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ON COMPACTIFICATIONS OF METRIC SPACES

WITH TRANSFINITE DIMENSIONS

LEONID LUXEMBURG

In this paper we prove that every separable metric space
X with transfinite dimension Ind X has metric compactification
cX such that

IndcX-IndX, indcX^indX, D(cX) = D(X),

where ind X(Ind X) denotes small (large) inductive transfinite
dimension, and D{X) denotes the transfinite D-dimension.
More generally, let T be a set of invariants (ind, Ind, D).
We consider the following problem:

Let R £ T and X be a metric space. Does there exist a
bicompactum (complete space) cXz>X such that

μ(X) = μ(cX) for μeR.

When it is not so, we give counterexamples. We give also
necessary and sufficient conditions of the existence of trans-
finite dimensions of separable metric space in terms of
compactifications.

()• Introduction* In this paper we consider three transfinite
invariants: ind X, Ind X, D(X) where ind X (respectively, Ind X) is
small (respectively large) transfinite inductive dimension and D(X)
is D-dimension, see [3], Henderson.

DEFINITION 0.1. (a) ind X = - 1 <=> X = 0 .

(b) We assume that for every ordinal number a < β the class
of spaces X with ind X ^ a is defined. Then ind X ^ β if for every
point xeX and a closed subset F, xgFaX, there exists a neigh-
borhood Ox of x such that

Oa(zX\F

ind FrOx ^ a < βτ .

We put ind X = min {β: ind X ^ β}.
(c) The dimension ind^X of a space X in a point xeX<^ β if

there exists a base {0̂ , λ} in this point, such that

ind FrOλ < β .

We put indx X = min{/3: ind* X ^ £}.
1 FrA denotes the boundary of A.
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DEFINITION 0.2. (a) Ind X = - 1 « X = 0 .

(b) Let for every ordinal number a < β the class of spaces X
with Ind X <J α is defined. Then, Ind X <; /3 if for every pair of
disjoint closed subsets F and G there exists a partition2 C between
JP and G such that

Ind C <; α < /3 .

We put

Ind X = min {/3: Ind X <: /3} .

We note that the dimension ind we can also introduce using
partitions, because if cue Vc.X\F and V is open, then FrV is a
partition between as and F.

Let us introduce some notations. For every ordinal number β
the equality β = a + n holds, where a is a limit number or 0, and
n — 0,1, 2, . Then we set

DEFINITION 0.3. See [3], Henderson. We put D(φ) = — 1. If
χ=£ 0 then D(X) is the smallest ordinal number β such that there
exists a collection of sets

{A,: 0 ^ ξ ^ 7}

satisfying the following conditions:
(a) X = U {Aξ: 0 ^ f ^ 7}.
(b) Every set Aξ is closed and finite dimensional.
(c) For any d <; 7 the set

U {A,: £ ̂  α <; 7} is closed in X .

(d)
(e) For any point a e l there exists the greatest number δ ^ 7

such that cceAδ.
If there is no such number β we put D(X) = A, where Δ is an

abstract symbol such that Δ > β for any ordinal number β and Δ +
β = β + J = z β χ J = J χ β = J.

If conditions (a)-(e) hold then equality (a) is called a β-D-
representation of a space X.

Hence, for any space X the dimension D{X) is either an ordinal
number or the symbol Δ.

For any compact metric space X having dimension Ind X
2 A partition C in X between sets A and B is a closed set in X such that X\C =

U U F, Uf)V= 0,AcU,Bc:V, for some open in X sets *7 and V\
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InάX^D(X)

(see [3], Henderson). For further results concerning D-dimension see
[11], Luxemburg. Inequalities

ind X ^ Ind X

and

(1) D(X) ^D(Y), i n d X ^ i n d Γ for I c F

are evident for all topological spaces. However, the dimensions
indX and IndX are not defined for every space. For example
Hubert cube Iω has no inductive transfinite dimensions [5], p. 51
(Hurewicz and Wallman). Let

Z= \JIn

be the discrete union of Euclidean cubes In. Then obviously, ind^ =
ω0. However the dimension Ind X does not exist. But obviously

(2) if for a space X the dimension Ind X exists, then the dimension
ind X also exists3.

There are compact metric spaces X such that ind X < Ind X < D(X),
see [12], [13], Luxemburg.

In what follows all spaces are assumed to be metric and all
mappings to be continuous if otherwise is not stated.

A space X we call finite dimensional if dim X <; n for some n —
— 1, 0,1, 2, , where dimX is the covering dimension4. For finite
dimensional metric space X

(3) D(X) =

and

(4) D{X) = Ind X = ind X = dim X

if X is separable.

DEFINITION 0.4. For any space Z we denote by P(Z) a closed
subset such that Z\P(Z) is the union of all finite dimensional sets,
open in X. For spaces X and Y with diamY< oo we denote by

8 For compact metric space X the dimension ind X exists if and only if the dimen-
sion Ind-X" exists (see [22], Smirnov).

4 dim X ^ n if for any open covering U of a space X there exists an open refine-
ment V of U having the order S n + 1, i.e., the intersection of any (n + 2) elements
of V is empty.
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C{X, Y) the space of all continuous mappings f:X-+Y with the
metric d(fί9 f2) = su^{d(f(x)} /2(α?)): x e X}, where δ is the metric on Y.
We note that the space C(X, Y) is complete if Y is complete. We
consider a Hubert cube Iω to be the set of all sequences {xt}, 0 <;
»i ^ 1, with the metric, defined by the equality

*({»*}, {»<}) = Σ l*< - Λl-2-* , i = 1, 2, . . . .

The number xi is called the ΐ-coordinate of a point x = {&,} € Γ".

1* On homeomorph mappings to the Hubert cube*

THEOREM 1.1. {The Compactification Theorem). Let X be a
separable space and a fixed countable system of closed sets Lif (i —
1, 2, •••) such that dimensions Ind Li exist.

Then the set Ψ of all homeomorphisms f: X->Iω of the space X
to the Hilbert cube Iω such that for each i the equalities

(a) Ind Li = Ind/(L7)

(b) ind ̂  = ind ζ^

(c) D(L<) =

(d)

are satisfied contains an everywhere dense set of type Gδ in the space
C(X, Iω).

In the case when the dimensions Ind Ci are finite, this theorem
has been proved in [8], Kuratowski. See also [14], Luxemburg for
infinite dimensional case.

COROLLARY 1.1. For any separable space X having dimension
Ind X there exists a separable compactification X such that

IndcX = IndX, ind cX = ind X, D(cX) = D{X), P(cX) = P(X) .

Proof. It is sufficient to put in Theorem 1.1

L< = X, cX=f(Li).

For the proof of this theorem we need some preliminary lemmas.

LEMMA 1.1. Let A and B be two fixed closed sets in the space
X and put

C=AnB.

Then for any n = 1, 2, the set ψn of mappings f from the space
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X to a compact space Z such that

fζA) Π f(B)\O1/nf(C) = 0 5

is open in C(X, Z).

Proof. We suppose that the set φn is not open in C(X, Z). Then
for some feφn there exists a sequence of mappings gk e C(X, Z)\φn9

k = 1,2, , such that

( 2 )

and

g~jA) Π gJβ)\O1/n~ξjβ) Φ 0 .

Therefore for any k there eixsts a pair of points ak eA,bke B, such
that

1 _~ i i

(3) k n

where δ denotes a metric on Z. Since Z is a compactum there
exists a point p e 2 such that

(4) p = lim gki(akι) = lim gkiQ>ki)

for some subsequence of integers &έ. Since lim^oo ^fci = / we have

(5) p =

Consequently

(6)

Let us show that

(7)
n

where δ(p, f(C) = mf{δ(p, x): x e/(C)}.
We suppose on the contrary. Then there eixsts a point qeC,

satisfying the condition:

( 8 ) #(/(?), P) < — — ε

n
O&~4? denotes ^-neighborhood of the set Λ.
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for some s > 0. By virtue of (2), (5) we can find an integer kt such
that

(9) d(gkι, f) < ±-, δ(p, gki (aH)) < ±, j-< ± .

From (3), (8), (9) it follows that

1 - 1 ^ δ(gki(aki), gki{q))
n k>i

ίS δ(gki(ak{), p) + 8(p, /(<?)) + δ(f(q), gki(q))

in 4

= JL_ ±
n 2 *

Consequently l/kt > e/2, which contradicts the condition (9). Thus,
condition (7) holds. Consequently from conditions (6), (7) it follows
that

pef(A)nf{B)\O1/n(f(C)) ,

which contradicts condition (1). Hence the set φn is open in C(X, Z).
Since obviously

(10) Φ=Γ\Φn

we obtain that φ has type Gδ in the space C(X, Z). Π

LEMMA 1.2. If in Lemma 1.1 we take Z = Iω, then the set φ of
all mappings f: X —> Iω such that

f(A) n f{B) = f{C)

is everywhere dense Gδ-set in C(X, Iω).

Proof. First we show that the set φn is everywhere dense in
C(X,Iω). Let f:X->Iω be an arbitrary mapping and e > 0. We
can find an integer k such that

An

Let us define a mapping g:X-*Iω, such that

(12)
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We put

(13) U = r\Omnf(C))

Then the set U is a neighborhood of the set C in the space X.
Therefore,

(A\U) n (B\U) = 0 .

Consequently, there eixsts a function φ: X —> [0, 1] such that

(14) φ(A\U) = Q, φ(B\U) = l.

We will define a mapping g:X->Iω by the equalities

for i £ k , gk+ί(x) =
(15)

&(&) = 0 for i > k + 1 .

where gt (respectively /*) is ί-coordinate of g (respectively / ) . Ine-
quality (12) follows from (11), (15). Let us show that

(16) £(3) n ΈΪB)\oυnW) = 0 .

We assume on the contrary. Then there exist two points aeA and
beB such that

(17) δ(g(a), g(CT) ̂  A , δ(g(b), glC)) ^ ± , δ(g(a), g(b)) < 2~<*+1>
n n

where δ is a metric in Iω. From condition (11), (15) it follows that

δζξCStfn, Ϊ(B\U)) ̂  2-^» .
Consequently

either g(a) $ g(A\U) or g(b) £ g{B\U) .

Let, for example g(a)£g(A\U), then obviously a£(A\U) and, conse-
quently a 6 U. From condition (13) it follows that

δ(f(a), flC)) < -p- .
4:71

C o n s e q u e n t l y , f o r s o m e p o i n t ceC

(18) δ(f(a), f(c)) < -A- .
An

By virtue of (12), (18)

δ(g(a), j(P)) ^ d(g(a), g(c))

), f(a)) + δ(f(a), f(c)) + δ(f(c), g(c))

-
71
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which contradicts the condition (17). Consequently equality (16)
holds and geφn. We have proved that the set φn is everywhere
dense in C(X, Iω). By Lemma 1.1 φn is open in C(X, Iω). Since,
obviously

then by Baire's theorem φ is an everywhere dense (τδ-set. •

Let X be a space, then we denote by Gx the set of all subsets
A c C(X, Iω) such that A contains an everywhere dense Gδ-set in
C(Xf Iω). We note that from Baire's theorem it follows that

(19) if 4 , 6 ^ = 1,2, . . . ) , then Π Λ e G x .

In what follows we shall use the assertion (see [5], Hurewicz
and Wallman).

(2(ΐ\ ^ ^ *s a s e P a r a ^ e space, then the set of all homeomorphisms
f: X-* Iω contains an everywhere dense G5-set in C(X, Iω).

The following two lemmas can be proved by well known
standard methods. However we shall prove them for the com-
pleteness.

We remind the reader that g: X-^Y is an ε-mapping if diameter
g~\y) < ε for any point y e Y.

LEMMA 1.3. Let KaX be a compactum in a space X, then the
set of all mappings f: X —> Iω such that the restriction of f to K is
a homeomorphism is an everywhere dense Gδ-set in C(X, Iω).

Proof Let φε be a set of all mappings / : X -> Iω such that the
restriction fκ of a mapping / to K is an ε-mapping, and ψε be a
set of all ε-mappings g: K-+ Iω. Then ψε is open and everywhere
dense in C(K, Iω), see [5]. Consequently φε is open in C(X, Iω). Let
us show that φε is everywhere dense. Let f:X->Iω be a mapping
and d > 0. Since ψε is everywhere dense there exists an ε-mapping
g:K->Iω such that

d(fX9 g) ^ I .

Since IωeAR there is an extension g: X—> Iω of a mapping g. We
put
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g(x) f o r \ ( f < L
h(x) =

Then, obviously d(h, f) <: δ/2 < δ and since g(x) = (as) for α? 6 K we
have /&6 ê. Therefore, the set φε is open and everywhere dense in
C(X9 Iω). Our lemma now follows from (19) and the equality

I I ψl/n
n=l

LEMMA 1.4. Let A be a closed subset of a space X and dim A ^
n, then the set φ of all mappings f: X —> Iω such that

dim fζA) ^ n

is an everywhere dense Grset in C(X, Iω).

Proof. Let Kε be a set of all mappings f: X-> Iω such that

dn+1(fΰ)) < e

where dn+1(f(A)) is an (n + l)-coeίϊicient of Urysohn, i.e., the inf of
ε > 0 such that there is a covering of f(A) with open sets of di-
ameter <e and of order <; n + 1.

Then, clearly

φ = fl Ki/n .

Therefore by virtue of (19) it is sufficient to prove that Kί/n is
open and everywher dense set. Let feK1/n then there exists a
finite collection of open in Iω sets V = {Vlf , Vs} such that

(21) f(A) c U Vi9 diam F, ^ — , order V^n + 1.

It is evident that the set 0 of all mappings / : X->/ ω satisfying the
condition (21) is a neighborhood of / in C(X, Iω). Thus, Kι/n is open.
Let us prove that KUn is everywhere dense. Let g:X->Iω be a
mapping. Since dim A ^ n we can construct by Kuratowski method
[8] a mapping / :X->J ω , such that

dz(f, g) < e

and f{A) is contained in w-dimensional polyhedra. Therefore dim f(A)t£

n and dn+1(f(A)) — 0. Consequently, / e K1/p. Thus the set Kί/9 is

everywhere dense in C(X, Iω). Π
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2* Further lemmas for the compactification theorem*

DEFINITION 2.1. A space X is called weakly infinite dimensional
if for any countable sequence of pairs {Fif GJ of closed sets in X
(ί = 1, 2, •••)»iT<n6i= 0 , there exists for every i a partition Ct

between Ft and Gt such that

ή c4 = 0 ,

for some k — 1,2,
Every finite dimensional space is clearly weakly infinite dimen-

sional.

DEFINITION 2.2. A countable system of open sets Un, n = 1, 2, ,
in a space X is called convergent if for any discrete in X sequence
of points {Xi}, i = 1, 2, , there exist numbers p and n, p, n =
1, 2, such that a?, 6 Un for i ^ p.

If the system {Un} is convergent then the set X\U*=i^n is called
the limit of this system. Let a space X be weakly infinite dimen-
sional and

Un — {x: x e X, there exists a neighborhood Ox 3 x

such that dim Ox S n] .

Then we have, see [19], Sklyarenko:
(SI) The system of sets {Un} is convergent and has a compact

limit.

COROLLARY 2.1. // a space X is infinite dimensional and weakly
infinite dimensional then

( i ) the set P(X) is a nonempty compactum.
(ii) Ind(X\0P(X)) < ω0 for any neighborhood 0P(X) of a com-

pactum P(X).

Proof The compactness of P(X) follows the equality

(2)

and Theorem (SI). Let P(X) = 0 . Since X is infinite dimensional,
there exists a sequence of points xt in X such that

(3) xte ϊ/nΛU {D*: j < n%) , ni+1 > ntf nt = 1, 2, .

From condition (3) it follows that a sequence {#J is discrete in X
but by Theorem (SI) the system {Un} is convergent. We obtain the
contradiction. Consequently P(X) Φ 0 .
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If condition (ii) does not hold then there exists a sequence of
points {Xi} with property (3) and such that xi e X\0P(X), consequently
a sequence {#J is discrete in Xand we again obtain the contradiction.
Therefore the property (ii) holds. •

We shall use the following theorem, see [21]; Smirnov.
(SMI) If the space X has dimension Ind X then X is weakly

infinite dimensional.

LEMMA 2.1. If sets A, B are closed in X = A (J B and the set B
is finite dimensional, a ^ ω0 and

Ind A < a (ind A < a)

then

Ind(A U B) < a (ind(A U B) < a) .

This lemma directly follows from [10] (Levshenko), Theorems 1, 1',
p. 257. •

LEMMA 2.2. If B is a bicompactum (not necessarily metrizable)
and CaB\P(B) is a closed subset, then

dim C < oo .

Proof From Defininition 0.4 it follows that every point xeC
has a closed finite dimensional neighborhood V(x) The lemma now
follows from the compactness of C and the sum theorem for dimension
dim.

LEMMA 2.3. Let X be an arbitrary normal space (not necessarily
metrizable) and (A, B) be a pair of two closed disjoint sets in X.
Let also PaX be a closed set and C be a partition in X between
Ax = A Π P and Bx = B Π P. If the set C has a type Gδ in X then
there exists a partition CQ in X between A and B such that

Co = C, U C 2 ,

where sets Ct and C2 are closed in X, CL c C , C 2 c X\0P for some
neighborhood OP of the set P. (We do not suppose here that A1Φ 0
and B, Φ 0.)

Proof. Since C is a partition between Aλ and Bx there are such
open sets U, V of that

(4) Uf)V= 2), X\(U\JV) = C, A^U, BLCV .
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Consequently

(A\U)ΠP=(B\V)f)P= 0 .

Since X is a normal space, there exists a closed neighborhood W of
the set P such that

(5) WΠ((A\U)\J(B\V))= 0

and W has a type Gδ. We put

(6) ϋi = (TΓU AUB)\(B U (T7\C7)), F, = (T7U A U £)\(A U (W\V)) .

Then sets ϋx, Vx are open in TF U A U I?. Since An B = 0 , by virtue
of (4), (5), (6)

ϋi n Vί = TΓU A U B\A U B U (WW) U (WΛT̂ i) = 0 ,

AdUlf B<zVx.

Consequently the set

A U B)\(tfχ U 7J = (A U (W\V)) Π(S

is a partition in Wl) A\J B between A and 2?. Since the sets W and
C are G,, the set C1=Wf)C is also a G,-set. Consequently there
exists a continuous function φ:WΌ A U 5—> [ — 1, 1] such that

9>"ι(0) = Cx , φ(A) = - 1 , 9>(B) = 1 .

Let φ:X-*[ — 1, 1] be any continuous extension of φ. We put

Then obviously

since C^C^XXW and TF is a closed neighborhood of P, there exists
a neighborhood OP c W of the set P such that

CoXC^C^XXOP. D

DEFINITION 2.3. Let ̂  = {2 :̂ i = l, 2, •} be a countable system
of sets in a space X and the set UaX be open. Then the system
J^ is called simple with respect to U if

(7) U=\JFi'
2 = 1

(8) ^ , 0 ^ = 0 for \i-j\ > 1
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(9) The system F is locally finite on U and sets Ft are closed in X.

LEMMA 2.4. Let B be a bicompactum not necessarily metrizable
and f:B-*Kbe a zero dimensional mapping* in a compactum KJ
If there is a closed set PcB and a simple, with respect to (B\P),
system {i?J in B such that:

(10) f{P) n f(Bt) = 0 for every i = 1, 2, . .

(11) dim/(£,)< -

(12) the restriction of f to P is a homeomorphism

and

(13) Ind K ̂  a

then Ind B <; α.

Proof We shall prove this lemma by induction on a. If a < ω0

then for any bicompactum B having zero-dimensional mapping in a
dimensional compactum K we have

Ind B ̂  Ind K ̂  a .

(See [10], Pasynkov.) Let a ̂  ω0 and for all α' < a our lemma is
proved. Let F, G be a pair of two disjoint closed sets in J3. By
virtue of (12)

f(FnP)Πf(GnP) = 0 .

Then by virtue of (13) there exists a partition D between f{F Π P)
and f(G Π P) such that

(14) Ind D ^ β < a .

We put

(15) C = / - '

Then, since iΓ is metrizable and DcK is closed, D is a Ga-set. Con-
sequently, C is also a G rset. Moreover the set C is a partition
between î 7 Π P and (? Γ) P in J5. By virtue of Lemma 2.3 there exists
a partition Co between JF7 and G such that:

(16) Co^C.ΌC,, C . C C , C 2 C I \ 0 P

for some closed sets Ct and C2 and a neighborhood OP of a set P.

6 A mapping / is zero dimensional if dim/-1^) ^ 0 for any point x in image /.
7 In our terminology a compactum is a metrizable bicompactum.
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We note that if B' c B is a closed set, B\ = Bt Π -B', P ' = P Π JS,
X' = f{B') then all conditions of Lemma 2.4 are fulfilled for bicom-
pactum Br (we have only to change notation). Consequently, if
Ind f(β') < a then by inductive assumption Ind Bτ <̂  Ind f(B') < a.
Therefore for proving inequality

(17) Ind Co < a

we have only to prove that

(18) Ind /(C2) < oo .

Indeed, as it was mentioned above we have only to prove that

Ind /(Co) = Ind / ( Q U /(C2) < a .

By virtue of (14), (15), (16) we obtain the inequality

(19) Ind /(d) ^ Ind D ^ β < a .

By Lemma 2.1 and (18), (19)

Ind (/(Cx) U /(C2)) < a .

Let us prove inequality (18). By conditions of the lemma we have

and the system {Bi9 i = 1, 2, } is locally finite on B\P. Since C2 c
B\P and C2 is a subbicompactum of B then for some finite collection
Bh, - ,Bik we have

C2a\JBis.
s=l

Consequently, by virtue of (11)

dim /(C2) ^ max{dim f(Bis): s = 1, , k) < oo .

Since /(C2) c K and ίΓ is a metrizable space, dim /(C2) = Ind /(C2).
Thus inequality (18) and consequently (17) holds. Therefore Ind B <^a.

LEMMA 2.5. If for any two closed disjoint sets F, G in weakly
infinite dimensional space Z such that

FUGQP(Z)

there exists a partition C having the dimension Ind C < a(a ^ ω0)
then Ind Z <L a.
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Proof. Let (A, B) be an arbitrary pair of disjoint closed sets in
Z. If either A Π P(Z) = 0 or B Π P(Z) = 0 then either the set A
or J5 belongs to the set Z\OP{Z) for some neighborhood OP(Z) of
the set P(Z). By virtue of Corollary 2.1 there exists a finite dimen-
sional partition C between A and U; consequently

Ind C < ω0 <^ a .

Let Λ = A Π P(Z) ^ 0 and Bx = JS n P(#) ^ 0 . By the given
condition there exists a partition C between A1 and 5X such that

(20) Ind C < a .

Since Z is metrizable, C is a Gδ-set and by virtue of Lemma 2.3
there exists a partition Co between A and B such that

(21) C . c C , C2aX\0P, Co = C, U C2

for some closed sets Ĉ , C2 and a neighborhood OP of the set P. By
virtue of Corollary 2.1

Ind C2 < oo .

From (20), (21) it follows that

Ind Cx < a .

The inequality IndC0 < a now follows from Lemma 2.1 and (21). •

LEMMA 2.6. If for any point p e P(Z) in a weakly infinite
dimensional space Z and for any closed set FcP(Z), F$p, there
exists a partition C in Z such that

ind C < a{a ^ ω0)

then ind Z <^ a.

The proof is similar to the proof of Lemma 2.5.

COROLLARY 2.2. For any weakly infinite dimensional space Z
the following assertions hold:

(a) Ind Z ^ a « for any closed sets F,G,F\jG<z P(Z), FΓ\G =
0 there is a partition C with Ind C < a. a ^ ω0.

(b) ind Z <; a <=> for any closed set F c P(Z) and a point x e
P(Z)\F there is a partition C with ind C < a. (a ^ α>0)

COROLLARY 2.3. If X has the dimension IndX and YaX is
weakly infinite dimensional then
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(22) I n d Y ^ I n d X .

We shall prove this corollary by induction on a — Ind X. If
a < ω0 our assertion is known. Let a ^ ω0 and F, G be a pair of
two disjoint closed sets in P(Y). Since Γ c l w e have

P ( 7 ) c P ( I ) .

Since by Corollary 2.1 P(Y) is a compactum, the sets F, G are closed
in P{X) and by inductive assumption there exists a partition C
between F and G in X such that

Ind C < a .

Then C Π F is a partition between i*7 and G in Γ and since C Π Γ is
closed in Y it is weakly infinite dimensional space. Consequently by
inductive assumption

Ind(CnΓ) ^

Inequality (22) now follows from Corollary 2.2. •

LEMMA 2.7. Let ^ = {£/*: i = 1, 2, •} δe α system of open sets
in a space X, a a limit ordinal number <ωt and

(23)

Then for any sequence of ordinal numbers 7< such that

(24) 7 m > 7 , , s u p 7 , = α i = l , 2 , •••

ίfterβ βccisίs α simple, with respect to U, system ^ — {î J such that

D{F%) £ 7, .

Proof. We take a system of open sets jr = {Vt} such that

(24) 7 i C 7 i + i £ P , U ^ - ί ^ (i = l,2, . . . ) •
ί=l

Since X is metrizable, there exists an open covering {D%) of the set
U such that the covering {A} consisting of closures Dt is a refinement
of T and ^ . Since coverings T and ^ are countable, we can
require a covering {Dz) to be countable. Then there exists a closed
covering £έf = {iϊj of Ϊ7 such that

(26) H^HtCzDt (ϊ = l,2, . . . ) .
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By virtue of (25) the sets Hi7 D{ are closed in X From condition
(23) it follows that

(27) D(Hd =ί -D(A) ^ Dφύ ίk βi < a .

We can now construct by induction open sets Wt such that:

(28) i)Hh<zWt<zWi<z\JDi<zU
k=l i=l

(29) W<<zWi+ι.

By (27), (28) and the sum theorem for union of finite number of
closed sets with D-dimension [3], Henderson, we have

(30) D(Wt) S max {Dφt): i = 1, , A;} = δt < a .

Since gίf is a covering of U, we have, by virture of (28)

(31) ύwt=U.
ϊ=l

From conditions (24), (30) it follows that there exists such subsequence
{Ύn(i)}ί = 1, 2, of a sequence {TJ SO that

(32) DiWd £ ΎUW_U n(i + 1) > n(i) > 0 , i = 1, 2, .

Since the space X is normal, from condition (29), it follows that for
any i there exist such open sets

VnW, •••, F n K + 1 ) (ΐ = 0,1, •••)

so that

(33) VnW = Wt, Fn t < + 1 ) = W€+1, 7, = 0 for 0 ̂  i < n(ί) .

(34) Vnm+h c 7 n K ) + 4 c F n ( i ) + 4 + 1 fc = 0, , w(i + 1) - w(i) .

By virtue of (11), (32), (33), (34), (31) we have

(35) D(V ί )^Z)(W < + 1 )^7,«, ^ 7 , for n(i) ^ j ^ n(i + 1)

(36) 2>(7,) = - 1 ^ 7 y for 0^j<n(l)

(37) ^cF^c^UF^ί/.
i=l

We put

(38) Ft = Vt\Vt^ f o r i > 0 , Fo = 0 .

Then for j* > i, F< Π ίy = 0 . Consequently, by virtue of (37) the
system {FJ is locally finite. Conditions (7), (8) follow'from (37), (38).
Inequality D(Ft) ^ % follows from (35), (36), (38). •
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COROLLARY 2.4. For any space X there exists a simple with
respect to X\P(X) system {Ci} such that

(39) dirndl i (i = 1,2, •••)

Proof. Let Un be the set defined by equality (1), then obviously

dimί7n <̂  n

and by definition

Hence by Lemma 2.7 there is a simple, with respect to X\P(X),
system {CJ such that

dim d = D(Pt) ^ i = 7(ΐ) . D

LEMMA 2.8. If D(X) ^ ω0 then D(X) = α>0 + D{P(X)).

Proof If D(X) = J then our lemma is trivial. Let D(X) =
β < A, D(P(X)) = a and the equality

P(X) = U {Aζ: ξ ^ J(α)}

be the α-D-representation of P(X). By virtue of Corollary 2.4, we
have the representation

X - P(X) U U Ct

for simple, with respect to X\P(X), system {CJ such that property
(39) holds. Let us put

BωQ+ξ = Aξ , Bi = Ci , for i < α)0 .

Then clearly the equality

X = u {Sf: f ^ J(o)0 + α) = ft)0 + «/"(«)}

is a (α>0 + α)-i?-representation of X. Therefore

β ^ ω0 + a .

Let the equality

-2Γ = U , = f ;£ J03)}

be a /3-jD-representation of X and β — ωQ + δ. Let us put

J 5 f = A ω Q + ξ
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and

(40) T = U {Bt: ξ ^ J(δ)} .

Then (40) is clearly a <5-D-representation of T. From conditions
(b)> (c), (e) of Definition 0.3 it follows that the set X\T is a union
of open finite dimensional sets. Consequently, P(X) c T and

D{P{X)) ^ D{T) ^ δ .

Hence ω0 + δ ^ ω0 + α. Π

3* Standard representations and standard mappings*

DEFINITION 3.1. Let

(1) X = P(X) U U C i .

Then equality (1) is called a standard representation of a space X if
(a) The system {CJ is simple with respect to X\P(X). (In par-

ticular ctnP(X) = ctr\Ci= 0 for |ΐ - ϋ > i.)
(b) dim Ci£n(i).
(c) For any x e C<, δ(x, y) < 1/i for some ?/ 6 P(X), i > 0, where

δ is a metric on X.

LEMMA 3.1. Let Xbe a weakly infinite dimensional space. Then
there exists a standard representation of X.

Proof. We put

C< = \x: ^ - £ δ(x, P(X)) £ T A - 1 for
i % + 2 ^ + D

Then, clearly the equality (1) and properties (a), (c) hold. Property
(b) follows from Corollary 2.1. •

DEFINITION 3.2. Let (1) be a standard representation of X and
f: X-+Iω be a mapping such that:

(a) / is a homeomorphism on P(X).

(b) fmnjXP(X)) = /Wn /1Q = 0 for |i - ϋ > 1.j
(c) dim f(Ct) ^ dim Ci ^ % < 00.

Then / is called a standard mapping.

LEMMA 3.2. Let f: X-+Iω be a standard mapping of a weakly
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infinite dimensional and infinite dimensional space X. Then

(2) f(X) = f(P(X)) U U /(Q

(3) the system {/(Q} is locally finite on f(X)\f(P(X)).

(4) f-ίPf(X)dP(X).

(5) Df{X)<,D(X).

Proof. Let us show that

. for any sequence {yt}, such that yt e f(X), yt ί f(Cό) for j < i
we have

lim ym) = α for some point α e f(P(X)), and some subsequence

{ } of sequence

Indeed, we can take for any i a point f(xt) such that

(8) «(/(&*),!/*)< 4 , f(x<)ίf(PJ) for i

Consequently a?€ e P(x) U U {Ĉ : j1 ̂  i} and by condition (c) of Definition
3.1 we have

(9) δ(xi9P(Z))<l/i.

Since X is weakly infinite dimensional, P(X) is compact and from
(9) it follows that

._. limxMi) = b for some point beP(X) and some subsequence
(10) i=°°

{#n(ί)} of sequence {xj.

Let /(&) = a, then property (7) follows from (8), (10). Let us prove
(2). Let xef(X)\f(X),x0f(C^ for any i, and xίf(P(X))9 then
clearly we can construct a sequence {̂ /J such that

lim yt = α? and yt g /(Cy) for j <i .

From condition (7) it follows that x e f{P(X)) and we obtain the
contradiction. Hence property (2) holds. Similarly we can prove
(3). Indeed, if xe f(X)\f(P(X)) and any neighborhood Ox of x
contains points of infinitely many sets /(C^), we can construct a
sequence {yt} satisfying (6) and such that

lim yt = x .
i-+oo

By virtue of (7) xef(P(X)) and we again get the contradiction.
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Therefore the system {7(Q} is locally finite on f(X)\f(P(X)). Let
us prove (4). Since P{X) is compact, the set f(P(X)) is closed and
the set f(X)\f(P(X) is open in fζX). By virtue of condition (2) and
(b) of Definition 3.2 we have

f(X)\f(P(X)) - u /(Q
(11)

From conditions (3) and (c) of Definition 3.2 it follows that

(12)

Consequently, condition (4) follows from (11), (12). Property (5) follows
from (12). Indeed, by Lemma 2.8

D(f(X)) = ωΰ + D{Pf{X)) <ίωo + Df(P(X))

= ωo + D{P{X)) - D{X) .

We used here the equality Df{P{X)) = D(P(X) which follows from
condition (a) of Definition 3.2. •

LEMMA 3.3. Let U be an open set in some closed subset A of a
space X and φ the set of all mappings f: X-^ Iω such that

f(U)f]f(A\U)= 0

then

φeGx .

Proof. Let {Ft: i = 1, 2, •} be a collection of closed sets in a
space X such that \J?=1 Fi = U. Then by virtue of Lemma 1.2 and
(19) §1 the set ψ of all mappings f: X-±Iω such that

f(Ft)Πf(A\U)= 0

belongs to Gx. Since clearly φZDψ, we have also φeGx. •

LEMMA 3.4. Let X be a weakly infinite dimensional closed subset
of a space Y and φ be a set of all mappings f:Y-^Iω such that f
is standard on X. Then φeGγ.

Proof. By Lemma 3.1 there exists a standard representation (1)
of a space X Since the system {CJ is countable, our lemma follows
from Lemmas 1.2, 1.3, 1.4 and (19) §1. •

LEMMA 3.5. Let U be an open set in a space X and V = Intί?
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{where IntU is an interior of U). Then

FrVaFrU, F = I n t F , UczV

and the set X\{FrFUF) is everywhere dense in X\V. The lemma
is trivial.

An open set V such that V = Int V is called canonic.

LEMMA 3.6. Let Ind X = a, ind X = β(a ^ β ^ ωQ) and X(μ) =

{U}: Ύ eΓ}μ = α, δ be two system of open canonic in X sets such that
for all Ύ e Γ:

(kl) InάFrUa

r<a
(k2) indFrUΪ<β
(k3) λ(α) forms a large base in P(X)8 and λ(δ) forms a base in

P{X).
Then if f: X—^I" is a standard mapping such that:

(k4) Ind FrU«r ̂  Ind f(FrUr

a)

(k5) ind FrU? ^ ind f(FrUb

r)

(k6) f{ϋf) Ω f(X\Uf) =
(k7) IfWHc Ur\ then f{UQ Π f(X\UQ = 0
(k8) f(FrUϊ) Π f(X\FrU?) = 0 .

For αM 7 6 Γ α%d μ = a,b then

(a)

(b)

(c)
Moreover, for proving condition (a) iί is sufficient to assume that
conditions kl, k3, k4, k6, k7, k8 hold and for proving condition (b) it
is sufficient to assume that conditions k2, k3, k5, k6, k7, k8 hold, and
condition (c) follows from the standardness of mapping f.

Proof. Condition (c) follows from Lemma 3.2, property (5). Let

us prove (a). Let Ff G be a pair of disjoint closed sets in PfζX).

We put

(13) FX =

Since / is a standard mapping, by Lemma 3.2(4) we have

(14) F, U F2 £ P{X)

and clearly

F1 n F2 = 0 .
8 This means that for any pair (F, G) of closed disjoint sets in (X) there is a set

Uf, open in X, such that F c 17? c X/G.
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By virtue of kl, k3 there exist such sets U^, U?2, U?z e λ(α) so that

(15) FczU^cu* cZ7 c φ, cU%cX\G,,

(16) Ind F r l 7 £ < a .

We put

(17) U = U?2,V= Int /(l/y = f(U;t)\Frf(U#, A = f(X)\f(U^) .

Since / is a continuous mapping,

(18) f(U) = f(U).

Let us show that

(19) A = f(X\U) .

By virtue of (k6), (k8), (18)

(20) f(U) Π f(X\U) Π f(X\FrU) = 0 .

Since U is canonic set, from Lemma 3.5 it follows that the set
f(X\U) Π f(X\FrU) is everywhere dense in f(X\U), consequently

(21) f(X\U) = f(X\U) n f(X\Fr U) .

From (18), (20), (21) it follows that

(22) f(X\U) = f(X\U) Π f(X\Fr U) c f(X)\f(U) = A .

Since

fϊx)\fϊϋ) = (fϊxW) u fζΠ))\fζU)

and the set f(X\U) is closed, we have

(23) A = f(X)\f(U)cf(X\U).

The condition (19) follows from (22), (23). By virtue of (17), (18), (19)
we have

(24) v = f(U)\(f(U) n (f(X)\f(U))) = f(U)\(f(U) n f(x\u)).

From conditions (13), (15), (17), k7 it follows that

FaJxϋΐ), jWn) Π 7CX 7̂) = 0

Consequently,

(25) FcV.

On the other hand, by virtue of k7, (15), (24), (13)
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VQf(m,jW)nf(x\ϋϊ) = 0,

Consequently

(26) V(Zf(X)\G.

Since the set V is open (condition 17), it follows from (25) and (26)

that FrV is a partition between F and G in /(.X). Since by (24)

Vcf(U) and F is open, we have

(27) FrV = V\Vaf(U)\V=f(U) Π

But by virtue of (19), (17)

(28) Frf(U) = /(J7) Π (f(X)\f(U)) = /(£/) n

Prom (k6), (27), (28) it follows that

f(Frϋ) = Frf(U) z>FrV
f{Fr U) = Frf{ U)^>FrV.

By virtue of (k4), (16), (17)

Indf{Fτϋ)

Consequently Ind JFV V < a. Inequality (a) now follows from Corollary
2.2(a). Similarly one can prove inequality (b). •

4* Proof of the compactification theorem* First we shall
prove some general theorems.

THEOREM 4.1. Let X be a closed subset of a space Y and dimen-
sion Ind X exists. Let φ be the set of all standard on X mappings
f:Y-*Iω such that

Ind f(X) ^ Ind X

DfζX) ^ D{X) .

Then Φ e Gγ.

LEMMA 4.1. Let X be a closed subset of a space Y and dimension
IndX exists. (We note that by virtue of (2) (introduction) the
dimension indX also exists.) Let IndX = a, indX = β and β ^ ω0.
Then there exist two countable systems X(μ) = {Uμ

y\ 7 6 Γ}μ = a, b of
open in X canonic sets such that for all 7 e Γ conditions kl, k2, k3
of Lemma 3.6 are fulfilled.

Proof. The existence of systems X(μ) with properties kl, k2, k3
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is evident. Since IndX exists by (SMI) §2 and Corollary 2.1, P(X)
is compact. Consequently we can consider systems λ(μ) to be
countable. Indeed, from any base (large base) of compact metric
space we can select a countable subsystem which is also a base (large
base). By virtue of Lemma 3.5 all elements of these bases we can
consider to be canonic. •

LEMMA 4.2. Let in Lemma 4.1 φx be the set of all mappings
f: Y —> Iω such that f is standard on X and conditions k6, k7, k8 of
Lemma 3.6 are fulfilled. Then φx e Gγ.

Proof. Let φt be the set of all mappings f:Y->Iω such that the
condition kt(i = 6, 7, 8) of Lemma 3.6 holds. Since

FτUf = U?f]X\U?

and the systems λ(μ) are countable, from Lemma 1.2 and (19) §1 it
follows that

φQeGx.

Analogously φ7eGx. Inclusion φ8 e Gx follows from (19) § 1 and Lemma
3.3. Let ψ be the set of all mappings f:Y-^Iω such that / is
standard on X. Then ψeGx by Lemma 3.4. Since obviously

our lemma follows from (19) §1.

Proof of Theorem 4.1. We shall prove the theorem by induction
on a = Ind X. Let a < ω0 then by virtue of (3) (introduction)

IndX= άimX=D(X)

and our theorem follows from Lemma 1.4. Let a ^ ω0 then by Lemma
4.1 there exists a countable system λ(α) of open canonic in X sets
satisfying conditions kl, k3 of Lemma 3.6. Let ψ be the set of all
mappings f:Y-^Iω such that the condition (k4) is fulfilled. Then
from inductive assumption and (19) § 1 it follows that

ψ 6 Gy .

Consequently,

& = Ψ Π Φx e Gγ

where φ1 is the set defined in Lemma 4.2. Let / e φOf then / is
standard on A mapping. Morerver the conditions (kl), (k3), (k4), (k6),
(k7), (k8) are fulfilled. Consequently, by Lemma 3.6 / 6 φ, where φ
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is defined in Theorem 4.1. Hence φQ(Zφ. Consequently φeGγ. •

THEOREM 4.2. Let A be a closed subset of a space X and dimen-
sion InάA exists. Let A be strongly metrizable9 and φ be the set of
all standard on A mappings f: X-^Iω such that

Then φdGx.

Ind/(A) ^Ιnd(A)

DfζA)£D{A)

ind /(A) ^ ind A .

Proof. We shall prove the theorem by induction on β = ind A.
By virtue of Theorem 4.1 it is sufficient to prove that the set ψ of
all mappings satisfying condition (1) belongs to Gx. Let β < ωQy then

ind A = Ind A = dim A ,

see [23], Zarelua. Consequently, our theorem now follows from
Lemma 1.4. Let β ^ ωQ. In this case our proof is completely similar
to the proof of Theorem 4.1.

COROLLARY 4.1. Let X be a space and {LJ be a countable system
of closed subsets such that the dimension Ind Lt exists for every i.
Let Φ be the set of all mappings f: X-*Iω such that

(a) Ind 7(EJ ^ Ind L, (i = 1, 2, ).
(b) Df(jZ)^D{L%).
(c) if Lj is strongly metrizable for some j then in
(d) f is a standard mapping on Lt.

(e) /-'(P/cZύJcPCL,)
for any i = 1, 2, . Then Φ e Gx.

Proof. By Lemma 3.2 the condition (e) follows from (d). Our
corollary now follows from Theorem 4.1, Theorem 4.2 and (19) §1.

Proof of Compactification Theorem (1.1). Let ψQ be the set of
all homeomorphisms f: X->Iω of separable space X in Hubert cube.
Then, see [5], Hurewicz and Wallman,

(2) ψQeGx.

Since for every i and feψ0

9 The condition of strong metrizability of X is equivalent to the following one:
There exists an imbedding f: X^>Iωx ΠΓ=i Bif where Iω x Π~=i Bt is a product of

Hubert cube and a countable number of discrete spaces.
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Ind f(L%) = Ind L,, ind f(L%) = ind L, , D(f(Lί)) = D(Lt)

and f(Li) c /(Li), we have

(3) indL^ind/CEΓ), D(L<) ίί Df(L~)

see [3] (introduction). Inequality

(4) I n d L ^ Ind/(!,<)

follows from Corollary 2.3 and SMI §2. Let φQ = φ f\ ψOf where φ is
defined in Corollary 4.1. Then from Corollary 4.1, (2) and (19) §1
it follows that

(5) φ0 6 Gx .

Since / is a homeomorphism, we have f(P(X)) = P(f(X)) c P/(X)
Inclusion Pf(X)af(P(X)) follows from condition (e) of Corollary 4.1.
Consequently condition (d) of the Compactification Theorem also holds.
We obtain that ψ"DφQ, where the set ψ was defined in Theorem 1.1
and, by virtue of (5), ψ e Gx. The theorem is proved. •

5* Uniformly zero dimensional mappings*

THEOREM 5.1. Let X be a space and a fixed countable system of
closed sets Lif i = 1, 2, such that dimensions IndL έ exist. Then
the set ψ of all uniformly zero dimensional mappings10 f:X-+Iω of
the space X to the Hilbert cube Iω such that for each i we have:

(a) IndL, = Ind/(jQ

(b) D(L%) = JJ/gQ

(c) ind Lt S ind /(L<) ^ ω0 + ind Lt

(d) ind L̂  = ind f{L^) if Lt is strongly metrizable
(e) f is a standard mapping on Lt

contains an everywhere dense set of type Gδ in the space C(X9 Iω).

To prove this theorem we need some preliminary lemmas.

LEMMA 5.1. Let X be a bicompactum, not necessarily metrizable
(respectively by a metric space) and f: X —>Y be a zero dimensional
mapping (respectively uniformly zero dimensional) in a compactum
Y. Then

(a)
(b)

10 We recall that f: X—>Y is uniformly zero dimensional if for any ε > 0 there
exists δ > 0 such that for every set ^ c Y of diameter ~<# < δ the set f ~ \ ^ ) is a
union of a discrete collection of sets, each of them having the diameter <ε.
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Proof. Inequality (a) was proved in [23] (Theorem 1), Zarelua.
Let D(Y) = a and

be an α-D-representation of Y. Since zero dimensional mappings
of bicympacta (respectively uniformly zero dimensional mappings of
metric spaces) do not lower dimension Ind; see [17] (respectively
[6]), it is easy to see that

is an a-D-representation of X. Consequently, D(X) <; a. •

LEMMA 5.2. Let X, Y be spaces with dimensions Ind X, Ind Y
and f: X->Y be a uniformly zero dimensional standard mapping.
Then I n d Γ ^ I n d X .

Proof We shall prove this theorem by induction on IndF. Let
IndΓ = a and a < ω0. Then dimY = D(Y) = IndΓ ((3) introduction)
and our lemma follows from Lemma 5.1(b). Let a ^ ω0 and F, G
be a pair of closed disjoint subsets in X such that

FUG a P(X) .

By virtue of (a) definition 3.2 we have

f(F) n f(G) = 0 .

Since X is weakly infinite dimensional (SMI §2), P(X) is compact by
Corollary 2.1 and consequently sets f(F), f(G) are closed. Let C be
a partition between f(F) and f(G) such that

(1) Ind C < a .

Then f~\C) is a partition between F and (•? in X. Since clearly the
restriction of any uniformly zero dimensional standard mapping to
a closed subset is also zero dimensional standard mapping we have
by inductive assumption and (1)

Ind f~\C) ^ Ind C < a .

Our lemma now follows from Corollary 2.2(a). •

LEMMA 5.3. Let X be a space with dimension IndX. Then

Proof We will prove this lemma by induction on ind P(X). If
11 We consider that ω0 + ( — ! ) = ω0.
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ind P(X) = 0, then for any point x e P(X) and a closed set FaP(X)\{x}
there exists a partition C in X between {x} and F such that

c n P(X) = 0 .

Then by Theorem SMI and Corollary 2.1, C is finite dimensional and
ind G < ω0 + ind P(X). Therefore ind X^ωQ + ind P(X) by Corollary
2.2(b). If indP(X) ^ 1 then for any point xeP(X) and a closed set
FdP(X)\{x} there exists a partition C in X between {x} and jPsuch
that

ind(C n P(X)) < ind

Since clearly P(C) aC f] P(X) we have by inductive assumption that

ind C ̂  ω0 + ind P(C) < ω0 + ind P(Z) .

Our lemma now follows from Corollary 2.2(b). •

Proof of Theorem 5.1. Let R be the set of all uniformly zero
dimensional mappings f:X—>Iω. Then by virtue of [6], Theorem
2.15, p. 359 and (B), p. 354, Katetov

ReGx.

Let φ be the setdefined in Corollary 4.1. By virtue of this corollary

φeGx.

To prove our theorem it is sufficient to show that

(3) ψz>φ(\R.

Let / eφ n R. Then (e) is evident and (a), (b), (d) follow from Corol-
lary 4.1 and Lemmas 5.1, 5.2. Let us prove (c). Inequality

(4) indU<, ind/(L4)

follows from Lemma 5.1. By virtue of Lemma 5.3

( 5) ind f(L7) ^ ω0

By Corollary 4.1(e)/"1P/(Li) cP(LJ and since / is a homeomorphism
on P(Li) (see Definition 3.2(a)), we have

(6 ) ind PfζLΪ) ^ ind P(Lτ) ^ ind L, .

Property (c) now follows from (4), (5), (6). Thus property (3) and
Theorem 5.1 are proved.

6* On bicompactifϊcations of metric spaces*
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THEOREM 6.1. For any space X with dimension IndX there
exists a bicompactification δXz>X such that:

(a) Ind δ X = IndX
(b) DbX=DX
(c) ind X ^ ind bX ̂  ω0 + ind X
(d) ind bX = ind X if X is strongly metrizable
(e) weight bX = weight X.

Property (a) was also proved in [17], Pasynkov, for normal spaces.
We note that for every metric space X there is not a bicompactum
bX such that ind bX= ind X, Ind bX— Ind X. For example, if ind X= 0,
Ind X = 1 (see [18], Roy) then for any bicompactum bX with ind bX =
0 we feαve αiso Ind bX = 0.

We recall that a mapping / : X—>Y is called scattering (see [23],
Zarelua) if for any point xeX and its any neighborhood UBX there
is a neighborhood F9/(a?) such that for some open sets Wl9 W2aX
we have:

f-\V)=W1ΌW2, W1r\W2=09 xeW.czU.

Every uniformly zero dimensional mapping is obviously scattering.

Proof of Theorem 6.1. Since for a space X with weight X < Ko
the theorem is trivial, we suppose weight X ^> fc$0. By virtue of
Theorem 5.1 there exists a uniformly zero dimensional mapping
/ : X-> K in compact Kalω such that we put bX = K the conditions
(a) — (d) hold and / is a standard mapping. Since / is scattering,
there exists a bicompactification bXzDX and a scattering mapping

F:&X >K

such that the restriction of F to X is / and the condition (e) holds.
This result was proved in [23]. Since X c δ X we have

(1) ind X ^ ind bX

see (1) (introduction). Since every scattering mapping is obviously
zero dimensional, we obtain by virtue of Lemma 5.1

(2) D{K) = D{X) ̂  DφX)

( 3) ωQ + ind X ^ ind K ^ ind δX

(4) ind X = ind if ^ ind δX if X is strongly metrizable .

Thus, conditions (b)-(e) hold. Moreover we obviously can consider

(5) δX = X
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where closures are taken in bX. Let us prove the inequality

(6) I n d & X ^ I n d X .

Since / : X —> K is a standard mapping there is a standard represen-
tation

(7) X = P{X) Ό\JCt

such that conditions (a), (b), (c) of Definition 3.2 hold. Let us prove
the equality:

(8) δX = P(X) U U C,.

Let #e&X\P(X) be any point. Then there are open in &Xsets
P(X) and WBX such that

(9) vnw= 0 .

We put

u^vnx.
Then £7 is a neighborhood of P(X) in X Since P(X) is compact for
some ε > 0, we have:

Oε(P(X)) = {*: δ(a, P(X)) < ε} c Ϊ7 .

Since (7) is a standard representation of X, by virute of (c) (Definition
3.1) we have:

Ct c U for 1/i <e .

Consequently, by virtue of (9),

W Π (P(X) U U Cy) = 0 for any £ such that 1/k < ε .

This proves the condition (8) and shows that

(10) the system {C,} is locally finite on 6X\P(X).

Moreover from condition (b) of Defininition 3.2 it follows that

(11) F(Ct) Π F{P{X)) = F(d) n F{C3) = 0 for \i - j\ > 1

and consequently

(12) C4 n C, = 0 = C4 Π P(X) for | ΐ - i | > l .

From conditions (8), (10), (12) it follows that (see Definition 2.3),
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(13) the system {CJ is simple with respect to X\P(X). Since /
is a standard mapping, we have:

(14) dim / ( Q = dim F{C%) < oo ,

and

(15) the restriction of F = / to P(X) is a homeomorphism.

From conditions (13), (11), (14), (15) it follows that conditions of Lemma
2.4 are fulfilled for B = 6X, B, = C, and P = P(X). Consequently by
Lemma 2.4

If Ind bX = X then our theorem is proved. Otherwise we can
put

b0X = 6X

and consider the disjoint sum bX = δ 0 ^ U .SΓ which obviously satisfies
conditions (a)-(e). Π

7* Separable spaces which have no compactifϊcations with
the same dimension ind* By Theorem 6.1 (or by Corollary 1.1)
every separable space X with dimension Ind X has a compactification
cX such that

ind X = ind cX.

In this section we construct examples of separable spaces which have
no compactification with the same dimension ind. Similar examples
for dimension D we shall give in the next section.

THEOREM 7.1. For any limit ordinal number a,ωo^a<(ΰ19

there exists such complete12 weakly-countable dimensional13 separable
space Xa with dimension ind Xa = a such that for any compactifi-
cation Yz)Xa we have

indΓ> a — indXα .

We note that by Hurewicz's theorem [5] every Unite dimensional
space X has a compactification CXZD X such that ind cX = ind X. It
also follows from Corollary 1.1 because for finite dimensional space
X Ind X = ind X

12 We consider a space X to be complete if it is an absolute Gδ-set or equivalently
if we can introduce on X a complete topology preserving metric.

1 3 A space X is weakly countable dimensional if X is a union of countable number
of finite dimensional closed subsets.
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DEFINITION 7.1. Let a be an ordinal number. We put

φ(a) = a for a <; ω0 .

If a> ω0, then a = ω0 + β for some β > 0 and we put

φ(μ) = ωQ + ω0 x β .

nil use the following results, see [13], §1, Luxemburg.

For any a < α^ ίfeere exists a weakly countable dimensional
compactum Ya such that:

(2) For α ί̂/ compactum Y having a dimension indY we have

From Definition 7.1 it follows that (see also [13, Lemma 1.1]).

(3) If a < β then φ(μ) < φ(β).

(4) If a = sup{/38} then φ(a) = sup{φ(/58)}.

Construction of the space X. Since a is a limit number there exists
such a sequence of ordinal numbers {7j so that

(5)
(α - sup{%: i = 1, 2, •} = supf/S,: i = 1, 2, •} .

By virtue of (1) there exists a weakly countable dimensional compacta
Ki such that

(6) inάKt^Ύt, IndJE, = 9>to).

Since by virtue of (3), (5), φ(βt) < 9>(7<) we can take in every com-
pactum Ki a pair of closed sets Fif G^Ft Γ\Gi — 0 ) such that

Any partition C between Fi and G* has the dimension Ind C ^

Let if/ be a compactum which we obtain by identification of all
points of the Fi with some point nt e Fi and by identification of all
points of the set Gt with some point vt e G{. Let

(8) Z = Qκ;, KiΠKi=0 for iΦj

be a discrete sum of compacta K[. We put
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Then U and V are disjoint closed subsets in Z. We take a countable
number of copies Zp of a space Z. The set in Zp which corresponds
to a set AaZ we shall denote by Ap. In the set ( J P = I ^ with
topology of a discrete union of copies Zp we identify the point vl
with the point up+1 for all w and p. Then we obtain the space

(9) Xa = UZp

such that

zp n ̂ P+1 = vp = up+1.
We put

Xa = Xa U {δ}

where in a point δ we define the topology by the open basis

and in Xa the topology is preserved.

Proof. From condition (7) it follows that

any partition C between {uj and {wj has the dimension Ind C ^

Consequently Ind K- > φ(βt) and by virtue of (2)

(11) ind £«' ^ £, + 1 = 7t .

Besides that

(12) ind Kl ^ 7, + 1 < a .

Indeed, from (6) it follows that for any point x e K[{{v%) U

ind,, K ^ 7έ .

Further if F is an arbitrary neighborhood of a point vt in iΓ,' and
i then

and consequently inάFrVtίΎi- Similarly one can prove that
ind,. K- ^ 7<β Hence (12) holds. From conditions (5), (8), (9), (11),
(12) it follows that
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ind Xa = a .

Since obviously FrGk+1 = Vk — Uk+1 and the set Vk is countable, we
have indδ I α ^ l . Therefore

(13) ind Xa = a.

Since compacta 2^ are weakly countable dimensional, compacta K[
are also weakly countable dimensional. Consequently the space Xa

is also weakly countable dimensional. Since Xa is a union of locally
compact separable spaces Xa and a point <5, Xa is complete and
separable. Let us prove that Xa is not contained in any compactum
Y with

(14) i n d Γ - α .

We suppose on the contrary. Then YZD Xa and (14) holds. By virtue
of (2)

We consider a neighborhood Oδ in Y of the point δ such that

(15) oδ n ϋί = 0 .

Since I n d F ^ 9>(α), it follows that there exist neighborhoods Wif i =
1, 2, , of the point δ such that for all i

(16) ^ c O , , WtdWi+lf inaFrW<<<p(a).

Since sets GA, k = 2, 3, , constitute a basis in Xα at the point δ,
there is some integer m such that Gm c WΊ Thus for k^m the
sets Z7m are contained in TFΊ We shall show that t / ^ Λ ^ contains
only finitely many points. Indeed, if u^lf u2~±, •••, is an infinite
sequence of points which does not lie in W2, then since v%f u%, c
UmcWmc:W29 we have that the set FrW2 separates points u^i and
vΐi-i and by virtue of (10)

(17) Inά Frfft ^ φ(βki) for any ΐ .

By virtue of (5) sup{/3fc.: i = 1, 2, -••} = « and consequently by virtue
of (4) sup{φ(/5fci): i = 1, 2, •} = φ(α). Therefore from (17) it follows
that

which contradicts the condition (16). Therefore, the set Um_\W2 is
finite. Analogously to the case /— m — 1 we can show by induction
that for / = 1, 2, , m — 1 the set UJ\Wm+1_^ consists of only finitely
many points. From this taking /— 1 we get that the set U\Wm is
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finite, but this contradicts conditions (15), (16). Thus, assumption
of the existence of a compact space Yz)Xa with indY = a = indXα

leads us to a contradiction. •

8* On compactifications of spaces with D-dimension* In [4],
Henderson, it was proved that every separable weakly infinite
dimensional space has a compactification of the same dimension D.
This result also follows from Corollary 1.1. In that paper it was
the conjecture which we prove in the following theorem:

THEOREM 8.1. Every separable space X has a compactification
cX ZD X such that

(1) D{cX) ^D(X) + Γ 4 .

This result appeared also in [7] earlier than ours. In [4]
Henderson gave an example of separable space X(D(X) = <je>0) which
is not contained in any compactum with the same D-dimension. In
the following theorem this result will be generalized for all a < a>19

a ^ co0.

THEOREM 8.2. For any a, ω0 <> a < ω1 there exists a separable
space Xa such that D(Xa) = a and Xa is not contained in any com-
pactum with the same D-dimension.

To prove Theorem 8.1 we need some preliminary lemmas.

LEMMA 8.1. Let

(2) X= ϋ{Ar:7

be a β-D-representation of a separable space X. Then X is homeo-
morphic to a subset of a separable space Z such that for some β-D-
representation of Z

(3 ) Z = U {Br: 7 ^ J{β)}

the set BJ{β) is compact.

Proof. By virtue of Lemmas 1.4 and 3.3 there exists a homeo-
morphism f:X-+Iω such that:

dim f(AJ{β)) ^ dim AJiβ)

) Π f(X\AJiβ)) = 0 .
14 We will prove that it is possible to take such compactification cX that cXeAR

and inequality (1) holds.
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We put Z = f(AJ{β))Όf(X), Bγ = f{Ar) n ^, (7 ^ J(/9)). Then
clearly J3J(i3) = f(AJiβ)) and the equality (3) is a needed /3-D-represen-
tation of Z. •

LEMMA 8.2. Let (2) be a β-D-represntation of a space X, a =
J(β) ^ ω0, then for any sequence of ordinal numbers {τf} such that

Vi+i > 7* , sup{T,: i = 1, 2, - •} = α

exists a simple with respect to U = X\Aj(iS) system of sets
= {Ft} such that

D{F%) £ Ί, .

Proof. Let <? < α then we put

C7 - X \ { A r : d ^ Ύ ^ J(β)} .

Then by Lemma 8.3 in [13], Luxemburg, D(Uδ) < a. From Definition
0.3 it follows that the sets Uδ are open and since the system
(Uu: i = 1, 2, •} is countable, our lemma follows. •

LEMMA 8.3. Let Pif i — l,2, 3, be clssed subsets of a space P =
Pi U P2 U P3 and P1 Π P3 = 0 . Let f:P-*K be a homeomorphism.
Then there exists a homeomorphism g: P —> K x /, where I = [0, 1],

αί (̂Px) Π #(P3) = 0 .

Proof Let φ: P—> [0, 1] be a continuous function such that
= 1, φ(P3) = 0. Then we put

Then, clearly, g: P—> K x I is a suitable mapping. •

DEFINITION 8.1. Let spaces P, P*ί = 1, 2, 3, satisfy the condition
of Lemma 8.3 and h: P1 U P2 -> if is a homeomorphism in a compactum
if such that

hϊF,) n fe(P2 n p«) = 0 .

We put T = ft(Px) U fe(P2) c if and in disjoint sum T U P3 we identify
every point fe(a?) 6 T with a point a? for x e P2 D P3 c P3. Then we
get a factor space, which we denote by μ(h9 if, Pu P2, P3).

LEMMA 8.4. There exists an imbedding π: P -> μ(h, if, Plf P2, P3) =
μ. Moreover, the space μ is separable and metrizable if P is separable
and metrizable, π(P) is everywhere dense in μ,
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μ = ΈζPύ U π(P2) U π(P3)

the set τr(P3) is closed in μ, 7ϋ(P1) is compact, π(P^) U π(P2) is closed

in μ and can be imbedded in K and π(P^) U π(P3) = 0 . The lemma
is evident.

We will consider the following conjecture:
^(a). For any separable space X with D(X) < α there exists

a compactification K~D X with D(K) < α.

DEFINITION 8.2. Let X = u {X*: i e /} be a union of spaces X*
then X is called an inductive limit X = LimίXJ if a set UaX is
open in X<=*?7Γ! X* is open in Xt.

LEMMA 8.5. Let a be a limit ordinal number and conjecture
C(a) is ture. Let the system {Fi}(i = 1, 2, •) in a separable space
X be simple with respect to X and D(Fi) < α. Then there exists a
locally compact separable space G, the system of compacta {(rj in G
and imbedding f:X—>G such that:

(a) W
(b) Gi is a compactum.
(c) The system Gi is simple with respect to G.
(d) D(Gt)< a, D(G) ^ a.

Proof. We will define by induction spaces 7 ^ 1 ^ = 0,1,2,
such that

(4) Γ-PoU UP.U^iU^U

( 5 ) p. = p. and P5 is compact j = 0, 1, , i .

where F3 is a closure of F5 in Yt.

( 6 ) QJ n Qί = 0 , Qί = Qί , Q̂  = Q{ , i^ί+2 = Fi+2

where Q« = Uΰo Pfc U F < + 1 , Qί = \J?=W Fh Q\ = F < + 2 .

( 7 ) p * n P , = P * n F , = 0 if | f c - / | > i .

( 8 ) D(Qi)< a.

We put Po = .Fo = 0, Fo = X Let a space Γ, for i = i0 be defined.
We put Ql = .F ί + 2. Then from (6) it follows that sets QJ, Qί, Q̂  are
closed in Yi. Since D(Fk) < α, from condition (8) and the sum
theorem for D-dimension (see [3], Henderson), it follows that D{Q[ U Q<
a. Consequently, by C(a) there exists an imbedding / : Q{ U Ql —> K
in a compactum Jί with D(K) < a. From Lemma 3.3 it follows that
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there exists an imbedding ψ: Q\ U Qt —> K x I such that ψ(Qΐ) Π
ΉQt Π Qt) = 0 . We put Yi+1 = μ(ψ, K x I, Qί, Q«, QJ), P*+i = [Fi+1],
where [Fί+i] is a closure of F< + 1 in Y"<+1. Conditions (4), (5), (6), (7), for
iQ + 1 follow from Lemma 8.4. Since by Lemma 8.4 Qjo+1 == Q{°+1 U
Q|o can be embedded in K x I, we have D(Qϊ0+1) < ΰ ( Z x ί ) . Since
α is a limit number, property (8) follows from the inequality D(Kx I)<ί
D(K) 4- 1 (see [3], Henderson). Hence, space Yt are constructed.
Let us put

where πt: Yt —> G are inclusions. From conditions (6), (7) it follows
that for every point x e G there exists i and an open in Yt set
U, xe UdP$ (J Pj+i(j + 1 ^ i)t such that π^U) is a neighborhood of
x in G. Consequently, by virtue of (7) we obtain the condition (c).
Conditions (a), (b) follow from (5). Since πt is a homeomorphism,
inequality D(Gt) < a follows from inclusion PjCiQKj < i) and (8).
Since collection of compacta {GJ is locally finite, the inequality
D(G) ^ a follows from sum theorem for D-dimension (see [3],
Henderson). Hence property (d) and Lemma 8.5 are proved. •

NOTATION. Let KciY, XCLY, K is compact and f:K->R is a
mapping in a compact space R, such that if x e K Π X then for any
y eK, y Φ x, we have f(x) Φ f(y). We will consider points x, y eY
to be equivalent if either x = y e Y\K or f(x) = f(y) and x, y eK.
We get a factor space which we will denote by F — F(K, X, Y, f)
and a factor mapping π:Y—>F.

LEMMA 8.6. If a space Y is metrizable and separable then F is
also metrizable and separable. Moreover, the restriction of π to X
is a homeomorphism.

The lemma follows from well known theorems on factor mappings.

DEFINITION 8.2. The equality

(9 ) Y = K U U Fi

we will call canonic representation of a space Y if
(a) the system {JPJ is simple with respect to Y\K.
(b) any sequence of points {xt} such that xt e Fi{kh i(k + 1) >

i(k), has an accumulation point yeK.

LEMMA 8.7. Let X be a separable space and (2) be a β-D-
representation of X(β ^ α>0). Then there exists a separable space

X such that Y has a canonic representation (9) and
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( i ) K is compact.
(ii) D{Fi)< a = J(β).
(iii) KnX=AJ{β).

Proof. By Lemma 8.2 there exists a simple with respect to V =
, system {i*7*} in a space X such that

(10) D{F[) < a .

Since {F'i} is a simple system, sets F\ and P* = ^.J(iS) U U {F'k: \ k — i \ > 1}
are closed and disjoint. Since the set of all homeomorphisms φ: X—>
Iω contains an everywhere dense Gδ-set in C(X, Iω), we get by Lemma
1.2 and (19)§1 a homeomorphism f:X—>Iω such that

(11) /(P,) n f(Fl) = 0 for any i

We put

(12) ^ = U
3=1 ϊ = l

(13) Y=K\J\JF<'
i=l

Since / is a homeomorphism, Γ D / ( I ) , we can consider that X =
/(JC). Then conditions (i)-(iii) follow from (10), (11), (12), (13). Let us
prove that representation (13) is canonic. Property (a) of Definition
8.2 follows from (11). Let {xj be such a sequence as in (b) of
Definition 8.2. Then XiCzFi{k)c:Ki{k). Since Ki+1aKi and Kt are
compact, there is an accumulation point y e ΠΓ=i Kt = K. The lemma
is proved. •

NOTATION. It is known (see [1], Bothe) that every separable
^-dimensional space is contained in compact separable (n + ^-dimen-
sional AR-space Rn+1. In particular Rn+1 contains a universal n-
dimensional compact space AnaRn+1.

LEMMA 8.8. In Lemma 8.7 we can also require that K = Rn+1,
Rn+1 f l l = AJ{β) c An, where n = K{β).

Proof. By Lemma 8.1 we can consider the set AJ{β) to be a
compactum. Let Y be a space from Lemma 8.7. Since dim AJiβ) ^
K(β) = n (see Definition 0.3 (d)), there is a homeomorphism g: AJ{β) —>
An c i2n+ι. Let f: K~+ Rn+1 be an extension of g. We put Y' =
F(K, X,Y, f). Then by Lemma 8.6 we can consider that I c f ,
and the equality

(14) Y' - R n + 1 U U ^
ΐ l
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is clearly a canonic representation of Y'. Condition

Rn+1 Π X = AJ{β)

is evident. •

LEMMA 8.9. Let X be a separable space, D{X) <̂  β, β = a + n,
a = J(/3), w = i£(/3). 2%e% ίΛere βcmίs a compact space KZD X such
that

( i ) D(jε)£β + l = a + n + l.

(ii) K=R*+1\J UT=iHifH=\Jΐ=iHifHr\R^= 0.
(in) DiH,) < a, D(H) ^ a.
(iv) Hi is compact and the system {Hi} is simple with respect

to H.

(v) There exists a homeomorphism i:Rn+ί-+Rn+ι such that

Proof. We shall prove our theorem by induction on β. If β <
ω0 then we put K = Rn+1, G = 0 . Let β ^ α>0. Since D(X) ^ /3,
there exists a /3-D-representation of X and by Lemma 8.8 there
exists a separable space F D I s u c h that representation (14) is canonic
and

(15) Xf]Rn+1c:An, D{F%)<a.

Since the conjecture C(a) holds by inductive assumption, by Lemma
8.5 there exists a separable locally compact space G such that
UΓ=iί?i = G, G i is compact, the system {(?J is simple with respect to
G.

(16) D(Gi) < a , D(G) ^ a

and there exists a homeomorphism ft: Y'\Rn+1 —> G such that h(Fi) c
Gi. Let us put

G' = ωl)G

where ω is a compactification point and (?' is a compactum. Then
obviously D(G') - D(G). We put:

(17) K = i?n + 1 x G', i ϊ , - i2n+1 xGi9H= Rn+1 x G, Λw+1 = Rn+1 x α> .

Then from (16), (17) it follows that

D(K) = D(G') φ D(Rn+ψ = ΰ(G) φ ( Λ + l ) ^ α + n + l = 8̂ + l .

Since α is a limit number from (16), (17) it follows that
15 Here we use the inequality D{X xY) £ D(X) ® D(Y), where φ is a natural

sum of ordinal numbers, see [3], Henderson.
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(18) D{Hτ) ^ D(Gt) 0 D ( R n + 1 ) = D ( β t ) + n + l < a .

Moreover the system Ht is simple with respect to H because the
system {GJ simple with respect to G. Consequently, from (18) and
the sum theorem for Z)-dimension (see [3]) it follows that D(H) <; α.
Thus conditions (i)-(iv) of our lemma are satisfied. We have only
to prove the existence of homeomorphism F: Yf —> K such that

(19) F(X) Π Rn+1 c 4 n X ΰ ) .

Then condition (v) will take place. Since Rn+ι is AR space, there
exists a retraction r:Y'—>22n+1. We define a mapping q:Y' —>G' by
the equalities

Q(y) = Hv) for y e Y'\Rn+1 , q(y) = ω e Gf for ye Rn+1 .

Then obviously q is a homeomorphism on Y'\Rn+1. We define a
mapping F:Y' —> K by the equalities:

πxoF{y) = q(y) , π2oF(y) = r(τ/)

where πx: K = i2n+1 x f f - > G', ττ2: K->Rn+1 are projections. The con-
dition (19) follows from (15). Let us prove that F is a homeomor-
phism. The mapping F is obviously injective and continuous.
Moreover, since q is a homeomorphisms on Y'\Rn+1 and r is a homeo-
morphism on iϋn+1 c Y\ the mapping F is a homeomorphism on Y'\Rn+1

and on Rn+1. Besides that

F(Y'\Rn+1) c H , F(i2*+1) - £ n + 1 , F(Y'\Rn+1) n ίτ(22n+1) = 0 .

Therefore, for proving that F is a homeomorphism, we have only
to prove that for any sequence {F(xn)} such that

(20) F(xn) 6 H, lim F(xn) =

we have

(21) lim xn = y .

From condition (20) it follows that lim^^π^FixJ = #(#J
πx°F(y) = ίϋ. Since Gi and G' = (̂JBΓ) are compact, there exist two
subsequences of natural numbers {n(k)}t {i(k)} such that

(22) h(xn{k)) c Gi{k) , n(k + 1) > w(A?) + 2 , i(fc + 1) > i(fc) + 2 .

Since fc^) e Gt and systems {GJ, {FJ are simple [from condition (22)],
it follows that

(23) xn{k) c F f̂c,̂  U F ί ( f c ) U
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Let j(k) is such a number so that xnίk)€Fjik), then since {i*7*} is a
simple system, from conditions (22), (23) it follows that j(k + 1) >
j(k). Since (14) is a canonic representation, a sequence {xn{k)} has an
accumulation point yf e i?n+1 and consequently y' — l i m ^ } for some
subsequence {zά} of the sequence {#n(fc)}. Moreover 2̂ (2/') = F(y) and
since i*1 is injective, we have y = y'. We have proved that for any
sequence with condition (20) there exists a subsequence {zά} of a
sequence {xn} such that \imZj = y. From this fact it follows (21).
The lemma is proved. •

Theorem 8.1 obviously follows from Lemma 8.9. Let us prove
Theorem 8.2.

DEFINITION 8.3. (See [20], Smirnov). For any ordinal number
β < ω1 we shall define a compactum Kβ. For β < ω0Kβ is a β-
dimensional cube. If β is a limit number we consider Kβ to be a
one-point compactification (with point pβ) of a discrete union of
compact Kγ: 7 < β. ϊί β = a + n, a = J{β), n = if(/3), we put Kβ =
Ka x In, where Jn is an -^-dimensional cube.

In what follows we will consider a to be a limit number < ωx

and n = 0, 1, 2, . For any J5^

(24) Ind Kβ = β .

(See [20], Smirnov.) Since for any compactum Z

(25)

see [4], Henderson (Theorem 2), D(Kβ) ^ Ind iΓ^ = β. By transfinite
induction it is easy to prove that JD(JBΓ )̂ ^ /3. Therefore

(26) D(Kβ) = /3 .

By definition we have

(27) £Γα+7i+1 = {pa} x I^+ 1 U U {Kr x /^+1: Y < a} .

Let S n be a sphere which is a boundary of the cube In+1. We put:

(28) Xα + n = ({pβ} x S » ) U U {JSΓr x /*+1: 7 < α} c Ka+n+1 .

Then Xα + n = ΓU ({pa} x Sπ), where F is a discrete union of compacta
Kr x In+1: Ύ < α. From (26) it follows that

D(Y) ^ sup{D(ίCr x / n + 1 ) : 7 < α} = α .

Since F is open in Xa+n and {ί)α} x Sn is closed we have the inequality
(see [3], Henderson, Theorem 4)
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D(Xa+n) ^D(Y) + D{pa xSn) = a + n.

Let A be an ^-dimensional face of the cube In + 1, then Ka x Ad
Xa+nczKa+n+1 and Ka x A is homeomorphic to Ka+n. Consequently

D(Xa+n) ^ D(Ka x A) = D(Ka+n) ^a + n.

Thus D(Xa+n) = a + n. Let {Aί} Bt}i = 1, , n + 1 be a system of
all pairs of opposite faces in cube In+1, then clearly {Ka x Ai9 Ka x Bz)
is a system of compact disjoint pairs in Xa+n. Let CZD Xa+n by any
compact space, then we have to prove that

(29) D(C) ^a + n + 1 = β + 1 .

We put Fi = Ka x A<, Gt = Ka x Bt. Let A be a partition be-
tween Fi and G* in C.

Since clearly

F, Π Kr X I n + 1 - Kr X A, , G, Π Kr X / n + 1 = ϊ r X Bt{Ί < a)

the set G\ = Dif] Kr x In+1 is a partition between Kγ x A* and Kr x
Bi in Kr x In+1 = iΓr+re+1 for all 7 < α. Consequently, by virtue of
[13], Luxemburg, Lemma 4.8 we have for all 7 < a

Ind - [ n A ΠiίrX Ire+1]] ̂  7 .

Therefore Indίfl^i1 A) ^ sup{7: 7 < a} = a and by virtue of [13],
Luxemburg, Lemma 4.7

(30) IndC ^ a + n + 1 = β + 1 .

Inequality (29) now follows from (25), (30). The theorem is proved. •

9* On completion of metric spaces* It is known, see [15],
Nagata, that every finite dimensional subspace X c Y is contained in
G3-set GczY with the same dimension Ind G = Ind X Here we
extend this result to infinite dimensional case.

THEOREM 9.1. For any subspace X of a space Y, such that the
dimension Ind X exists, there is a Gδ-set G, such that Ind G = Ind X,
XaGczY,P(X) = P(G).

We note that by Lemma 2.8 we have also D(X) = D(G).

COROLLARY 9.1. For any space X with dimension IndX there
exists a completion G = X16 such that Ind X — Ind G, weight X =

16 We call a space G 3 X a completion of a space X if G is an absolute Gδ-set. It
is equivelant to the fact that we can introduce in G a complete metric (see [8]).
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weight G.

Proof. Let Γ D X b e any complete space and Go be a Gδ-set in
Y such that I c G o c F , IndGo = IndX. Such Go exists by Theorem
9.1. We put G — GQ Π X. Then G is Gδ in Γ, and consequently is
an absolute Gγ-set. Also, Ind G ^ Ind Go = IndX Inequality IndG ^
IndX follows from Corollary 2.3 and (SMI) §2. •

For proving Theorem 9.1 we need some preliminary results.

(S2) [19], Sklyarenko. If in a space X there exists a convergent
system (see Definition 2.2) of weakly infinite dimensional open sets
with weakly infinite dimensional limit then X is weakly infinite
dimensional.

LEMMA 9.1. Let K(KczX) be a limit of a system of open sets
{Γn} in a space X, then if Ka YczX the system {Γn Π Y) is convergent
in Y and K is a limit of this system in Y.

The lemma is evident.

LEMMA 9.2. Let a space X have the dimension IndX and YaX
is a subspace such that Yi)P(X). Then the dimension IndY exists
and InάY <> IndX and Y is weakly infinite dimensional.

Proof Let Un be the set defined by equality (1) §2. Since
IndX exists, the space X is weakly infinite dimensional by (SMI) §2,
consequently by Theorem (SI) §2 the set X\\Jn=iUn = P(X) is a limit
of the system {Un}. By Lemma 9.1 P(X) is a limit of the system
{ Un Π Γ}. Since dim Un Π Y ^ dim Un ^ n sets Un Π Y are weakly
infinite dimensional. Moreover P{X) is closed in Xand, consequently,
is also weakly infinite dimensional. Therefore, by virtue of (S2) Y
is weakly infinite dimensional. Our lemma now follows from Corol-
lary 2.3. •

Proof of Theorem 9.1. We shall prove this theorem by induction
on Ind X. If Ind X is a finite number then this theorem is known
(see [15]), and in this case P(X) = 0 . Let I n d X ^ α>0. Then P(X)
is a nonempty compactum (Corollary 2.1). We put

(1) Vn - Y\O1/nP(X) .

Then by Theorem SMI §2 and by Corollary 2.1 the set Vn n X is
finite dimensional. Then by inductive assumption there exists Gδ-sets
Gn such that
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(2) F , D G , D 7 n n I , InάGn<ω0.

We put

(3) F=\J(Vn\Gn), Dn=(Y\F)[)Vn.
n = l

Then F is Fa set in Y, Dn is open in Y\F and

(4) XczY\F, DndGn.

Consequently, by virtue of (2), Dn is finite dimensional. By virtue
of (3) we have

(5) ψ = P{X)Ό\JDn=Y\F.

Since P(X) is compact, by virtue of (1), (3) the system {Dn} is
convergent in φ and P(X) is a limit of this system. Since P(X) is
closed in X, it is weakly infinite dimensional. Since Dn are finite
dimensional and consequently weakly infinite dimensional, φ is also
weakly infinite dimensional by

THEOREM S2. Since F is Fσ-set, φ = Y\F is a Gδ-set in Y.
Moreover, since Xaφ and Dn are fininite dimensional, we have

(6) P(φ) = P{X).

Let Ind X — a ̂  ωo7 then there exists a countable system {Uk}
of open in Y sets such that a system {Uk} forms a large base in
P(X) and

(7) IndFrUkΠX^βk<a.

By inductive assumption for any k there exists such Gδ-set Wk in Y
so that

( 8 ) Wk^FrUknX, IndWk^βk, P(Wk) = P(FrUkf] X) .

We put Hκ = FrUκ\Wκ, then Hκ is ^-set in Y and Hκ n Z = 0 .
Consequently the set G = AU?=i ̂  i s a G^set and

(9) I c G , ^rC/,nXci^rZ7 f c n(?£T7, .

From conditions (8), (9) it follows that P{FrUk f l l ) = P{FrUk Π (?) =
and by Lemma 9.2 we have

(10) IndFrC/, n G ̂  IndW, £ βk < a .

Since XcGaφ, by virtue of (6) we have

= P(Φ) .
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Consequently by Lemma 9.2 G is weakly infinite dimensional, because
Φ is weakly infinite dimensional.

Since {Vk} is a large base in P(G), for any closed subsets Fu F2

in P(G) there exists a set Uk such that FrUkf] G is a partition in
G between Fx and F2. Therefore from condition (10) and Lemma
2.5 it follows that

Ind G ^ a .

The inequality Ind G ^ Ind X = α follows from Corollary 2.3. •

THEOREM 9.2. Let X be a separable subspace of a space Y, and
the dimension indX exists. Then there exists a Gδ-set GdY such
that i n d G - indX, I c G .

Problem. Is this theorem true for a nonseparable space? The
answer is still unknown even for finite dimensional spaces.

COROLLARY 9.2. For any separable space X with dimension
ind X there exists a separable completion GZD X with the same
dimension ind G = ind X.

The proof is similar to the one of Corollary 9.1.

Proof of Theorem 9.2. We shall prove this theorem by induction
on indX For indX = — 1 the theorem is evident. Let indX —
a > — 1. Since X is separable for any n = 1, 2, , there exists a
countable system of open in Y sets {Vni} such that

ind {FT Vni) Π X ^ βni < «

and

(11) XaHn=UVnt, diamFni < - .

By inductive assumption for every pair (ΐ, w) there exists a set G<n

of a type Gδ in F such that

(12) FrFninlc GnJi , ind Gni - ind(jFVVnί n X) = Λ, < α .

We put

(13) A ^ i r j ΰ ^ r l ^ Λ G . * ) , <? = Π A, .
i T

Then An =) X and An is a Gδ-set in Y. Consequently G ID X and G is
also a (xδ-set in Y. Let us prove the inequality
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(14) ind G ̂  a .

Let x 6 G, ε > 0 and 1/w < ε for some n. Then by virtue of (11)
there exists an open set Vni such that x e Vni. From (12) and (13) it
follows that

FT VninGd FT Vni U An c Gnί

and consequently inά(FrVni Π (?) ̂  indGni < a. Hence inequality (14)
is true. Since XaG we also have indG Ξ> indX Π

THEOREM 9.3. Lei I c 7 ίfcew there exists a Grset G inY such
that D(X) = β(6),IcG.

COROLLARY 9.3. For any space X there exists a completion
Gz)X such that D(G) = D(X), weight G = wei^i X

The proof is similar to the one of Corollary 9.1.

LEMMA 9.3. Let sf = U {A/, μ e ̂ t} be a locally finite system
of insets in a space X Then the set A = U {Aμ: μ e ̂ \ is also a
Fσ-set in X

The lemma follows from the fact that a union of locally finite
system of closed sets is also a closed set.

Proof of Theorem 9.3. We will prove this theorem by induction
on D(X). If D(X) < ω0, then D(X) = IndX and our assertion is
true. Let D{X) = β ^ ω0 and the equality

X = U {Aδ: δ^a = J(β)}

be a /3-D-representation of X We put

where Aa is a closure of Aα in Y. Let ί7δ = X\U {Aδ,: δ' > δ} where
δ < a. Then from condition (e) of Definition 0.3 we have

(15) X\Aa= U{Uδ:δ<a}

and by Lemma 8.3 in [13], Luxemburg, Uδ is open in X and

(16) D(Uδ)<a = J(β)^β.

Let Vδ be an open in Y set such that Vδ c Z and

(17) F δ n X = ί7δ.

We put V= U{Vδ:δ < a} then VaZ and F is an open set in Y.
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Since V is paracompact, we can find a closed in V locally finite
refinement &~ = {Fμ: μ e ^£\ of the covering {Vδ: δ < a}. Consequently
from (16), (17) it follows that

D(FμΓ\X)<a (μe^t).

By inductive assumption for every μ e ^ there exists a Ga-set Gμ

in Fμ such that

Since the system J?" is locally finite in V9 the system .SP = {Lμ =
Fμ\Gμ: μ e ^€} is also locally finite in V. Moreover, since Gμ is a
(?δ-set in V the set Lμ is ίVset in V and by Lemma 9.3 the set L —
U {Lμ: μ e Λί\ is Fσ in F. We put Gx V\L, then clearly, G± is a
Gδ-set in V (and consequently in Y) and

Since JP^ Π GX = ί7^^ s e*s -FA-̂  a r e closed in Gx. Moreover, the
system {Fμ\L, μ e ^ } is locally finite in V (and consequently in Gt)
and Fμ\L c G .̂ Therefore

D{Fμ\L) ^ D(Gμ) < a .

By the sum theorem for locally finite union of closed sets (see [3],
Henderson) we get

(18) D(Gt) = D{ U {Fμ\L: μ e ^\) ^ svp{D(Fμ\L): μ e

Let us consider the set AaCiY\Z(zY\Gt. Since IndA a <; K(β) < ft>0

(see condition (d) of Definition 0.3) there exists a Gδ-set G2 in Fsuch
that

AaaG2, D{Aa) = Ind Aα =

We put G3 = G2 Π (Γ\^), then clearly (?3 is closed in G = Gs U Gx and
G3 is a (?a-set in F, because F\Z is a closed set. Moreover, we have
obviously that

(19) XczG, D(GZ) ^ D(G2) ^ K{0)

and G is a (?δ-set in Y as a union of (resets Gx and G3. Since G3 is
closed in G, the set Gj. = G\G3 is open in G and consequently (see
[3]) from (18), (19) it follows that:

D(G) £ D{GX) + D(G3) ^ J(β) + K{β) = β = D(X) .

The inequality D(X) ^ D(G) follows from the inclusion XaG. •

10* On the necessary and sufficient conditions of the existence
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of transfinite dimensions* As it was mentioned in the introduction,
dimensions ind X and Ind X do not exist for every space X. In this
section we shall consider that D-dimension of a space X exists if
D(X) is an ordinal number. The following theorem gives a criterion
of the existence of transfinite dimensions in terms of compactifications.

THEOREM 10.1. Let X be a separable space, then
(a) Ind X exists » there is a countable dimensional17 compactifi-

cation cX'Ώ X such that P(cX) = P(X).
(b) ind X exist <=> there is a countable dimensional compactifica-

tion CXZDX.

(c) D{X) exists <=> there is a weakly countable dimensional
compactification cX Z) X.

To prove this we need the following assertions:
(1) If Ind X exists then X is countable dimensional, see [21],

Smirnov.
(2) If X is a countable dimensional compactum then Ind X

exists, see [22], Smirnov.
(3) If X is a complete countable dimensional space then ind X

exists, see [5], Hurewicz and Wallman.
(4) If ind X exists, X is a separable space, then X is countable

dimensional, see [5], Hurewicz and Wallman.
(5) If X is a complete separable space, then D(X) exists » is

a weakly countable dimensional18, see [4], Henderson.

Proof of Theorem 10.1. (a) Let IndX exist, then the existence
of such a compactification cX follows from Corollary 1.1 and (1). If
there exists a countable dimensional compactification CXZDX then by
virtue of (2) Ind X exists and our assertion follows from Lemma 8.2.

(b) Let ind X exist, then by Corollary 9.2 there exists a separable
absolute (?δ-set pXz)X such that indpX = indX Since pX is an
absolute G -̂set there exists a compactification cXzDpX such that the
set cX\pX is countable dimensional see [9], Lelek. Since inάpX
exists, by virtue of (4), the space pX is countable dimensional,
consequently the compactum cX is also countable dimensional. If a
space X has a countable dimensional compactification CXZDX, then
by virtue of (3) ind cX exists. Consequently, ind X also exists (see
(1), introduction).

Property (c) follows from (5), Theorem 8.1 and (1) introduc-
tion. •

17 A space X is countable dimensional if X is a union of countable number of
zero-dimensional sets.

1 8 It is easy to prove this theorem also for nonseparable spaces.
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COROLLARY 10.1. For any separable space X with dimension
ind X there exists a compactification cX such that the dimension
ind cX also exists. This corollary follows from Theorem 10.1(b) and
(3).

Theorem 7.1 shows that we can not require that the equality
indcX= indX holds for some compactification CXZDX. However I
think that the technique of the proof of Theorem 1.1 will permit
proving the following.

Conjecture. If X is a separable space and ind X = a + p, where
a = J(a + p),p — K{a + p) — 0, 1, 2, , then there exists a com-
pactification CXZD X such that ind cX <^ a + 2p + 1.

We also note that using Theorems 9.1 and 9.3 we can easily
obtain criteria of the existence of dimensions IndX and D(X) in
terms of completions for nonseparable spaces.
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