then A + B

is supplemented.
Together they imply

4.7. A 0 J5 is supplemented if and only if both A and 2? are
supplemented.
An examination of the proof of [7; p. 178, 3.6] yields

4.8. If M is supplemented then M/J{M) is semi-simple.
If J(M) < M and M/J{M) is semi-simple, then M need not be

supplemented. This can be seen from the Z-module consisting of
all rational numbers with square-free denominator. However, we
have the following result. We say that weak direct decompositions
of M/J can be lifted to M if, given J <L Bt <L M, i = 1, 2, such that
M/J = BJJφw BJJ, there exist C^M such that M = d ®w C2 and
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Ci + J = Bif i = 1, 2. Clearly, weak direct decompositions of semi-
simple modules are direct decompositions.

PROPOSITION 4.9. // J(M) < M, if M/J(M) is semi-simple, and
if weak direct decompositions of M/J(M) can be lifted to M, then
M is supplemented.

Proof. Let N £ M and put J = J(M). Then M/J = (N + J)/
J φ T/J, hence M = GxφwC2 such that C, + J = N + J, C2 + J = T,
and J(C2) = J D C2 < C2, by 4.2 and 4.3. It follows that M = N +
J + C2 = N + C2, and

^ n α ^ (iv + j) n (c2 + j) n c2 = (N + j) n Tn c2 - jn α .

Thus N Π C2 < C2, and 4.1 completes the proof.
From now on we assume that R is a proper Dedekind domain.

By 2.1, coinciding with their radical is equivalent for itί-modules to
be divisible. Thus, Lemma 4.4 and Corollary 3.4 imply:

4.10. If S ^ M is a minimal supplement of N ^ M and M/N
is divisible, then S is divisible.

4.11. Reduced supplemented modules over Dedekind domains
are small.

The following observation will be useful.

LEMMA 4.12. Let PeP and let

Then D is not supplemented.

Proof. Consider the submodule

N=φR/Pn

neN

of D. Since N is reduced N/B is reduced for every bounded sub-
module B of N. If S ^ D such that D = N + S then N/(Nf] S) =
D/S is divisible so that N Π S is not bounded. Because of Theorem
3.6, NπS is not small in N. Hence, by 4.1, S is not a minimal
supplement of N.

We are ready to determine the structure of torsion-free supple-
mented modules. A torsion-free module is called completely decom-
posable if it is a direct sum of submodules of rank one [5; p. 112].

PROPOSITION 4.13. Let M be a torsion-free module over the
proper Dedekind domain R. If M is supplemented then M is com-
pletely decomposable of finite rank, and MφO implies R local.
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Proof. Let M — Nξ&D where N is reduced and D is divisible.
By 4.5 and Lemma 4.12, D has finite rank and, by 4.11, N is small.
By 3.7, if R is local, N is free of finite rank and M has the
desired structure. Assume R is not local. By 2.4 the only torsion-
free sum-irreducible iϋ-module is the zero-module. Thus, M cannot
contain a maximal submodule since any minimal supplement of it
would have to be sum-irreducible. It follows that J{M) = M, hence
either M — 0 or, using 4.5 again, K is supplemented. To show that
the latter is impossible, let R S A ^ K such that A/R = R(P°°) for
some PeP. By Theorem 3.6, A is not small, and P Φ {P} implies
ASK. Thus, using 4.10, a minimal supplement of A in if would
need to be a proper nonzero divisible submodule of K. The non-
existence of such a submodule completes the proof.

A module A is called artinian if its lattice of submodules
satisfies the descending chain condition [1; p. 127]. Clearly, artinian
modules are supplemented. If A — AP for some PeP, then the
following statements are equivalent: (1) A is artinian; (2) A has
finite rank; (3) A is a direct sum of finitely many submodules each
of which is either isomorphic to R(P°°) or to R/Pn, n ^ 0 an integer
[10; p. 49, Exercise 49].

Frequent use will be made of the fact that, for R a Dedekind
domain, a torsion iϋ-module T is supplemented if and only if, for
each PeP, TP is supplemented.

THEOREM 4.14. Let M be a module over the proper Dedekind
domain R. Then M is supplemented if and only if M= Yφ (BPBP MP

where, for each PeP, MP is a direct sum of a bounded and an
artinian submodule, and Y Φ 0 implies R local and Y completely
decomposable torsion-free of finite rank.

Proof. Clearly, sum-irreducible modules are supplemented.
Thus, if M has the described structure, by 2.4 and 4.7, M is supple-
mented provided (BpepMP is supplemented. Again, this will be the
case if we can show that every ϋ?-module B with PnB — 0, PeP,
n a positive integer, is supplemented. But this follows from the
fact that such B can be regarded as module over the perfect ring
R/Pn [1; p. 315, 28.4]; by [12; p. 528, Folgerung], B is supplemented.
Conversely, assume M is supplemented and let M — D 0 JV with D
divisible and N reduced. By 4.7 and 4.11, N is small and, because
of 4.12, each DP is artinian. Furthermore, 4.13 implies that M is
torsion or R is local and that in a decomposition.

PeP

the index set / must be finite. Applying Proposition 3.7 to the
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small module N completes the proof.

COROLLARY 4.15. Let R be a Dedekind domain and let C be
one of the following classes of R-modules:

( i ) the class of all supplemented torsion R-modules;
(ii) the class of all reduced supplemented R-modules.

Let 0—>L—>M—*iV —>0 be an exact sequence of R-modules. Then
MeC if and only if both LeC and NeC. In particular, each
module in C is amply supplemented.

Proof. If all submodules of a module M are supplemented then
M is amply supplemented. Thus, the last part of the proposition
follows from the first. For R local, submodules of free modules
are free [10; p. 44, Lemma 15]. Apply Theorem 4.14.

Our "supplemented" modules and those of [7] are called "kom-
plementiert" in [8; 11; 12; 20]; the "perfect" modules of [16]
coincide with our "amply supplemented" modules. In these papers,
various properties of the J?-module M were shown to be equivalent
to M being either supplemented or amply supplemented. These
equivalences, though not restricting the ring R9 required M to meet
stringent conditions, like being protective [11; 12], quasi-projective
[7; 8; 12; 16], or 6r[jlίf]-projective [20]. We take the opposite
approach: in order to clarify the relationships of the various pro-
perties for an arbitrary ϋJ-module M, we require R to be a Dedekind
domain but remove the restrictions placed on M.

In the following theorem, we still require M to be reduced.
The restriction to nonlocal domains in the second part of 4.17 cannot
be dispensed with: if p is a rational prime and Z(p) denotes the
localization of Z at (p), then every quasi-projective Z{prmoάxύe is
either free or a direct sum of pairwise isomorphic finite cyclic sub-
modules [6; p. 7, Proof of Theorem]. Thus supplemented modules
over arbitrary Dedekind domains need not have quasiprojective
covers.

If certain projectivity conditions are imposed upon M, the word
"weak" in (iii) and (iv) of 4.17 can be omitted (cf. [12; p. 526,
SATZ, and 15; p. 24], [7; p. 179, 3.7], [20; p. 135, 2.6], [7; p. 178,
3.2], [8; p. 278, SATZ 6], [16; p. 92, 2.3]). In order to show that
in general, this is not possible we provide

EXAMPLE 4.16. Let R = Z, let peZ be a positive prime, and
let M = (a) 0 <&> where a has order p and b has order p2. Then
M is supplemented, J(M) = pM, but the direct decomposition
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M/J(M) = <(α + 6) + pM} 0 <6

cannot be lifted to a direct decomposition of M; also, the nonsmall
submodule <α + 6> contains no nonsmall (i.e. nonzero) direct summand
of ikf.

THEOREM 4.17. The following properties of the reduced module
M over the proper Dedekind domain R are equivalent.

( i ) M is supplemented.
(ii) M is amply supplemented.
(iii) J(M) < M, M/J(M) is semi-simple, and weak direct decom-

positions of M/J(M) can be lifted to M.
(iv) Every nonsmall submodule of M contains a nonsmall weak

direct summand of M.
(v) J{M) < M and M is a direct sum of sum-irreducible sub-

modules.
(vi) M — F(B®PeP MP where, for each PeP, MP is bounded,

and F Φ 0 implies R local and F free of finite rank.
If R is not local then, in addition, (i)-(vi) are equivalent to each
of the following:

(vii) M has a quasi-projective cover which is supplemented.
(viii) Every M-generated module has a quasi-projective cover.

Proof. Reduced torsion-free modules of rank one over local
domains are cyclic [10; p. 48]. Thus, by 4.14, (i) is equivalent to
(vi) and, by 3.7 and 2.4, (vi) in turn is equivalent to (v). Accord-
ing to 4.9, (iii) implies (i) and, using 4.15, (i) implies (ii). Assume
(ii). Then, because of 4.11, M is small, and the first two conditions
in (iii) follow from 3.5 and 4.8. In order to verify the third one,
put J = J{M) and let M/J = BJJ(BWB2/J. Then M = B1 + J32, J^n
B2 — J, and M being amply supplemented implies M — Cx @w C2 for
some CiS M such that Ct S Bu i = 1, 2. Clearly, Ct + J = Bit i =
1, 2, and we have derived (iii) from (ii). Clearly (ii) implies (iv).
Assume (iv). If S is a weak direct summand contained in J then,
by 4.2, J(S) = Sf]J = S, so that S = 0 since M is reduced. Thus,
/ < M and, in view of 3.7, (vi) holds if we can show that M is
torsion or R is local. Suppose M is not torsion. Then M is gener-
ated by its nontorsion elements, and M reduced implies Rx -$> J for
some xeM with Rx = R. If R is not local, PxίJ for some ideal
PeP, thus Px contains a nonsmall weak direct summand of M
which must be of the form Ix for some proper ideal IΦ 0 of M.
This is impossible by Lemma 2.2, proving R is local. The first six
conditions have been shown to be equivalent.

For the remainder of the proof, assume R is not local. Then,
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by 3.10, the equivalent properties (i) and (vi) together imply both
(vii) and (viii). By 4.5, (i) follows from (vii). Assume (viii). Then,
for each PeP, Jβ(P°°) is not ikf-generated, according to 3.9. Thus,
ikf must be torsion and each MP is bounded. We have derived (vi)
from (viii) and the proof is completed.

For notational convenience, define, for any J?-module M,

PeP
MP] .

The zero ideal of R is prime; thus, by 4.14 and 2.4, a divisible
module D is supplemented if and only if, for each prime ideal Q of
R, DQ is a direct sum of finitely many sum-irreducible submodules.
By 4.7, the presence of a submodule D of this form does not affect
whether or not a module is supplemented.

This motivates the following definition. Recall that dM denotes
the maximal divisible submodule of M.

DEFINITION 4.18. The submodule J of M is almost small in M
if J/dJ is small in M/dJ and, for each prime ideal Q of R, (dJ)Q is
a direct sum of finitely many sum-irreducible submodules.

Weakening J(M) < M to the postulate that J(M) be almost
small in M, some of the conditions of Theorem 4.17 remain equivalent
for nonreduced modules. It is clear, in light of Lemma 3.9, that
(vii) and (viii) cannot be retained. Conditions (ii) and (iv) do not
carry over either: nonreduced supplemented modules need not be
amply supplemented, nor do nonsmall submodules necessarily con-
tain nonsmall weak direct summands. This can be seen from the
following

EXAMPLE 4.19. Let J? be a local Dedekind domain with maximal
ideal P which is not complete in its P-adic topology, let K be the
quotient field of R, and let M = K@ K. By 4.14, M is supplement-
ed. Let N be an indecomposable submodule of M of rank two
[10; p. 46, Theorem 19]. By 3.7, N is not small so that M=N+T
for some T S M. Since M/T is divisible, any minimal supplement
of T in M. must be divisible, by 4.10. Since N is reduced, N con-
tains no minimal supplement of T in M. Thus, M is supplemented
but not amply supplemented. For the same reason, the nonsmall
submodule N contains no nonsmall weak direct summand of K since
weak direct summands of divisible modules are divisible (cf. 4.2).
Also, note that N is not supplemented.

THEOREM 4.20. Let M. be a module over the proper Dedekind
domain R. Then the following conditions are equivalent.
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( 1 ) M is supplemented.
( 2 ) J(M) is almost small in Jkf; M/J(M) is semi-simple; and

weak direct decompositions of M/J(M) can be lifted to M/dM.
(3) J(M) is almost small in M, and M is a direct sum of

sum-irreducible submodules.
(4) M.= Y φ φ P e p MP where each MP is a direct sum of an

artinian and a bounded submodule, and Y Φ 0 implies R local and
Y completely decomposable torsion-free of finite rank.

Proof. Let M=N®D where D = dM, and put J = J(M).
Then

J = J(N)®J(D) = J(N)®D .

Thus, J is almost small in M if and only if J(N) < N and D — dJ
is supplemented. Since N is reduced, the theorem follows readily
from 4.14 and 4.17, observing that

N/J(N) = M/J(M) ~ (M/dM)/(J(M)/dM) = (M/dM)/J(M/dM.)

[1; p. 121, 9.15].
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