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A SPECTRAL CONTAINMENT THEOREM ANALOGOUS
TO THE SEMIGROUP THEORY RESULT ¢ < g(e*)

D. M. TERLINDEN

It is known that if A generates a (C,) semigroup (e*4),
then e C g(¢'4), where o denotes “spectrum.” This result
is generalized to the context of solution operators of certain
nth order linear differential eguations.

1. Introduction. Let (T, be a (C,) semigroup on a Banach
space X with generator A. It is known [2, p. 457] that

(1.1) e’ < o(T,) .
Since T,f solves the differential equation
(1.2) v = A
z(0) =1,
T.f can be formally written as e*4, so that (1.1) can be written as
(1.3) " C (et

In this paper it will be shown that if one replaces the first deriva-
tive in (1.2) by an nth order linear differential expression L producing
the equation
Lx = Ax
x(0) = f
290)=0 for j=2,---,n—1
solved by S,f for some linear operators S, and replaces e**, the
solution in C of
{x' = 20
z0) =1,

by (¢, ), the solution of

Lx = zx
2(0)=1
290)=0 for j=2 -, n—1

(so that formally S, = (¢, A)), then the analog

¥(t, 0(4)) S o(S) ;
(¢, 0(4) S oy (¢, 4)
493
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of (1.1) and (1.8) holds. The theorem will be stated precisely and
be proved in §3.

2. Definitions and notation.

A. NOTATION. Let ¢ be C or X valued in C™. Let ¢ =
(¢, 4, -+, "), where n, the dimension of the vector, is the same
as the order of differential expression appearing in context. If fis
a constant, let f = (£,0,0, ---, 0).

B. DEeFINITION. Let X be a Banach space over C. Let L be a
linear nth order differential expression of the form

di

L= at
fz!a’()dtf

where the a; are continuous complex valued functions on [0, =) and
a,=1. Let A be a closed densely defined linear operator on X.
The initial value problem

% € C™[0, =)

uw(t)e D, for te[0, =)
P
) Lu = Au

a0) = f
is well posed if there are bounded linear operators S,e.<Z(X) for
0 <t < o and a vector subspace Y of X so that

(1) YED,and Y, ={f:feY and AfeY} is dense in D, in
the D, norm. (||z|,, = |||l + || Az||, the graph norm.)

(2) If geY and u(t) = S,g, then u(¢) solves (P) with f=g.

(8) For each fe X, S,f is continuous in ¢.

(4) If u solves

u € Cm"[0, )

u(tye D, for tel0, «)
Lu = Au on [0, «)
40) =0,

then u =0 on [0, ).

This definition is formulated so as to correspond with that in [3].
As will be shown in 5.B, one can take the subspace Y to be all of
D,, in which case Y, = D,. In this case (1) is automatically satisfied
whenever p(A) # &, because then D,: is dense in X. Thus the reader
may recast the definition in less complicated terms without affecting
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the validity of the main theorem or its proof.

C. DEerINITION. The operators S, described above such that S,f
solves (P) for fe Y are called the solution operators.

D. DEerINITION. Let (P) be as in Definition B, the definition of
“well posed.” The corresponding scalar equation is

u € C"[0, =)
) Lu = zu
a0)=1.

(u is complex valued.)

For each ze€C, this equation has a unique solution which will
be denoted «(t, 2), so that formally S, = (¢, 4).

3. Statement and proof of main theorem.

A. THEOREM. Let X be a Banach space, A be a closed but not
necessarily bounded linear operator on X, and

(ueC‘"’[O, o)

P){u(t)eDA for 0=t<
(Lu(t) = Au(t) for 0=t<
a0) = f

be a well posed problem im X with solution operators S, for 0 <
t < oo. Let

u € C™[0, <)
(p){Lu(t) = zu(t) for 0=t < oo
740) =1
be the corresponding scalar equation with solution (t, z). Then
¥(t, 6(4)) < o(S,) -

Note that denoting S, by the suggestive mnotation +(t, A), this state-
ment become (t, 0(A)) S a((t, A)).

Proof. The reverse containment of the complements will be
shown, i.e., that if (¢, ) €po(S,), then A€ p(4). Assume A is such
that (¢, N) € p(S,).

By the variation of parameters formula there is a scalar valued
kernel K(t, s) which is C™ in ¢t and C® in s so that if K¢ is defined
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by (K¢)(t) =StK(t, s)¢(s)ds for any continuous scalar valued or X

valued functioon 6, then u = K¢ is the unique scalar or X valued
solution of

{(7\' —Lu=2¢
240)=10.
Consider the problem
3.1) {(Z” —Lu =57
@(0) =0.

For any fixed fe X, S,fis continuous in ¢. Hence, given fe X, (3.1)
has a unique C*™ solution KS,f. Let N,f = —KS,f. Since S,f is
continuous in s for each fixed f, the ||S,| are uniformly bounded
on compact intervals by the uniform boundedness principle. Since
in addition K is continuous in s, N, is seen to be € <#(X) for each
fixed ¢.

Assume, as we may by 5.B, that Y = D, so that S,f solves
Lu = Au, #(0) = 0 for any feD,.

If feD,, then LS,f = AS,f, and since LS,f is continuous in ¢,
sois AS,f. Thus, S,fe D, and S,f is continuous in ¢ with respect to
the D, norm. Hence, since N,f = —KS,f = ——St K(t, s)S,fds, N,feD,.

Furthermore '

~Ov = AN = || K(t, )0 — A)S.5ds

3.2) = | K¢, 90 — D)S,sds
= K(n — D)S.f,
since A is closed and S,f solves

{Lu = Au

#0) = f .

Since —(n — A)N,f = K(» — L)S,f, by the variation of para-
meters formula —(n — A)N,f must solve
{(7» — Lyu(x — L)S, f
@(0) = 0.
Clearly S,f solves

A

{(N — L = — L)S.f
@0) = f .
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Hence S,f + (. — A)N, f solves

(3.3) {(Z” — L =0
a0) = 7 .

But (3.3) is obviously solved by 4+, A)f. By uniqueness in the initial
value problem S,f + (A — A)N,f = (¢, N)f. Hence

(3.4) (v — AN, f = (y(t, \) — S)f for all feD,.

Since A and S, commute by Lemma 5.A, (A — A)N,f=
t t
v — A) S —K(t, 8)S, fds = S _K(¢, $)S.(A — A)fds = N,(, — A)f. Hence
[] 0
from (3.4)

(3.5) N\ — A)f = (¥, ) — S,)f for all feD,.

By using the density of D, in X and closure and continuity proper-
ties, one concludes from (3.4) that

(3.6) (= AN, f = (yE,N) — S)f, feX.

Since (¢, M) € o(S,), (¢, N) — S,) is a bijection. Thus, (3.6)
shows that (, — A) is onto, and (3.5) shows that (A, — A) is one to
one. Thus (A — A):D,— X is a bijection, and from the closed
graph theorem, (A — A)™* exists in & (X), i.e., e p(4). This com-
pletes the proof.

Note. For X such that (¢, M) € o(S,), (W — 4)™" = N,(4(¢, M) — S~
This fact follows from (8.6) and from the fact that (» — A)™* exists
as a bounded linear operator.

4. Remarks. There are a variety of well posed second order
problems to which the theorem applies. Any problem solved by a
cosine function [1, Ch. 2, §8] is well posed as are all problems consi-
dered by Stafney in [3].

Containment may be strict in the semigroup e & o(e™) case.
A genuine second order example of strict containment in the main
theorem also exists where L = d*/dt. Hille and Phillips mention [2,
§26.16] a (C,) group (T, whose generator A has empty spectrum.
Then

x' = A%
x(0) = f
2'(0) =0

is well posed and solved by the cosine function S, = 1/2(T, + T_,).
Yet, spectral equality fails in cosh ((V'0(42)) € o(S,), because
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o(A®) = @, but o(S,) = @.

It appears that the initial conditions on (p,) and (P,) in the
statement of the theorem can be altered to other conditions differing
in only one coordinate from the zero initial conditions. We think
our proof could be altered to reflect the change.

5. Commutativity results.

A. LEMMA. Let
Lx = Ax

#0) = f
be a well posed problem in a Banach space X. For all t> 0, if
feD,, then S,feD,, and AS,f = S,Af.

Proof. This lemma can be proved exactly as the special case in
[3] is proved.

In case p(4) # @, a more direct proof can be constructed by
noting that (» — A)7'S,(. — A)f and S,f both solve the same initial
value problem and so must be equal.

B. COROLLARY. In the Definition 2.B of “well posed,” Y can
be chosen to be all D,.

Proof. Suppose that Y and Y, satisfy the conditions of 2.B.
The only condition on Y that is not obviously met by D, is that
u = S,f satisfy

u e C™[0, o)
5.1) Lu = Au
a0) = f

for each feD,.

Let Y and Y, be as originally given. Choose feD,. Choose a
sequence (f,) from Y so that f, — f in the D, norm, that is f, — f
and Af, — Af in the norm of X.

Then since the norms of S, are bounded on finite ¢ intervals,
S,Af, — S,Af uniformly on finite ¢ intervals. Since S, and A commute

(5.2) AS.f, — AS,f uniformly on finite ¢ intervals.
For any +r€C([0, <), X) define K+ to the unique solution of

Lu = 4
2(0) = 0 .
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In particular this solution w is in C'*®. By the variation of parameters
formula Ky is given by

~ t
(Bt = || Ktt, s)w(s)ds
for some continuous kernel K.
Let ¢ be the unique (scalar) solution of
{Lu =0
a0) =1.
Then ¢¢g is the unique X valued solution of
{Lu =0
#w0) =g .
Both S,f, and KAS.f, + ¢f, solve
{Lu = Au
a0) = f.,
and so by uniqueness for the well posed problem,
(5'3) St.fn = KAStfn + ¢fn .

Since K is defined by an integral with continuous kernel and
since by (5.1) AS,f, — AS,f uniformly on finite ¢ intervals,

KAS,f,— KAS,f .
Clearly ¢f, — ¢f. Hence, from (5.3), taking limits of both sides,
(5.4) S.f = KAS.f + ¢f .

KAS,fsolves Lu = AS,f, AS,f is continuous, and ¢f solves Lu = 0.
Hence, both KAS,f and ¢f are in C™, and their sum S,f is also in
C™. This establishes the first condition in (5.1). Applying L to
both sides of (5.4),

(5.5) LS,f = AS,f .

Since (KAS.f)i- = 0 and (3()f)izs = $(0)f = 1f = F, (S.f)ieo = F. Thus
u(t) = S,f satisfies the other conditions of (5.1).

C. LEMMA. Let X be a Banach space and let
Lu = Au

~

w0) =f
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be a well posed problem in X with solution operators S,. Then the
solution operators commute with each other (that s, S,S, = S,S,,
s, t=0).

Proof. Consider s = 0 as fixed and ¢ as variable, so that L
depends on ¢ and takes derivatives in ¢. By Corollary B, take Y in
the Definition 2.B of “well posed” to be all of D,. For any feD,,
S.f €D, by Lemma A (commutativity result). Then by the defini-
tion of S,,

LS,S,f = AS,S.f
(Stsaf);o = (Sef)A .

But using the fact that S, is linear and continuous, S, commutes
with differentiation. S, also commutes with scalar multiplication.
Hence S, commutes with L. Thus

LS,S.f = S,LS,f = S,AS.f = AS,S.f,

(5.6)

and

(S8 f)i= = (S.f)" -
Hence,

LSsStf = ASsStf
&0 {<Ssstf>t=o = (5.

Now (5.6) and (5.7) show that both S,S,f and S,S,f solve
{Lu = Au
(0) = (S.f)",

and so sinee Lu = Au is well posed, the two solutions must be the
same. Thus

SsStf = Stsz

for all f € D,. Since D, is dense in X and S, and S, are continuous,
S,S; = S,S, on X.
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