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INVARIANT HARMONIC ANALYSIS ON SPLIT RANK
ONE GROUPS WITH APPLICATIONS

P. C. TROMBI

Let G be a real connected noncompact semisimple Lie
group with finite center; we shall denote the algebras of
Lie groups L by the corresponding lower case German letter,
ί. We assume that if Gc is the simply connected complex
analytic Lie group with Lie algebra gc (here for any vector
space V defined over R we denote its complexification by
Vc; in particular gc is the complexification of g) then GcGc.
Fix a maximal compact subgroup K of G. Assume further
that rk(G/K)=l. This paper has two principal sections. In
§ I we characterize the invariant transforms of functions
in %?P(G: F)(F<zK, \F\<oo); §11 deals with the characteri-
zation of the orbital integrals of such functions.

Let H be a 0-stable Cartan subgroup of G which is maximally
split; in the case rk(G) = rk(K) let B in a Cartan subgroup of G
contained in K. It is known that BcJϊfBζZbt, and to each Λe
£fB, the regular elements of JϊfB, there corresponds ω(Λ) e G2 (we
denote by Gp the equivalence classes of those representations whose
iΓ-finite matrix coefficients are £f* functions on G). Fix πΛeω(Λ)
for each Λe£fB. If H = HKA(HK = Hf)K,Aa, vector group) 1 e Hf

κ

(the prime denoting the regular elements of Hκ) yeαc* then we can
define πXtV, a principal series representation of G.

We denote by G (resp. G) the set of all infinitesimal equivalence
classes of irreducible admissible (resp. unitary) representations of G.
If π is an admissible representation we denote its global character
by θπ. It is known that θπ is a distribution which is given by a
function which is (real) analytic on the regular set of G; we again
denote this function by 0*. If π, v are equivalent irreducible admis-
sible representations then θπ = θu. Hence to each ω e G there cor-
responds a character θω\ characters of the class ω = ω(A)(Λ e Jέ?B')
will be denoted ΘΛ or θω and characters of the class [πχ>ί] will be
denoted θχtU. In § I we introduce the transform

f(ω) = \ = (θ, fω) (ωeG)

We refer to this as the invariant Fourier transform of f Let
f{ω{Λ)) =f(Λ) and /(%: v) =/([πχ,J). Then we show that there exists
a list of properties involving; (a) holomorphy and growth properties
of /(%) as â function on a strip J^(2/p — 1); (b) relations between
f(Λ) and /(%: v) which reflect the fact that for A e £fB' such that
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ω(A) & Gp then πΛ is embedded in πXtV (for suitable X and v e ̂ (2/p—1));
which characterize the image of ^ P ( G : JF) under the map / - > / .
We denote this space of functions by <t?p(C(G): F). The most diffi-
cult part of the proof that ^P(C(G): F) is the image of <gf *(G: F)
is the question of surjectivity. We shall now detail the major
steps in the proof of surjectivity.

Let L e ^P(C(G): F) and let us form the wave packets (here let
L(Λ) = L(ω(Λ)\ L(X: v) =

ΦL{X) \W(G/B)\&>B

d{Λ)Aim

+ D{GjA) Σ d(X) dim (^,F) [ L(X: v)θF,Xx)μ(X: v)dv

where if ωeG, θζ denotes the sum of the if-Fourier coefficients of
θω corresponding to δeF, d(A) equals the formal degree of πΛ,
D(G/A) and μ(X: v) are defined in [8]. Then it is known (cf. [8])
that φL e 9f 2(G: F) and φL(X: v) = L(X: v)(X eHκ,ve ia*), φL{A) = L(A)
(A 6Sfβ)* In fact more can be said. In the definition of φL let the
sum over £f£ (resp. the integral over ia*) be denoted by φl (resp.
φl). It can be shown that φl, φl e ^ 2 ( G : F). Of course even
if L satisfies the requisite properties φl, φl will not in general
belong to <^\G:F). This follows since if̂  Sc£fB, φLiS =

A £ J2^)P}, φLiP = φL,£fB,Pi Φi,p = ΦL,^^ P> then f̂ = 0LιP + f̂,p and χ̂,)2)

is perpendicular to ^ifP in the L2-inner product. In fact we can
write Φ(G: F) = ΦP(G\ F) + ΦP{G\ F)1 (orthogonal direct sum).
Hence if φl, φl e ΐ f *(G: F) then φϊ,p e Φ(β\ F) n ^ ( G : i^7)1 = {0}.
One would hope then to be able to show that φl + Φϊ,P € ^ ( G : F).
This is not in general possible. Instead we proceed as follows.

We produce given L an auxiliary function βL e CC°°(G: F) such
that (βLΓ(A) = L(A)(A eSf^p) and φl-{βL~ e<d?p(G: F). Hence if we
denote by $?0 the wave packet formed with the modified function
LQ where LQ(A) = 0 if A e .Sf^p, and L0(^0 = L(A){Λ e ^s,p) and set
(here we use the notation of [8])

then we have by [8] that

fL(X: v) = ( ^ ( ^ . r ( Z : y) + ((βL)AnX: v)

= L(X: v) - (βLΓ(X: v) + (/3LΓ(Z: v)

By the orthogonatily relations for the discrete series characters we
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have for Λe^fB

L

>p.

(Λ)%ί) = {φ\βL)?vT(Λ) = (J3LΓ(Λ) = L(A)

and for A e S/fB,P we have

(ΛΓ(4) = (Φlor(Λ) = L0(Λ) =

In § II we introduce the invariant orbital integrals, Ff; we
denote the restriction of this function to the regular points of B
(resp. H) by Ff (resp. Ff). The functions Ff, Ff are L1 on B
and H respectively. Hence we can take their Fourier transforms.
It is known (cf. [19]) that Ff has a simple relation with fH and
Ff(A) a complicated relation with fB. Nevertheless we are able to
transcribe our conditions defining <^?P(G(G): F) over onto Ff and
Ff which then allows us to characterize these functions.

One remark is in order which is explicated in more detail in
§ II. The Fourier transforms of Ff and Ff are defined for all
A e J*?B and XeHk (not just the regular elements). We were then
forced to extend our definition of the invariant transform to include
the singular elements of A e £fB and X e Hk.

The importance of these characterizations is, apart from their
natural place in the harmonic analysis of G, that they occur in the
study of the Selberg trace formula. In fact if Γ is a discrete
compact subgroup of G, L denotes the left regular representation
of G on L2(G/Γ) then it is known that

Li z== ^j WωO)

(i.e., L is discretely decomposable into a direct sum of irreducible
unitary representations with finite multiplicities). A natural problem
is to determine the integers mω.

For fe ^\G) the operator L(f) is of trace class and we have

Σ ω / ( )
ωeG

On the other hand, we can write

tr L(f) = Σ μ(GJΓh) \ f(y*)dG/Gy(x)
{y) JG/Gy

where {y} runs through the conjugacy classes in Γ9 Gy = GentG (y),
Γy = ΓΓι Gy, and μ(Gy/Γv) is the volume of Gy/Γy.

In order to obtain information about the mω (for instance
obtaining limit formulas (cf [4])) one can attempt to express the
right hand side of the last equation above in terms of invariant
transforms for functions f on G whose Fourier transform can be



226 P. C. TROMBI

explicitly computed; the easiest way to do this is to start on the
Fourier transform side and inverse transform back to the group.
This of course requires the above characterizations.

For other papers on this subject see also [19].

Notation. We retain the notation of the introduction and all
other notation not explained below is as in [15].

Let M be a differentiable manifold, W (resp. (W, 7)) be a finite
dimensional vector space (resp. a finite dimensional double unitary
iJL-module). The space of infinitely diff erentiable functions on M
taking values in W and those of compact support (resp. the 7-
spherical infinitely differentiate functions and those of compact
support) will be denoted by C(M: W) and Cr(M: W) (resp. C°°(M: W: 7),
CC°°(M: W: 7)) when W = C we suppress the W in the notations
C~(ik£: W) and Cr(M;. W).

If A is an arbitrary set B Q A we denote by [B] the compli-
ment of B in A. Further if B is a finite subset of A then we
denote the number of elements in B by the notation \B\.

If V is a vector space over R we shall denote by Vc its com-
plexification; i.e., Vc = V®RC. Let F* (resp. V*) denote the real
(resp. complex) dual of V (resp. Ve).

For an arbitrary Lie group L let us denote by L the set of
equivalence classes of irreducible unitary representations of L.

Suppose now that M is as above and there exists a topological
action of K on M both on the right and left. If ζ e K let Xξ denote
the character of ξ and p/9 pr denote the left and right actions of
K on M. We shall write for F c K, \ F\< oo, C°°(Λ£: F) and C?(Mι F)
for the subspaces of C°°(M) and C?(M) respectively of those func-
tions / which satisfy the following:

d(ξ)\ con}Xe(k)f(p/k)m)dk = d(ξ)[ f(mpr(k))conjXξ(k)dk = f(m)

where d(ζ) denotes the degree of ζ. If Ac.C°°(M) then we shall
write A(F) for the corresponding subspace of C°°(M: F).

Let g = E + § be a Cartan decomposition of g, θ the correspond-
ing Cartan involution of g (we also use θ for the involution of G).
Let § be a θ stable Cartan subalgebra of g with maximal vector
part. Put a = ή n 8 and assume dimα = 1. If rank (G) — rank (K)
let B be a Cartan subgroup G contained in K.

For any Cartan subalgebra l e g let J(gc, Iβ) denote the nonzero
roots of the pair (gc, ϊc). We denote by TF(gc, lc) the group gener-
ated by the reflections sa(a e J(gc, Ic)). When I is understood we shall
simply write W; we refer to W as the Weyl group of the pair (gc, Ic).
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If we have an action of A on B we denote by BA the set of
^-invariants in B.

Let M = Cent* (α), M' = Norm* (α). The M and M' are com-
pact groups, and W(A) = M'/M is a finite group. If X e M, (V, σ)
is an Jkf-module in the class X, v e α* and w eMf then we shall write
wσ and tt v for the following

wσ(m) = σiw^mw) (m e Λf)

= v(w~Ήw) (JET e o) .

Obviously if σ' is also of class X then wσ' and wσ are again of
the same class, i.e., M' acts on M. Note also that the action of
M' on σ and v depends only on the residue class of w in W(A). If
s e W{A) we shall have occasion to write sσ; sX and sv which then
have their obvious meaning.

Let P{A) denote the set of all parabolic subgroups of G whose
split component is A. Fix Q 6 P(A), and let Q — MANQ be its
Langlands decomposition (note that M is as above). We put n^ =
m + a and note that ^(zm19 and is a Cartan subalgebra of the
reductive algebra mx. Let W — W(βef ί)c), Wx = W(mlc, §β). Then in
a natural way we may consider Wλ as a subgroup of W.

To each ^-stable Cartan subgroup of G we shall associate a
series of representations as follows. Let Q be as above, Q = MAN.
Let XeM, σ eX, vea* and put zr^ = πQ,χ>i, = Indρ (cr (g) f J where
^(α) = βv(logα) (as the exponential map restricted to § is a diffeomor-
phism then if x = exp X we write X = log x), and σ (g) f y is extended
to Q by making it trivial on N. We shall assume that πlyV acts by
right translation and it represents G on Sίfx — ̂ ρ><7, in the compact
picture (i.e., functions defined on K)9 or on Jg^,v = ^ρ, χ , v , in the
noncompact picture (i.e., functions defined on G)).

Let 7Γς(v) = <v, α)(veαf) where α denotes the unique simple root
of z/(g, α), < , •> denotes the killing form on α?. Let J^^i-iy^a*,

— a% and &~r — α*. We shall say that v e ^ is regular if
v) =̂  0. We denote the set of regular elements of ^ 7 w^, and

by ^^ ' , ̂ ' , and ^ ' respectively.
It is known (cf. [11], Lemma 13.3) that πχ>u is irreducible for

all v 6 ̂ " ' Moreover πXfU is unitarily equivalent to πsχ,8u for all
v 6 &~\ s 6 W(A). Hence there exists an isometry *S*fm: £έfχ>v ->
Jg^χ,s, such that

ΛtfQlQ(s: X: v)πXtU(x) = 7ΓβZfβl;(a?)j^Iρ(8: X: v) (a e G ) .

Moreover, for Q, s, and % fixed, the function v -> J^ i ρ (5: X: y) has a
meromorphic extension to &*9.

Let ^χ,v denote the global character of πX)^ It follows from
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the above that Θ8X)SU = θχtU for all X e M, ve Jrt, s e W(A).
Suppose that rk(G) = rk{K) and B is as before a Cartan sub-

group of G contained in K. Then there exists a lattice ^fjjCib?
such that £fB is isomorphic to B. Let W(G/B) denote the finite
group NormG (B)/B. Then W(G/B) acts on .5^' (the regular elements
of J£B). Let £fB+ be a fundamental domain for this action. To
each A e £fB Harish-Chandra has associated a representation ω(A)
whose matrix elements are U functions on G (hereafter let us
write G2 and more generally Gp for the equivalence classes of irre-
ducible unitary representations of G whose K-finίte matrix coeffici-
ents are Lp summable on G). It is known that if Λly Λ2 e £fB then
ω(A1) is equivalent to ω(A2) if and only if At — sA2 for some s e
W(G/B). In particular, £f£ uniquely parameterizes the class of
representations corresponding to B. We shall denote by 3ffA the
representation space of ω{A).

Let us now fix FcK, \F\ < oo. If L is a Lie group, N a
compact subgroup of L, π a representation of L which when restricted
to N is unitary, then we shall write for δ e N, [π: δ]N for the mul-
tiplicity of 3 in the direct sum decomposition of π restricted to N.
With this notation let us put

M(F) = {XeM: [8: X]M S 1 for some δeF} ,

GP(F) = {a) e Gp: [ω: δ]κ ^ 1 for some δeF}

then I M(F) | < °°, and | GP(F) \ < oo 9 and we have by the Frobenius
reciprocity theorem that [πXtV: δ] Φ 0 for some δeF iί and only if
XeM(F).

Let π be a representation of G on a Hubert space 2$f. If δe
K let us write J%fδ for the isotypic component of £ίf corresponding
to δ. Further, if FaK and | F | < oo let us put

δeF

Let

d(m) = dQ(m) = (det AdmIz?ρ)
1/2 (m e MA)

and

p(H) = pQ(H) = 1 tr (ad^,^) (He α) .

Let

A+ = A+(Q) = {aeA: ea«°ga) > 1}

where a = aQ is the unique simple root in J(g, α).
We shall denote the enveloping algebra of gc by © if I is a
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subalgebra of g we shall denote the subalgebra of <S generated by
ϊc and 1 by I. The symmetric algebra of gc will be denoted by
S^(QC); elements of S^(QC) will be treated as directional derivatives
of function on gc.

Ll» Some properties of representations* Let 0 < p ^ 2, a € ©
and reR. For /eC°°((?) let

vlΛf) = sup£-2/»(l + σ)'\af\ .
G

Put
= {/ e C"(G): vlr(f) < oo for all a e ©, r G /?} .

Note that we use only one sided derivatives but we shall now
restrict to a i£-finite subspace of ^P(G) on which the two-sided-
derivative seminorms and the one sided induce the same topology.

Fix FQ K, \F\ < oo. For δeF let Xδ denote the character of
δ and set ξδ = d(δ) conj Xδ. Set

The following is material which we will need in order to form
the auxiliary function mentioned in the introduction. The following
results can be found in [10]; all unexplained notations are as in
that paper.

Let π be an admissible representation of finite length. Set
&-- = {μ = v + %Ί € &~c\ v{H) ^ 0 for all H e ar(Q)} where if a is the
unique simple root of the pair J(a,a) then ar(A) = {Hea: a(H) < 0}.
Also set

IQ(π) = {ve/; : Hom(8>iΠ(7r: τrρ,χ,J ^ {0} for some 1 eM} .

We denote by ί?ρ°(π) the set of leading exponents of π along Q.

LEMMA 1. (Milicic). Let π be an admissible representation of
finite length. Then the set ^0(τr) equals the set of minimal ex-
ponents in IQ(TC).

REMARK. The ordering in Lemma 2 is as follows. Let L be
the lattice generated by J(q, α), L+ the cone of sums of positive
roots. We write λ > μ(X, μej^) if λ - μ e L+.

Suppose that rk(G) = rk(K), b = LA(JB). Put Φ = J(Q, B) and for
α e Φ set

LEMMA 2. (Milicic [10]). Lβί yc > 0. TΛe^ /or ever̂ / ΛeLi
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the following are equivalent:
(1) I (A, a) I ̂  κk(a) for all noncompact aeΦ
(2) every leading exponent of πΛ along Q lies in κpQ +

LEMMA 3. ([10], [17]) ( i ) A necessary and sufficient condi-
tion that π, e Gp is that \ (A, a) \ > (2/p — ϊ)k(a) for all noncompact α.

(ii) If πAe Gp and c(x) is a K-finite matrix coefficient of πΛ

then there exists a constant D > 0 such that

\c{x)\ ̂  DΞ2/p+ε°(x)

for some εQ > 0.

LEMMA 4. Let ωeG2 and 0 < p < 2. Then

if and only ifwe G2/Gp.

Proof. It is a surprising fact (although in the rank one case
it is more or less obvious) that one can deduce global estimates
from leading exponents. That is, if for all λ e S?ρ°(τr), Reλ — ΎpQtί
0 (on cr(Q))τ > 0, then for any if-finite matrix coefficient c, there
exists a constant D > 0 such that \c{x)\ ̂  DΞr{x). Hence from
Lemmas 2 and 3 above it is easy to deduce that ξfqiπj) ΓΊ ^c(2/p—1)Φ
φ if and only if ω e G2/Gp. The lemma then follows from Lemma 1
above.

From the estimates of [15] it is easy to deduce that if XeM,
v 6 ̂ 1(2/p — 1) then a -> θXtXa) is a continuous linear functional on
^V{G). The following lemma is also a simple consequence of these
estimates.

LEMMA 5. Let XeM, ve J^tf/p - 1). // θ7tV = θι + + θ<>
where each θt is an irreducible character then a -» ΘJjx) is a continu-
ous linear functional on <

If XeM, y e ^ , and G(X: v\ x) = θF

χtV(x) then for each XeM,
G(x) is analytic on ^"c x G. Let us denote by 0£V)fc the distribution
given by the function G(X: v\ dh{v)\ x)..

Fix 0 < p < 2. Let Up denote the union of the sets (1), (2),
and (3) specified in § 7 of [15] intersected with JKΦ/P — 1). Set
V, = Up U (U IQ(ω) Π ̂ Γ(2/p - 1)). For every X eM{F), t e W(A),
ζeVp ωeG\F)\Gp(F) we can write 0£ίC as a sum of irreducible
characters. Let g^ denote the set of F-Fourier components of all
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these characters union with the distributions θχltζ,k(^t t? C a s above
and 0 ̂  k ^ 0t(ζ) - 1 (cf. [15])). Recall that θω e g ; (ω e G2(F))\&(F)).

Let £%p be a basis for the linear space spanned by g^ chosen
as follows. To the characters θω(ωeG\F)\Gp(F)) adjoint linearly
independent elements from the characters in the set i?p. Next
adjoin to this set linearly independent elements from the set
{θχ,tζ,k: 16 M(F), t e W(A\ ζ e V p , l ^ k ^ 0,(ζ) - 1}. F o r %, ί, ζ, k a s

usual let us define constants Cp(0£iC,fc: θ){θ e ^ , ) by the equation

Further for any θf e ^p let Gp{β'\ θ) be defined by

For 0 < p i < 2, Pi sufficiently small (j = 1, 2) t/^ = 17P2 and
V9j"D \Jωed2(F)\δp(F) IQ(<*>) Let us fix such a ί? and replace the nota-
tions V9, &9f &9, and Cp by V, &, &, and C.

Fix an open neighborhood Vo of 1 e G with compact closure. By
their linear independence and analyticity on the regular elements
of G, we can choose for each θ 6 &99 aθ 6 C?{G\ F) such that
supp α0 £ Vo and if

(3 ) (a,, θf) = ί
JG

then (α ,̂ 6>') = 0 if θf e &9, θ' Φ θ, and (aθ, θ) = 1. Further let us
require that (aθ, θω) = 0(ω e Gp). This last condition is permissible
by Lemma 4. The functions aθ are by no means uniquely deter-
mined. However, we do have the following result. Define (a, θl»tk)
as in (3).

PROPOSITION 1. With the above notation,

(ctβ, θltζth) = C(θltζtk: θ) .

More generally for any a e CC(G: F)f

(α, θltζ9k) = Σ

Proof. (1) is obvious from (1) above. (2) follows from the
bilinearity of the symbol ( , •)•

L2* Definition and properties of the invariant transform^
Let C(G) denote the space of characters of quasi-simple admissible
representations of G which are of finite length. For θeC(G) and
a 6 Ce°°(G: F) let us write
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ά(θ) = (a, θ) = [ a(χ-1)θ(x)dx .

Here we use the fact that such characters are given by (analytic)
functions on the regular set Gf of G. For θ = θUvi XeM,ve ^l we
shall sometimes write ά(X: v) in place of ci(θXtV) and for ω e G2 we
shall frequently write a(ώ) in place of ά(θω). We shall refer to ά
as the invariant Fourier transform of a.

If G is a complex valued function with domain D Q M x
such that M(F) x J^~c D then set

(1) φG(X: x) = ( ΘUx)G(X: v)μ(X: v)dv (x e G)

and

(2) φG{x) = D(G/A) Σ d(X)dF(X)-^G(X: x) (sum over % e iίfr) ,

where dp(X) = dim ^,^
Let X 6 iif(F) and denote by EF(X) the orthogonal projection of
onto

LEMMA 1. Let aeCr(G: F). Then α(%: ) is an entire function
on J^~c of exponential type. Further,

(1) a(sX: sv) = α(Z: p) (s e W(A), XeM,veJK)
(2) α(%: v ) Ξ θ i
(3) α(β)) = 0 if
(4) defining φ* as in (2) α&ove we

( 3 ) &(Z: v) = α(Z: v) {X e

Proo/. The holomorphy and growth properties of ά(X: v) (as a
function on ^ ) follow easily from the corresponding properties of
j ^ ( α ) (cf. [15]).

(1) follows from the identity θtyV — θ8Xj8i/. Statements (2) and (3)
are obvious. To prove (4) let us call the left side of (3) g(X: v).
Then

XeM(F)

By Theorem 2.1 of [8] we have (with W(X0) = {se W(A): sX0 = Xo})

g(XQ: vQ) = D(GJA) Σ d{sX^dF{sX^~\φκ

a{sXQ)9 θτ „)
seWIW{X0)

where the sum over W/W(XQ) means over a complete set of repre-
sentatives. Again applying Theorem 22.1 of [8] we have
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g(X0: v0) =

x Σ a(sX0: t$v0)
ί e w (βZ0)

By (3) of Lemma 9.1 of [8] we have the above

= I WT1 Σ Σ ά(sXQ: tsv0)
seWlwa0) teWlW{sXQ)

= \W\-1

= I Wr\ W(X0) -[W: WQLMQk »•) -

The last lines of equalities follow from (1) above and the obvious
fact that W(sX0) = sW(X0)s'1.

In the preceding section we defined the sets ί? and & and
the constants C(θXitι:>k: θ). For any scalar valued function L defined
on the space C(G) such that for each X e M, v —> L(X: ») is C°° let jus
put

(4) βL(x)= ΣL(θ)aθ(x) (xeG)

where if θ = θz,κ,k with A; > 0 then by L(θ) we intend L{1: ίζ; 3*(v)).
As 1^1 < oo then βLeC?(G:F).

PROPOSITION 1. Let a 6 C?(G: F). Then,
( a ; ( \

for all X e M(F), t e W(A), ζeV, 0 ̂  k ̂  0t(ζ) - 1.
(2) fa(ω) = a(ω) (ωe&).

Proof. By Proposition 1.1.1 we have

fa(X: tζ; d\v)) = Σ aifl) (a,, θF

x,tζ,k)

= Σ a{θ) Σ C(βlκy. θ')(aθ, θ')

lκy. θ)a{θ) = a(X: tζ; d\v)) .

Recalling that θωe& for all α>e<?2 we obviously have (2), i.e.,

&(*.) = Σ c
θ

PROPOSITION 2. Lβί aeC~(G: F), and ao = a — βs

a. Then φ^e
C?(G: F) and hence φ = ̂ 0 + ̂  6 Cr(G: F) . Furthermore, φ(X: v) =
α(Z: v) /or allXeM, v

Proof. The proof that ^ 0 e CC°°(G: JP) follows from the observa-
tion that for all XeM, te W(A), ζeV, 0 ̂  k ̂  0t(ζ) - 1 we have
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by (1) of Proposition 1 that,

αo(Z: ίζ; d\v)) = 0 .

By Johnson's theorem (cf. [15]) $fco(α) (for α(log a) > 0) can be ex-
pressed in terms of the residues of

Φ(v: α)CW(l: tv)-tG(X: to)ψSrlχ)(l:l:ΐ) (ί e W(A)) .

Arguing as in the corollary to Proposition 7.2 of [15] leads to the
compactness of the support of φ*0.

For the last part we note that by (3) we have

1*3* The characterization of the invariant transform* Let
notation be as in the preceding sections. For L: C(G) —> C such
that L(X: v) = L(θχ>v) is a C°°-function of i; for all XeM let us define
for u e £S(^~C), aeR,

»UL) = sup (1 + I v |)β I ^ ( % : v; ^) |

where the sup is taken over M x Int^Γ(2/p — 1).
Let

C*{G) = \θχ,v:XeM, v e l n t ^ (— - l)} U [θω: ω eG2} U &v .

DEFINITION 1. Let <g*p(C(G): F)o denote the linear space of all
complex valued functions defined on CP(G) having the following
properties:

( 1 ) for each X e M the function L(X) is holomorphic on

( 2 ) L(sX: sι>) = L(X: v) (s e W(A))
( 3) L(X: v) = 0 if X ί M(F)
( 4 ) L(ω) = 0 if ω g G\F)
(5) vlia{L) < oo for all u e <5%iQ, α e JB.
Note that by the uniform continuity of v —• L(Z: v; %), L(Z: v; u)

can be extended to a continuous function on ^7(2/p — 1) which we
again denote by L(X: v; u).

DEFINITION 2. Let ^P(C(G): F) denote the subspace of functions
): F)o which satisfy the additional condition,

LQt: tζ; d\v)) = Σ C,(θz,tζtk: Θ)L{Θ)

for all XeM,te W(A), ζeVp (cf. the remark preceding the defini-
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tion), and 0 ^ k ^ 0,(ζ) - 1. Here if θ = θχ,tt>,ζ>tk>e&rp with ¥ > 0
then by L(0) we intend the &'th derivative of v —• L(θχrtU) evaluated
at v = t'ζ'.

We give <^P(C(G): F) the topology generated by the following
seminorms; let Le&*(C(G): F) and let ttey(^), α e β and set

O.6G2

PROPOSITION 1. The map a —> ά is a continuous map of
(G: F) into %?P(C(G): F).

Proof. The fact that a is defined on M x Int J^φ/p - 1) and
on θω{ω 6 G2) together with the holomorphy of ά(X) on I n t ^ ( 2 / p - l )
all follow from the corresponding properties of the transform a —•
^ i ( α ) (cf. [15]) and the fact that ά(X: v) = tr ̂ H(a)(X: v). Property
(5) follows from the preceding remark together with the observation
that the trace map is obviously continuous and a —> ^Ή(a) is con-
tinuous (cf. [15]). This latter comment shows moreover that given
u e S^{^c), aeR, there exists η, a continuous seminorm on ̂ P(G: F)t

such that vl,Jβ) ^ η(β) {β e 9TP(G: F)). The condition of Definition
2 is obvious from (i) of § I.I.

Finally, the continuity follows on noting that properties (2)
through (4) are obvious for ά (a e ^(G: F)) and hence as | G\F) \ <
oo there exists rf a continuous seminorm on ^P(G: F) such that

I Σ i a(ω) |211 / 2 ^ rf{a) (a e %?P(G: F)) .
•ωeG*

The continuity is now obvious from the first part of the proof.

THEOREM 1. The map a-+ά is surjective.

Proof Let Leίfp(C(G): F) and define (cf. §1.2)

βάx) = Σ L(θ)aθ(x) .

An easy computation using Proposition 1 of § I.I shows that
βL(l: tζ; d\v)) = L(X: tζ; d\v)) and βL(ω) = L(ω) (ω e G2\GP). In parti-
cular if we put

Lo = L - βL

and set (cf. (2) of § 1.2 for the definitions of φL)

ΨLO(X) = Φφ) + Σ d(ω)dF(ω)-1LQ(ω)θF

ω(x)
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then reasoning as in [15] we see that ψH 6 ̂ p(fi: F). Hence

ΨL(X) = ΨLO(X) + /3i(x) e^ p (G: F) .

But then

ψL{l: v) = φLβ: v) + βL(X: v)

= L(X: v)

and if ω e G*/Gp

ΨL((O) = βL(o>) = L(ω).

Whereas if ωeGp then as βL(ω) = 0 (i.e., {ae, θω) - 0 if ωeG")

) = Σ diω'WAω'Y'Uω'W,,,, θζ).

Again using the f aet that βL(ω) — 0 (ω e Gp) and the orthogonality
properties of discrete series we obtain (cf. Lemma 1, pg. 93 of [5])

ψL(ω) = d{ω)dF{ω)-1L{ω) {θζ, θζ) = L(ω) .

Π l Characterization of Ff. We shall make in this section
some further assumptions on G; further in the case of equal rank
we shall pick a compact Cartan subgroup BaK, and from it con-
struct H. This construction will give us an explicit Cayley trans-
form of bc onto %. We shall then show how to change the domain
of / from CP(G) to LB[jHkx a?U&p. This change actually extends
the domains of these functions as well as we now explain. It is
known that M = ΈL'K\W1 where Wx = W(mc, §kc)(m = cent* (α)) whereas
in § I, § = §k + α, A = exp α, (LA(HK) — Ijfe), H'κ denotes the set of
regular elements of Hκ (we shall make exact definitions below)
and HK/WΊ denotes the equivalence classes of H'κ under Wx. Also
it was pointed out in § I that G2 = SfH W; hence with these new
definitions / will be defined for both singular and regular elements
of ^B and Hκ respectively. This is necessitated because one must
use all the characters of B and Hκ in order to expand functions
on B and Hk.

Let us assume that we have a group of equal rank; let B be a
compact Cartan subgroup, ΐ> its Lie algebra. Fix a singular imagi-
nary root β of the pair (g, 6) and a point Γ eb such that ±β are
the only roots of the pair (g, b) which vanish at Γ. Let g=Cent9(Γ),
and cΓ, ΪΓ the center and derived algebra respectively of gΓ.

ΪΓ is isomorphic over R to 8/(2, R), and we may select a basis
H*f X*, Γ* for ϊ (over R) such that [ I P , X*] = 2X*, [ # * , Γ*] = -
2Γ*, [X*, Y*] = if*. Then b = iί(X* - Γ*) + lΓ and § = ΛH* + cΓ

form a complete set of nonconjugate Cartan subalgebras of g. Put
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μ = exp [l/^ϊ(7r/4)(X* + Y*)] e Gc. Then bj = $β, if a = £*, we have
a(H*) = 2 and α vanishes identically on e r; we shall thus again
denote by a the restriction of a to a = RH*. Order the space of
real linear functional λ on ifcff* + V~—\.tΓ by requiring that λ > 0
whenever \(H*) > 0. We then obtain a set of positive roots for
the pair (g, b) by requiring that the ^-transform of such a root be
positive when considered as a root of (g, §).

Let H be the Cartan subgroup of G associated with ί), and let
H° be the identity component of H. Then, setting Hκ = H Π K,
Hi = fPnt fand A = {exptίP: ί eiί}, we have H=HKA, and iϊ° =
E M . Put Z(A) = ίΓn exp{ilίJtf*}. Then Z(A) = {1, 7} is a group
of order two with 7 = exp [π(X* - Y*)] = exp (ΪTΓJEΓ*) ^ 1. We
have JE^ - Z(A)m.

Set b, = cΓ, b2 = iϊ(X* - Γ*) and let J5lf JB2 be the analytic
subgroups of B corresponding to bx and b2 respectively. JSi and U2

are compact and B1f]B2cz Z(A). Since Hκ = B.ϋ yBu (βx = JH£), it
follows that ίίg: has one or two connected components according to
whether 7 lies in Bx Π B2 or not. If M = Cent^ (A), Λf° its identity
component, then M = M° ϋ ΎM°.

If no simple factor of G is isomorphic to SL(2, R), it follows
from the classification of real rank one groups that M is connected,
or equivalently that Bx Π B2 = {1, 7}. In this case B± = Hfc is a
maximal torus in ikf. As in [11] we sfoαii now assume that M is
connected.

Choose a normalized invariant measure dG/B(x) as in [19] v. Π.
If we choose a Haar measure dB(b) on B normalized so that the
volume of B is one, then a Haar measure dx on G is fixed by the
formula

f{x)dx = ί ί f(xb)dbdG/B(x) (feCc(G)) .
JG/BJB

Let ώ̂ (fc) be the Haar measure on A which is the transport via
the exponential map of the canonical Haar measure on the Lie
algebra α associated with the Euclidean structure derived from the
Killing form of g. Since A = {exptiϊ*: teR} we have djji) = cAdt
where cA is a positive constant and dt is normalized Lebesgue
measure on R. Normalize Haar measure dHκ(h) on Hκ so that the
volume of Hκ is one. Now a Haar measure dH(h) on H is fixed
by the formula dH(h) = dHκ{h^dA{h^{h = h^, h^H^ h2eA). A
G-invariant measure dGfH{x) on G/H is then determined by the
formula

\ f(x)dx = \ \ f(xh)dH(h)dG/H(x) (feCc(G)) .
JG JG/H JH
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If xeG write bx = xbx'1 (beB), where x denotes the image of
x under the canonical map of G onto G/B; similarly let h* = xhx'1

(h 6 H) where now * is the image of x under the canonical map of
G onto G/H. If 6, h are as above, feCT{G) let

Ffφ) = AB(b)\ f(b*)dG/B(x)
JG/B

Ff(h) = AHQι)εH

R{h) \ f(hηdG/H(x) ,

(for definitions of AB, AH, and εf one may refer to [19]). By WeyΓs
integration formula we have

\ f{x)dx
JG

= \W(G/B)\A Ίjb)F?(b)dB(b)
JB

For feCr(G) the invariant integrals have the following pro-
perties;

(1) Ff(wb) - det (w)Ff

Bφ) (w e W(G/B), beB')
(2 ) FfQiX) = Ffihfc1) (h, 6 fl^, h2 G A)
( 3 ) Ff

H(wh) = det (w)Ff

H(h) (h eH',we W(M/HK)).
Further, it is known that Ff e C~(B') (here G' denotes the set of
regular elements of G and for any subset L of G, U = L Π (?') and
in general i*7/ does ^oί extend to a C°° function on all of JS. The
function Ff e C^{H') and extends to a compactly supported C°°
function on all of H since (g, ί)) has no singular imaginary roots.

Recall that B ^ <g>B. The Weyl group W(g, b) acts on ^ ^ and
hence on JB by the prescription

wΛ(H) = Λ(w-ιH), wξA(h) = f«Xλ) (Heb,Λe

(here
We say that A e .S^ is regular if wΛ ^ yl for all w ^ 1 in

W(Qef bβ); otherwise we say Λ is singular. The set of regular Λ
will be denoted by £fB

f and the set of singular A by «S^ . The
character f̂  is called regular or singular accordingly.

To each A e £?B, there is associated a central eigendistribution
ΘΛ on G characterized uniquely by certain properties (cf. [19]). ΘA

is locally summable on G and analytic on G'. We have

θΛ(b) = Λ(&r Σ det(w)fU&), beB' .
weW(GjB)

If y lei ί^ and if A is fixed by a nontrivial element of W(G/B), then
ΘΛ ΞΞ 0 on 5'.
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For Ae&i, put s = 1/2 dim (G/K) and ε(Λ) = 8gn{ύLβ9PB {A, β)}
where PB denotes a set of positive roots of (g, b). Then

ΘΛ = (-l)βε(Λ)0,

is a character of a representation α>(Λ) in the discrete series for G
and all discrete series characters are obtained in this way.

For λ 6 Hκ, the unitary character group of Hκ, denote by
log λ the linear function on bx = f)k defined by

λ(expH) = e<H l0*» (HehJ .

Let Pf be the set of positive imaginary roots of the pair (g, ή),
and Wi be the subgroup of W(QC, §β) = W which is generated by
the Weyl reflections associated with elements of P/. Wλ may be
identified with the Weyl group of W(mc, §kc). An element λ 6 Hκ

is called regular if 'w λ ^ λ for all w Φ 1 in TFX and singular other-
wise. If XeHκ is singular put s(λ) = 1, and if λ is regular put

ε(λ) - sgn{ Π (logλ, a)} .

The unitary character group i of i is isomorphic to R and,
for v e R, we define the corresponding unitary character on A by

hiu = eiv(log h) (he A).

If φeC^(A) define its Fourier transform by

φ(X: v) = {2π)~A \ \{hM*Φ{hA)dHκ(ihύdAK) (λ eHKfveR).

If λ is singular it follows from (3) that φ(X: v) = 0. We have the
following inversion formula for all φ as above;

A) = Cj1(2τr)-1/2 Σ MΛjΓ e-wt^fox: v)dv ,

where dv is normalized Lebesgue measure on R.
The following now gives the relation between the Fourier

transform of the invariant integral Ff and the invariant transform
of / with respect to principal series characters. Suppose λ e ίϊκ is
a regular character, veΆ, and rz = | P / | . Then the distribution,

(4) ΘUf) - (2ττ)1/2( - l)"e(\)Pf(\: v) (/ e C?{G))

is the character of a principal series representation which we denote
by πxtf),v We have then in the notation of § I that

(5 ) θλtU = θχ{λ),u (V regular λ in Hκ) .
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If λ is singular define θχ,» by the right hand side of (4). Of course
θλtU ΞΞ 0 for singular λ. It follows from the general theory of finite
dimensional representations of semisimple Lie groups that

(6) θ.x,> = θλ,y (seWJ

where if λ(2Γ) = e<H>l0Sλ> then sX(H) is defined to be e

<H>8los>.
Note also that from (2) we have

(7) θλ9> = θlt_u (xeHκ,veR).

If φ e L\B) define

$(A)= \ ξΛ(b)Φ(b)db (ΛeLB).

We shall now need the following result.

THEOREM 1. ([11] Theorem 3.19.). Suppose that boeB'. For
w 6 W(G/B), we write w~% = 6i(w)62(w) where bλ(w) e B1 and b2(w) =
exp (^W(X* - Γ*)) e B2. Then, if fe C?(G) we have

= (-1)'
Λ

where

(l)W(gc,k)r Σ dβt(w)Σe(λ)
2 We^(G/B) fr

x (λC^Cw))^^,^/)^: O ^ +

%(^: *«) = sinh O(0W HF ττ))/sinh (v7r)

%(^: ίw) = sinh (itf J/sinh (^)

Here in the definition of 7]± we choose the minus sign if 0 < θw < %
for all w e W(G/B) and the plus sign otherwise.

Now for fe ^P(G: F) (cf. § I) let us put for A e £fBf xeHκ,veR

Henceforth we shall assume that the invariant transform is defined
on ^ = £fB U Hκ x ^ ( 2 / p - 1) U ̂  (0 < p < 2). Using the iso-
morphisms G2 = £fl/W(G/B) and Jlfs Jϊi/TFί it is not hard to give
the following characterization of the invariant transform of
^P(G: F). First we need one fact; by [1] there exists for each
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A e Sfi a distribution SA living on £fB* U Hk x &* such that

That is, the values of / on Sfi are determined by its values on the
characters of the tempered representations of G. It follows from
this that if fe<έ?p(G: F) then

(*) KΛ) = sΛφ.
Let now ^P(C(G): F) be defined as those functions L:&P->C

satisfying properties of Definitions 1 and 2 of §1.3 subject to the
changes that Z e M is to be replaced by λ6Hκ, α) by λ e 5 B , and
M(F), G\F) are to be replaced by the sets HK(F) and £fs(F) which
have their obvious meaning. We must then add two further condi-
tions reflecting (*) which we number conditions 6 and 7.

( 6) L(ωx: v) = L(X: v)(ω e Wx), L{ωΛ) = L{Λ) (ω e W(G/B))
(7) L{Λ) = SΛ{L)(Λe£f£).
We shall now designate the normalized orbital integrals of fe

^(G) by Ff\ the argument of Ff will make it clear whether we
are considering Ff or Ff. Similarly when we take the Fourier
transform of Ff the arguments again will make it clear whether
we are transforming on H or B.

PROPOSITION 1. For all fe<έ?p(G: F) (0 < p < 2)
( i ) Ff(X: v) = (2ττ)-1/2( - l)''6(λ)(/Γ(λ: *) (λ 6 HKf v 6 ^ ( 2 / p ~ 1))
(ii) Let

then

CFfnΛ) - (-IWΓ(Λ) (Λ e£fB) .

Proof, (i) is just a reformulation of (4); (ii) follows from
Theorem 1 and Fourier inversion on B.

Let 0 < p < 2 and for φ: B' U H -> C, φ of class C°°, u e φ, t; e S3,
w e Z, and set

#,,,n(0) - s u p e ^ ^ ^ ^ ^ ί l + σih^lφihA; u)\ + sup |^(δ; v)| .

Let θ be the character of a quasi-simple representation of G.

Set θ(a) = έ (α) (α 6 C.°°(G)) and,

^ = [W(G/B)]-ιIB'θ , θl
ΘH = [WiG/H)]-1^ sT 0 , 0£ = [W{filH)Yι2B ε% θ .

Then for all / e ^(G) we have
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θ(f) = \ θB(b)Ff(b)dB(b) + \ θH(h)Ff(h)dH(h)
JB' JH

= \ θξ(b)FfΦ)dB(b) + ( θ%(h)F}{h)dH{h)
IB' JH

= φ%, Ff> + (θ%, F}).

The second line follows from; \άH(h)f = \ΔH(h-ι)\\ \JB(b)\2 - M^" 1 )! 2 .

PROPOSITION 2. Let f e <g"(G: F) (0 < p < 2).
(a) Ff(X) is a holomorphic function on Int (^Γ(2/ί> — 1)) for

all \eHκ.
(b) Ff(X) = OifX0Hκ(F).
(c) Ff(sX: 8v)=ε(sX)/ε(X)Ff(\: v) (s 6 W(A), XeHκ,ve J?~c(2/p -1)).
(d) Ff(X: tζ; d\v)) = (2πΓ'\- 1)'/S(λ) Σ » . * , C,{ΘXMΛ: θ){(θt, Ff) +

(β%, Ff)) for all t e TΓ(A), ζ 6 V,, 0 ^ A; ̂  04(ζ) - 1.
(e) °#,(Λ) = 0 if Λ$ &&F).
(f) ηζ,,,u(Ff) < <*> for all ue®,veS8,ne Z.

Proof. Statements (a) through (e) all follow from (i) of Pro-
position 1 together with the corresponding properties of / .

For (f) we note that

λ: v)dv .
xύκ J-»

Hence, if u e & then we can write w = Σ i ft5?* where ζt e £A and ^ e St.
From this and the fact that /(λ: v) = 0 for X^HK(F) we have,

.F/(λΛ; w)

= constΣ Σ ε(X)ζ3φgX)X(hι)[° e-iHlosh^ί(-ip)(fT(X:v)dv .
j λeHκ(F) J-oo

Using the holomorphy on Int (^(2/j) — 1)) and continuity on
— 1) we have on letting p9 = (2/p — 1) that

= const Σ Σ
i ^

On can easily deduce from Lemma 8.1 of [15] that the function
v -»(/)"(λ: —pp — iv) belongs to the Schwartz space of JB for all
λ e ίϊκ(F) and that there exists for every n e N (here we are com-
bining the fact that the map /—>/ is continuous with Lemma 8.1
ibid.) a continuous seminorm v on cέ?p(G\ F) such that

I e-wwύiη^-p - iv){fT(X\ -pp - iv)dv
J-oo
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As \Hκ(F)\ < oo then it is clear that there exists a continuous
seminorm vx on ^P(G: F) such that

s u p βwp-iwiog*^! + σ ( Λ a ) ) n i FfihA u) i ^ ^

Let ve33. Then from Theorem 11 of [18] it follows that vFf

has finite jump discontinuities on B — 2?'; moreover, the jumps can
be bounded by derivatives of Ff\H. Given the continuity of the
map /-> Ff, as a map of <Sf*(G: F) into C°°(J?') (cf. [18] § 12.2), and
the continuity of the map f-+Ff as a map of ίfp(G: F) into C°°(ίί)
we see that there exists a continuous seminorm v2 on c^pp(G: F)
such that

Hence (f) follows.

DEFINITION 1. Let D = B' U H and for every 0 < p < 2 let
IP(D: F) denote the space of all functions φ: D —• C such that ^ |# e
C°°(H)9 Φ\Br ^ C °°(JD ), φ{h\h2)

:=φ\hιh^) {h1 θ£4., /&2 G ̂ 4.), ^(ii?fe) = det (w)φ(Jι)

(heH,we WΊ), (̂w6) = det (w)φφ)(w e W(G/B), b e 2Ϊ'), and if 6 6 B'
and,

(9 ) 1,(6) - (t/2) I TF(Sc, %) r Σ det (w) Σ (2^r)1/2 .

.: v)η2(y\ ΘJdv 1

(̂ 1, % defined in Theorem 1), and

(10) °φφ) = 9(6) - J,(6)

then

= 0 if A 1

Further we require that φ satisfy properties (a) through (d) and
property (f) of Proposition 2 (with φ replacing Ff).

We topologize IP(D: F) using the seminorms τjζιVtn. As a result
of Proposition 2 and its proof we have the following.

COROLLARY. The map f->Ff is a continuous map of^p(G: F)
into IP(D: F) (0 < p < 2).

We now come to the principal result of § II.

THEOREM 2. The map f—>Ff is a continuous surjection of
<ϊfp(G: F) onto IP(D: F).
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Proof. All that remains to be shown is the surjectivity. Let
φ e IP(D: F) and put

L(X: v) = (2τr)1/2(~l)"ε(λ)^(λ: v) (λ e Hκ, v e jT6(2/p - 1))

L(Λ) = (-l)φ(Λ) (Λ
here °φ is defined as in (10).

As ΦihM is of exponential type in h2 for each hx e Hκ it follows
from the classical Paley-Wiener theorem applied to the vector group
A that for each XeH, v —> L(X: v) extends to a holomorphic function
on Int (^(2/p - 1)) and that for each u e ^ ( ^ Q , α 6 JB

sup IL(λ: v\ u)I(1 + \v\)" < oo

where the sup is taken over (λ, v) e Hκ x Int (^c(2/p — 1)). Further,
since ε(w\) = ε(λ) (w 6 PPΊ, λ 6 j§*x) it follows from property (c) of
Proposition 2 that,

L(wX: v) = L(λ: v) and L(sλ: sv) = L(λ: v)

L(λ: y ) s θ ( λ ί ^(i^7)) and L(^) = 0 (Λ0£fB(F)) .

We have for t e W(A), ζ 6 Fp, λ e ΉKy O^Jc^ 0t(ζ) - 1 that

L(X: tζ; d\v)) = (27r)1/2(-l)^(λ)^(λ: ίζ; afc(v))
- Σ C9(θz,tζ,k: Θ)((Θ*B, φ) + (ίj, Λ)

= Σ C,(<?z,«,»:

It follows from Theorem 1 of §1.3 that as Le<tfp(C(G): F) there
exists / 6 ^ P ( G : JP) such that f — L. Hence by Proposition 1,

) = ^(λ: v) .

Therefore

F)(h) = φ(h) (heH).

We also have

It follows that

Hence,

Ff{b) = °2?V(6) + 1,(6) = °̂ (6) + IΦ(b) - (̂6) (6 6 J?') .

The last line of equalities following directly from the first part of
the proof and (9) and (10).
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