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EXTENDING FUNCTIONS FROM PRODUCTS WITH
A METRIC FACTOR AND ABSOLUTES

TEODOR C. PRZYMUSINSKI

Extendability of continuous functions from products with
a metric or a paracompact p-space factor is studied. We
introduce and investigate completions mX and pX of a
completely regular space X defined as "largest" spaces Y
containing X as a dense subspace such that every continuous
real-valued function extends continuously from X X Z over
Y X Z where Z is a metric or a paracompact p-space, re-
spectively. We study the relationship between mX (resp.
pX) and the Hewitt realcompactification υX (resp. the
Dieudonne completion μX) of X. We show that for normal
and countably paracompact spaces mX — υX and pX = μX,
but neither normality nor countable paracompactness alone
suffices. The relationship between completions mX and pX
and the absolute EX of X is discussed.

1* Introduction* All spaces are completely regular and all

functions and mappings are continuous. Symbols F, M, C and P
denote classes of finite spaces, metrizable spaces, compact spaces and
paracompact p-spaces, respectively. We recall that X is a paracom-
pact p-space if it is a closed subspace of a product space M x C,
where M is metrizable and C is compact or—equivalently—if X is
an inverse image of a metrizable space under a perfect mapping.
For all undefined notions the reader is referred to [3].

Let X be a subspace of a space Y and let τ be a cardinal number.
We recall the definition of Pτ-embedding of X in Y. Our definition
is equivalent to the original definition of this notion involving the
extendability of continuous pseudometrics [see [10] for the proof
and for more information].

If τ is infinite, then X is PΓ-embedded in Y if every mapping
f:X-+B of X into a Banach space B of weight τ can be continuously
extended over Y. If τ is finite, then X is Pr-embedded in Y if X
is C*-embedded in Y. Moreover, X is P-embedded in Y if X is P r -
embedded in Y for every τ. It is known that P^-embedding is
equivalent to C-embedding [4]. The following theorem gives a
product-theoretic characterization of Pr-embedding. (XCZc*Y means
that X is C*-embedded in Y, etc.)

THEOREM 0 ([8], [10]). For a subspace X of Y and a cardinal
number τ the following are equivalent'.

(i) I Q T ;
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(ii) X x CC.C*Y x C, for every CeC of weight τ;
(iii) there exists a CoeC of weight τ such that XxCQC2c*YxCQ;
(iv) X x Dτ Cc*Y x DTf where D is the discrete two-point space.

COROLLARY 0 ([8], [10]). For a subspace X of Y the following
are equivalent:

( i ) XCpY;
(ii) X x C(Zc*Y x C, for every CeC;
(iii) there exists a CoeC of weight τ = \ X \ such that

Xx C0Cc*Yx Co;
(iv) i x ΰ ^ G ^ x Dτ, where τ = \X\. •

The above stated results suggest the following definitions. By
Z we denote a nonempty class of spaces.

DEFINITION 1. Let X be a subspace of Y. We say that X is
Πz-embedded in Y if X x ZCc*Y x % for every ZeZ\ i.e., if every
mapping / : X x Z-+I can be continuously extended over Y x Z, for
ZeZ.

DEFINITION 2. We say that a space X is Πz-complete if there
is no space Y containing X as a proper, dense and i7z-embedded
subspace, i.e., if X is closed in every space containing it as a Πz-
embedded subspace.

DEFINITION 3. We say that a space Y is a Πz-completion of X
if Y is a /7z-complete space containing X as a dense Z7z-embedded
subspace.

The following fact is easy to prove.

BASIC FACT. Every space X has a uniquely determined Πz-
completion, denoted by τrzX, and πzX = {ye βX: XCnzXU {y}} =
Π {Y: X c Yd βX and Y is ^-complete). •

It is the aim of this paper to characterize and investigate
77z-embedding, i7z-complete spaces and i7z-completions π z X for the
classes M and P of metric spaces and paracompact p-spaces, respec-
tively. Let us put

mX — πMX and pX = πPX .
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The table below illustrates the introduced concepts.
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Clearly, the following inclusions hold for any space X:
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or
equivalently:

β'X
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C/ 0

μX mX

O (/
pX

u

X

It follows from well-known facts and the results proved in this
paper that if measurable cardinals exist then all inclusions in the
above diagram are in general proper and no other inclusions are
generally valid. On the other hand, if the nonexistence of measurable
cardinals is assumed, then the above diagram can be simplified as
follows:

REMARK 1. It is pointless to investigate 77z-completions for too
broad classes of spaces. For example, if the class Z contains all
spaces with one non-isolated point (in particular, if it contains all
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paracompact spaces), then πzX — X for every X (cf. [7]; Theorem
5.2). •

This paper consists of four sections. In §2 we present charac-
terizations of ΠM- and /7P-embeddings, ΠM- and /7P-complete spaces
and ΠM- and 77P-completions mX and pX. In § 3 we give an example
of a normal space X such that mX Φ υX and pX Φ μX. Section 4
is devoted to a discussion of the relationship existing between the
above introduced concepts and absolutes of topological spaces. Several
problems are raised.

2* Characterization theorems* Theorems 1 and 2 below give
characterizations of ΠM- and i7P-embeddings (for dense subsets X of
Y). By J(τ) we denote the hedgehog with τ spikes (see [3], Example
4.1.5). A set A is regularly open {regularly closed) if A = Int A
(A = ϊntfA).

THEOREM 1. For a dense subspace X of Y the following are
equivalent:

( i ) XCnMY;
(ii) X x ZCic*Y x Z> for every first countable Z;
(iii) X x J(τ) Cc*Y x Jfr)> where τ = \X\;
(iv) XCc*Y cmd every regularly open increasing cover {Un}n<ω

of X can be extended over Y.

Proof. Implications (ii) => (i) and (i) => (iii) are obvious.
(iii) => (iv). Let [Un}n<ω be an increasing regularly open cover

of X and for every n let Fn denote a closed set in X such that Un —
Int Fn. Since X is completely regular there exist families Wn —
{Wn>a}a<τ and Fn = {Fn,a}a<τ of cozero and zero sets, respectively,
such that Fn c Fn,a c Wn>a and Πa<rWn,a = Fn. (Notice, that if the
sets Fn are zero sets, then we can require that the families Wn and
Fn be countable.) For every n < ω and a < τ let fn>a: X-+I be
such that fnJFn,a = 0 and fn,a\(X\WnJ = 1. Represent J(τ) as the
set {(£, ά):tel, a < r} with points {(0, a): a < τ) identified to a point
θ and define a mapping / : X x J(τ) —> I as follows. If t = 0 then
we put /(&, (ί, α)) = 0. If ίe(0, 1], then we can find an integer
n = 1, 2, such that ί e [(1/w + 1), (l/n)]. There exists a unique
s 6 [0, 1] such that t = s(l/(w + 1)) + (1 -s)(l/n). Define for each xeX
and α < τ, f{x, (t, α)) = s. /n+J,β(α0 +'(1 - s) -/n,β(α;). Note that if
t = 1/tt for some integer w, the two possible values for f(xf (ί, α))
given by the above formula agree. Thus / is well defined and is
obviously continuous except perhaps at points of the form (x, θ).
We now verify the continuity of / at such points. Let xeX.
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There exists an n such that xeUn. Therefore, xe UnaUk(zFkc:
Fk,a for k ̂  n and a < τ and f\Un x Bn = 0, where Bn = {(ί, α) e
J(r): ί < 1M}.

By (iii) there exists a continuous extension f:Yx J(τ) —> I. To
prove (iv) it is enough to check that f\n<ωX\Uξ = 0 . Let yoe Y.
Then /(2/0, 0) = 0 and there exists a neighborhood W of s/0 in Y
and w ^ l such that f(W x Bn_,) c [0, 1). We shall show that
Wf)XczUn. Suppose otherwise. Then (WnX)\UnΦ 0 and thus
(W Π X)\Fn Φ 0 . Choose £0 e (WΓ\ X)\Fn and α < τ such that
αoeX\TFw,α. Then f(x0, ((1/n), a)) = fn,a(x0) = 1, but ^ oeT7 and
(1/w, α) e 5n_1. Contradiction.

(iv) => (ii). Let Z be a arbitrary first countable space and let
f: X x Z-> I. For every ί /e7 and s e Z put /(#, «) = fz(y), where
/# is the continuous extension over Y of the function fz:X->I defined
by f*(%) = /(», «). We shall show that the mapping f:YxZ->Iis
continuous. Let yQ e Y, z0 e Z, ε > 0 and f(y0, zQ) — sQ. There exists
a neighborhood U of the point y0 in Y such that /(U x {20}) c
(s0 — (ε/2), s0 + (ε/2)). Let K be a zero subeset of Fsuch that Y\Uc:
Int iΓ and yQgK and let 4̂. be a dense subset of Z. For every α e A
put

Ka = ]x e X:

and for every n < ω define

Π{Ka:aeAnBn} ,

where {Bn}n<ω is a decreasing neighborhood base at zQ in Z. The
sets Fn are closed in X and nondecreasing. (Notice, that if A is
countable, then the sets Fn are zero subsets of X.) The sets Un =
lntFn are regularly open and nondecr easing. We shall show first
that X=Uπ<ωϋ7n If xεlntK, then xeUn for every n. Other-
wise, # 6 U and there exists a neighborhood Ux of a? and n < co such
that

/(Z7. x5Jc(ί D -e, ί D + s).

Then Ux ciΓα, for all aeAf]Bn and thus ϋ , c jf̂ .
By (iv) there exist open sets Un in Y such that LL<«>^ = F a n d

UnΠ X = Un. Let w be such that yQe Un. Since y0 g Jί there exists
a neighborhood F of /̂0 such that Vf] XaUn\K. By the continuity
of / we have

/((Fi l l) x B,)c[β0 - J , βo +
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and therefore by the continuity of functions fz for z e Z and the
density of F Π l i n 7 we get

f(V x Bn)c[*o - y, s0 + γ]<=(8o - ε, s0 + ε) . •

The following variant of Theorem 1 will be used in §3.

THEOREM 1*. For a dense subspace X of Y the following are
equivalent:

( i ) X x MC.c*Y x M, for every separable MeM;
(ii) X x Z(Zc* Y x %> for every separable first countable space Z\
(iii) there exists a non-locally compact metric space Mo such that

I x JlίoCcΓx M"o;
(iv) X(Zc*Y and every increasing open cover {ί7n}n<ω of X, such

that Un = Int Fn for some zero sets Fn, can be extended over Y.

Proof. Implications (ii) ==> (i) and (i) ==> (iii) are obvious. The
proof of implications (iii) =* (iv) and (iv) => (ii) is analogous to the
proof of the corresponding implications in Theorem 1 (see the remarks
in parentheses). One should only notice that every non-locally compact
metric space contains as a closed subspace the subspace J*(ω) =
{(t, a) e J(ω): t = 0 or t = {IIn) for some n = 1, 2, •} of the hedgehog
J(ω) and use the fact that for any space Γ, a closed subspace F
of a metric space M and any mapping h: F x T -* I there exists a
continuous extension h: M x T —• I [13]. •

THEOREM 2. For a dense subspace X of Y the following are
equivalent:

( i ) XCZΠPY;

(ii) X x ZCLc*Y x Z, for every space Z of point-countable type1;
(iii) X x J(τ) x DrC.c*Y x J(τ) x Dτ, where τ = |X|;
(iv) I Q / α ώ IQCΓ.

Proof. The implications (ii) => (i) and (i) ==> (iii) are obvious. The
implication (iii) =*• (iv) follows from Theorems 0 and 1.

(iv) => (ii) Let Z be a space of point-countable type and / : X x
Z-+I. As in the proof of Theorem 1 we define / : Γ x Z - ^ ί b y
putting /(#, z) = fz(y). We have to show that / i s continuous. Let
yoeY, zoeZ, ε > 0 and /(#0, s0) = s0. Let C be a compact set of
countable character in Z containing zQ. By (iv) f\YxC is continuous.
Let G = {(y, 2 ) e Γ x C : /(?/, ») e (s0 - (ε/2), s0 + (ε/2)}. The set G is
open in Yx C and contains (yQf z0). Let us put L = {zeC: f(yQ, z) = s0}.

1 A space Z is of point-countable type if for every ZQ£Z there exists a compact
of countable character in Z.
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The set L is a zero set in C and thus L is of countable character in
Z and zoeL. Moreover, {y0} x LaG and therefore there exists a
neighborhood U of y0 in Y such that UxLaG. Let K be a closed
set in Γ such that Y\UdlntK and 2/0£ίΓ and let {Bn}n<ω be a de-
creasing base of neighborhoods of L in Z. Since / is continuous
and L is compact, for every x e U Π X there exists a neighborhood
[7, and n such that /(E7. x £ J c ( s 0 - (ε/2), s0 + (ε/2)). Put Hn =
{x 6 X: /({#} x 2?n))c|>0 - (ε/2), s0 + (ε/2}]. Of course, the sets Hn are
closed. Define

Un = Int(HnΌ(Kf)X)).

The sets Un are regularly open, nondecreasing and cover X, hence
by (iv) and Theorem 1 there exists an n and an open set Vsy0 in
Y such that Vn XaUn and VΓ\ K= 0 . Then /((FfΊ X) x JBJc
[so - (ε/2), so + (ε/2)] and consequently f(Vx J5Jc[so-(ε/2), so + (ε/2)] c
(so - e, s0 + ε). •

COROLLARY 1. For every X we have pX = m l f l

Proo/. pX = TΓpX = πMX Π πcX = mX Π j«X. •

COROLLARY 2. 1/ ίfcerβ are no measurable cardinals, then pX =
mX /or evβr̂ / X. •

COROLLARY 3. -For every X the following are equivalent:
( i ) μ(X x M) = μX x M, for every MeM;
(ii) μ(X x P) = μX x P , /or βwry P e P ;
(iii)

Proof. The implication (ii) => (i) is obvious. If (i) holds, then
X x M is C*-embedded in /̂ X x Λf for every MeM and therefore
μXczmX and pX = μXΠ mX = j«X.

If (iii) holds, then X x P x P ' is C*-embedded in μX x P x P'
for every P, P' eP which implies that X x P is P-embedded in
μXxP. •

The following three corollaries can be easily derived from
Theorem 1.

COROLLARY 4. A point y e βX belongs to mX if and only if
for every decreasing sequence {Fn}n<ω of regularly closed subsets of
X with empty intersection y g Γin<ω Ftx- D

COROLLARY 5. A space X is Tl^-complete if and only if for
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every y e βX\X there exists a decreasing sequence {Fn}n<ω of regularly
closed subsets of X such that y e Γ\n<ω Fβ

n

x c βX\X. •

COROLLARY 6. A normal space X is Tin-complete if and only
if every closed ultrafilter in X, such that every decreasing sequence
of its regularly closed elements has a nonempty intersection, converges
to a point of X. •

REMARK 2. Since characterizations of P-embedding, Dieudonne-
complete spaces and Dieudonne completions are well known, Corollary
1 and Corollaries 4, 5, and 6 yield immediately characterizations of
77p-complete spaces and the 77P-completion pX.

It is easy to verify that the assumption in Theorem 1 that the
sequence {Un}n<ω is increasing is essential. Π

In [2] N. Dykes introduced the concept of c-realcompact spaces
and c-realcompactification uX of a space X. Later, these concepts
were inverstigated by K. Hardy and R. Woods in [5] and [14],
where new characterizations of uX were obtained and the relationship
between the c-realcompactification uX and the absolute of X was
established. It follows from Corollary 4 and Lemma 1.1 from [5]
that the concepts of c-realcompact spaces and i7M-complete spaces
are identical and that uX = mX for every X. (We shall discuss the
relationship between completions mX and pX and the absolute of
X in §4). The following two results were known for c-realcom-
pactification uX (see [2] and [5]).

COROLLARY 7. Suppose that X is normal and countably para-
compact. Then:

mX = υX and pX = μX .

In particular, X is ΠM-complete iff X is realcompact and X is Tip-
complete iff X is Dieudonne-complete.

Proof. Always mXaυX and μXapX. Let y eυXcz βX and
let {Fn}n<0) be a decreasing sequence of regularly closed subsets of
X such that Γ\n<ωFri = 0 . There exists a sequence {Kn}n<ω of zero
subsets of X such that FndKn and Πn<«-SΓ» = 0 Let fn:X->I
be functions such that /^(O) = Kn and let fn: βX -»I be continuous
extensions. Then the function / = Στl<α>(l/2Λ)/n* βX-^I is continu-
ous and JΓ\0) = ΓL<_ω Kβ/(ZβX\X. Therefore f'\0) n υX = 0 and
V £ Γϊn<ω Fix c Γίn<ω Kβ/\ which in view of Corollary 4 shows that
y emX.

Since pX= μX Π mX= μX Π oX and υXi) μX, we have pX= μX. Π
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COROLLARY 8. The following are equivalent:
( i ) X is psedocompact;
(ii) mX^βX;
(iii) pX = βX.

Proof. Implications (iii) => (ii) ==> (i) are obvious. If X is pseudo-
compact, then clearly μX — βX and since pX— mXf] μX, it suffices
to show that mX = βX, but every decreasing sequence of regularly
closed subsets of a pseudocompact space is finite and thus βXamX
by Corollary 4. •

Let us finish this section with two problems.

PROBLEM 1. Characterize closed /7M-embedded (/7P-embedded)
subspaces of a space X. Is it true that a closed subset of a space
X is /TV-embedded iff it is /ZVembedded and 77c-embedded (=P-
embedded) in X?

PROBLEM 2. Investigate the 77L-completion πLX of a space X
for the class L of Lindelof spaces.

3* An example* As yet no example was given of a space X
such that mX Φ υX or pX Φ μX. In view of Corollary 7, such a
space cannot be normal and countably paracompact. It follows from
the properties of the example in [6], the identity uX = mX and
Theorem 1.11 from [5] that there exists a countably paracompact
space X such that υX = μX Φ mX = pX. (Moreover, the space X
is locally compact and υX is σ-compact.) Below we shall give an
example of a normal space with analogous properties, thus showing
that normality of X is not sufficient in Corollary 7. Our example
will be a modification of M. E. Rudin's example [12].

EXAMPLE 1. There exists a collectionwise normal space X such
that the space υX = μX is paracompact and for every metric space
M we have:

( * ) I x I C vX x M iff M is locally compact .
6

In particular, υX = μX Φ mX = pX and for every metric M we
have:

(**) μ(X x M) = μXx M iff Λf is locally compact .

REMARK 3. The existence of a (nonnormal) space satisfying (**)
follows from results of H. Ohta [9]. •
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LEMMA 1. It suffices to construct a collectionwίse normal space
X such that:

(a) the space oX — μX is paracompact;
(b) there exists an increasing regularly open cover {Un}n<ω of

X which does not have an open locally finite refinement and such
that the sets Un are zero subsets of X.

Proof. Clearly X x MCic*vX x M for every locally compact M
(see [1]). Conversely, suppose that X x Mo C.c* vX x Mo for some
non-locally compact space Mo. From Theorem 1* it follows that the
open cover {Un}n<ω can be extended over υX and since υX is
paracompact, it must have a locally finite open refinement. Con-
tradiction. •

By [12] there exists a collectionwise normal space Y of non-
measurable cardinality such that the space υY = μY is paracompact
and an increasing open cover {Vn}n<0} of F, which does not have a
locally finite open refinement.

Let Z be a closed subspace of the space Y x ω (where ω bears
the discrete topology) defined by Z = \Jn<0)( Vn x {n}) and let Wn =
Zf) (Vn x {1, 2, , n}). One easily sees (cf. [11]), that Z is collec-
tionwise normal, the space υZ — μZ is paracomprct, the sets Wn are
zero subsets of Z and the increasing open cover {TFn}n<ω of Z does
not have a locally finite open refinement. Observe, that the sets
Wn need not be regularly open.

Now, let X = Z x I, where points (s, ί) e X are isolated if t Φ 0
and have a base of standard product neighborhoods if t = 0 (cf.
[11]). One easily checks that the space X is collectionwise normal,
the sets Un — Wn x I form a regularly open covering of X with no
locally finite open refinement and the sets Un are zero subsets of X
By Lemma 1 it suffices to show that the space υX — μX is para-
compact.

Let T = {(y, t)eυZ x LyeZ if t Φ 0} be considered with the
topology in which points (y, t)eT are isolated if t Φ 0 and basic
neighborhoods of a point (y, 0)eT are of the form π~\U)\K> where
U is a neighborhood of y in υZ, π: T —> υZ is the projection and K
is a closed subset of X=Zx I contained in Zx(0, 1]. It is not difficult
to verify that the space T is paracompact and contains X as a dense
subspace. To show that υX = μX = T it suffices to show that X is
C-embedded in T.

Let f: X-+R and let f:T-*R be an extension of / defined by
f(yt 0) = #(?/) for y 6 ϋZ, where g:υZ-+ R is the extension over uϋΓ
of the function g: Z-+R defined by g(z) = /(s, 0). We have to show
that / is continuous. Let y0 e uZ, ε > 0 and f(y0, 0) = s0. The set
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K, = {x 6 X: I f{x) - s01 :> ε} is closed in X. Let

| -} x ί .

The set K = K, Π K2 is closed in X and contained in Z x (0, 1]. Let
W = n r 1 ^ e tλ£: |/(y, 0) - so| < ε/2})\K. The set W is an open neigh-
borhood of (τ/0, 0) in T and /(TF)c(s0 — ε, s0 + ε), which completes
the proof. •

4* Relationship with absolutes* For information about absolutes
of topological spaces we recommend [15]. Here, we only recall that
for every space X there exists a uniquely determined extermally
disconnected space EX called the absolute of X such that EX can
be mapped by a perfect irreducible mapping kx onto X.

If the space Z is compact, then EZ is the set of all ultraίilters
in the Boolean algebra R(Z) of all regularly closed subsets of Z with
the topology generated by the base {X(F): FeR(Z)}, where X(F) =
{peEZ:Fep}.

The mapping kz:EZ-+Z is defined by kz{p) — z iff {z} = n J>
The sets λ(.F), for FeR(Z), constitute all clopen subsets of the
(compact) space EZ.

In general, EX is the inverse image of X under the mapping
kβz: E(βX) -> βX and kx = fc^ | # X The space # X is dense in E(βX).
We put x*(K) = X(KβX) n EX for all JK:eΛ(X).

It is well-known that E(βX) — β{EX) for every space X and
that always υ(EX)aE(υX) and μ(EX)aE(μX). The following
result has been proved by Hardy and Woods (we replace everywhere
uX by mX). Here k denotes the mapping kβx: E{βX) -»βX.

THEOREM 3 [5], [14]. The following are equivalent
(i) υ(EZ) = E(υX).
(ii) υX = m l
j>forβ precisely, mX is the largest subspace T of βX such that

k-\T)cυ(EX). •

We were unable to establish if the analogous fact holds for μX
and pX. However, the following two propositions are true. We
denote by sX the largest subspace T of βX such that k'\T) c μ(EX).

PROPOSITION 1. A point yeβX belongs to sX if and only if
for every locally finite regularly closed cover {Fs}seS of X there exist
8ίf - -, sneS such that y e I n t ^ U^

PROPOSITION 2. Always sXapX.
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Before proving Propositions 1 and 2 let us note that sX = μX
if and only if μ(EX) = E(μX) and thus if μ(EX) = E(μX), then
pX = μX. Two natural problems arise:

PROBLEM 3. Is always sX =

PROBLEM 4. Is pX=μX equivalent to μ(EX)=E(μX)sί (Natural-
ly, a positive answer to the first question answers positively the
second.)

Proof of Proposition 1. Suppose that yesX and let {F8}aeS be
a locally finite regularly closed cover of X. Then the family
{X*(Fs):seS} is a locally finite clopen cover or EX2. Since k~\y)<z
μ(EX), there exist indices su — ,sneS such that

c U

But /3(#X) = #(/3X) and therefore X*(Fs)
β{EX) = X(Fβ{X)) for all seS.

Consequently, k~\y) c (J?=1 X(Fβx) and since & is a closed mapping,
there exists an open set Uey in βX such that k-\U)c:\Jn

i=1X{FβX).
Then ye Z7c \jUFβX.

Conversely, suppose that p e k~\y) and let Z7 = {Us}seS be a locally
finite cozero cover of EX. Since EX is extremally disconnected, we
can assume that U is pairwise disjoint and we have to show that
there exists an s e S such that peUβ{EX). Since the sets Z7S are
clopen, there exist regularly closed sets Fs in X such that Us = λ*(Fs)
and clearly Uβ{EX) = λ(F/z). The family {i^}ses is a regularly closed
cover of X and thus there exist slf -—,sneS such that ye
I n W U2U ̂ ff Therefore, (J?U ̂ 4 Γ G 2> a n d since 2) is an ultrafilter,
there exists an i such that FβX e p which means that p 6 X{FβX) =

Proof of Proposition 2. By Theorem 3, s l c m l and since
pX = mX n μ-5Γ it is enough to show that sX c μX. Let # e sX and
let {278}s6s be a locally finite cozero cover of X. We have to show
that there exists a n s e S such that ye UβX. Let {V3}seS be a cover-
ing of X such that Vsc:V8(zU8 for every seS. The family {F8}ses
is a locally finite regularly closed cover of X and thus there exist
8U *"fsneS such that ye\J^=1Vif. Therefore, there exists an i
such that y e Vβx c Uβx. D

Added in proof. Professor H. Ohta proved that a positive answer
to Problems 3 and 4 above is equivalent to the non-existence of

To show that this is a cover of EX, we use the local ίiniteness of {Fs}ses.
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measurable cardinals. He also—independently—obtained some of the
results in this paper. The interested should consult his paper: (1)
The Hewitt real-compactification of products, Trans. AMS 263 (1981),
363-375; (2) Local compactness and Hewitt real-compactifications of
products II, to appear; (3) Topological extension properties and pro-
jective covers, to appear; and also his Ph. D. Thesis at the University
of Tsukuba, 1979.

For new results involving /7^-embeddings, the reader is referred
to the paper by A. Wasko, Extension of functions defined on product
spaces, to appear in Fund. Math.
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