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ON COMPACTIFICATIONS OF METRIC SPACES
WITH TRANSFINITE DIMENSIONS

LEONID LUXEMBURG

In this paper we prove that every separable metric space
X with transfinite dimension Ind X has metric compactification
¢X such that

IndeX=Ind X, indeX=ind X, D(cX)=DX),

where ind X(Ind X) denotes small (large) inductive transfinite
dimension, and D(X) denotes the transfinite D-dimension.
More generally, let T be a set of invariants (ind, Ind, D).
We consider the following problem:

Let RS T and X be a metric space. Does there exist a
bicompactum (complete space) cX D X such that

wX) = pleX) for pcR.

When it is not so, we give counterexamples. We give also
necessary and sufficient conditions of the existence of trans-
finite dimensions of separable metric space in terms of
compactifications.

0. Introduction. In this paper we consider three transfinite
invariants: ind X, Ind X, D(X) where ind X (respectively, Ind X) is
small (respectively large) transfinite inductive dimension and D(X)
is D-dimension, see [3], Henderson.

DEFINITION 0.1. (a) ind X = —-1=X= Q.

(b) We assume that for every ordinal number a < 8 the class
of spaces X with ind X < a is defined. Then ind X < g if for every
point z€ X and a closed subset F,x¢ FC X, there exists a neigh-
borhood O, of = such that

0,c X\F
ind Fro, ca < B;.
We put ind X = min{g: ind X < g}.

(¢) The dimension ind, X of a space X in a point xe X < g if
there exists a base {0, \} in this point, such that

ind Fr0,; < 8.

We put ind, X = min{g: ind, X < 8}.
1 FrA denotes the boundary of A.

399



400 LEONID LUXEMBURG

DEFINITION 0.2. (a) Ind X = —-1=X= Q.

(b) Let for every ordinal number a < g the class of spaces X
with Ind X < « is defined. Then, Ind X < g if for every pair of
disjoint closed subsets F' and G there exists a partition®? C between

F and G such that
IndC=a<pg.

We put
Ind X = min{g: Ind X < 8} .

We note that the dimension ind we can also introduce using
partitions, because if xc V< X\F and V is open, then F»V is a
partition between x and F.

Let us introduce some notations. For every ordinal number g
the equality 8 = a + = holds, where « is a limit number or 0, and
n=20,1,2 ---. Then we set

KB =n, JB =a.

DeFINITION 0.3. See [3], Henderson. We put D(g) = —1. If
X # @ then D(X) is the smallest ordinal number g such that there

exists a collection of sets

{A50§$§7}

satisfying the following conditions:
(@) X=Uf{4:0=¢=n}
(b) Every set A, is closed and finite dimensional.
(¢) For any ¢ < the set

U{dp:0 < a <7} isclosed in X.

) J(B) =7, Ind 4 < K(8).

() For any point x € X there exists the greatest number § < v
such that x € A,.

If there is no such number B3 we put D(X) = 4, where 4 is an
abstract symbol such that 4 > g for any ordinal number B3 and 4 +
B=pR+4=Xd=4%XB=A4.

If conditions (a)-(e) hold then equality (a) is called a g-D-
representation of a space X.

Hence, for any space X the dimension D(X) is either an ordinal

number or the symbol 4.
For any compact metric space X having dimension Ind X

2 A partition C in X between sets A and B is a closed set in X such that X\C =
vuv,UnV=g,AcU,BcV, for some open in X sets U and V.
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Ind X < D(X)

(see [3], Henderson). For further results concerning D-dimension see
[11], Luxemburg. Inequalities

indX<IndX
and
(1) D(X)£D(Y),ind X <indY for XCY

are evident for all topological spaces. However, the dimensions
ind X and Ind X are not defined for every space. For example
Hilbert cube I° has no inductive transfinite dimensions [5], p. 51
(Hurewicz and Wallman). Let

zZ=Ur
n=1

be the discrete union of Euclidean cubes I”. Then obviously, ind Z =
w,. However the dimension Ind X does not exist. But obviously

(2) if for a space X the dimension Ind X exists, then the dimension
ind X also exists®.

There are compact metric spaces X such that ind X < Ind X < D(X),
see [12], [13], Luxemburg.

In what follows all spaces are assumed to be metric and all
mappings to be continuous if otherwise is not stated.

A space X we call finite dimensional if dim X < »n for some n =
-1,0,1, 2, ---, where dim X is the covering dimension‘. For finite
dimensional metric space X

(3) D(X) =Ind X = dim X
and
(4) DX)=IndX=ind X = dim X

if X is separable.

DEFINITION 0.4. For any space Z we denote by P(Z) a closed
subset such that Z\P(Z) is the union of all finite dimensional sets,
open in X. For spaces X and Y with diamY < - we denote by

3 For compact metric space X the dimension ind X exists if and only if the dimen-
sion Ind X exists (see [22], Smirnov).

* dim X < » if for any open covering U of a space X there exists an open refine-
ment V of U having the order <n + 1, i.e., the intersection of any (n + 2) elements
of V is empty.
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C(X, Y) the space of all continuous mappings f: X —Y with the
metric d(f,, f;) = sup{é(fi(x), fo(x)): x € X}, where ¢ is the metric on Y.
We note that the space C(X, Y) is complete if Y is complete. We
consider a Hilbert cube I to be the set of all sequences {z}, 0 <
2, < 1, with the metric, defined by the equality

dfed, lyh) = e —w.l-27, i=1,2, -
The number z, is called the i-coordinate of a point x = {x,} € I".
1. On homeomorph mappings to the Hilbert cube.

THEOREM 1.1. (The Compactification Theorem). Let X be a
separable space and a fixed countable system of closed sets L, (1 =
1, 2, ---) such that dimensions Ind L, exist.

Then the set ¥ of all homeomorphisms f: X — I° of the space X
to the Hilbert cube I® such that for each i the equalities

(@) Ind L, = Ind (L,

() ind L; = ind f(L;)

(¢) D(L) = D(f(L))

(@ f(PX)) = Pf(X)
are satisfied contains an everywhere dense set of tyve G; in the space

C(X, I’).

In the case when the dimensions Ind C; are finite, this theorem
has been proved in [8], Kuratowski. See also [14], Luxemburg for
infinite dimensional case.

COROLLARY 1.1. For any separable space X having dimension
Ind X there exists a separable compactification X such that

IndeX = Ind X, ind ¢X = ind X, D(¢X) = D(X), P(¢X) = P(X) .

Proof. It is sufficient to put in Theorem 1.1
L,=X, ¢cX=jfFfUL,).

For the proof of this theorem we need some preliminary lemmas.

LeEMMA 1.1. Let A and B be two fixed closed sets in the space
X and put

C=ANBAB.

Then for any n =1,2, --- the set ¢, of mappings f from the space
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X to a compact space Z such that
fA) N FBN0.,.f(C) = &°
18 open in C(X, Z).
Proof. We suppose that the set 4, is not open in C(X, Z). Then

for some fc¢, there exists a sequence of mappings g, € C(X, Z)\¢.,
k=1,2, ---, such that

(2) limg, = f

k—co

and

9:(4) N 9.(B)\0,,,9:(C) # O .

Therefore for any % there eixsts a pair of points a, € A4, b, € B, such
that

0(gi(ar), gx(b) < %;—, 0(gu(ar), 9.(C)) = 1 —}]j
(3) n
Mgy, Oy = L — L
n k

where 0 denotes a metric on Z. Since Z is a compactum there
exists a point » € Z such that

(4) p = lim g,,(a,) = lim g,,(b.)

for some subsequence of integers k,. Since lim,_..g,, = f we have
(8) p = lim f(a,) = lim f(5,,) .

Consequently

(6) pe f(A) N F(B) .

Let us show that

(7) o, FO) = -

where d(p, f(C) = inf {d(p, x): x € £(C)}.
We suppose on the contrary. Then there eixsts a point ¢eC,
satisfying the condition:

(8) Nﬂ%m<%—s

5 0. denotes e-neighborhood of the set #.



404 LEONID LUXEMBURG

for some ¢ > 0. By virtue of (2), (6) we can find an integer k,; such
that

1
(9) ey £) < 3 00, 91:(@d) < 1 - < 5
From (3), (8), (9) it follows that

L1 <50, 9u@)
n k;

= 0(gular), ») + 0(p, f(@) + 0(f(Q), 9x())
€ 1 €
< Z + Z — €& + z—

1 _
n 2

Consequently 1/k;, > ¢/2, which contradicts the condition (9). Thus,

condition (7) holds. Consequently from conditions (6), (7) it follows
that

p e f(A) N FBNOW(FO)) ,

which contradicts condition (1). Hence the set ¢, is open in C(X, Z).
Since obviously

(10) ¢ =) ¢
we obtain that ¢ has type G; in the space C(X, Z). O

LemmA 1.2. If in Lemma 1.1 we take Z = I°, then the set ¢ of
all mappings f: X — I° such that

fA) N f(B) = f(C)

is everywhere dense Gy-set in C(X, I*).

Proof. First we show that the set ¢, is everywhere dense in
C(X, I°). Let f:X— I be an arbitrary mapping and ¢ > 0. We
can find an integer k such that

11) ot 1 gk
4n

Let us define a mapping g: X — I*, such that

(12) 3(f, g) < min [ﬁ s] .
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We put
13) U= f*0uuf0) .

Then the set U is a neighborhood of the set C in the space X.
Therefore,
AO)YNB\U) =g .

Consequently, there eixsts a function @: X — [0, 1] such that
(14) P(A\U) =0, ¢oB\U)=1.
We will define a mapping g: X — I” by the equalities

(15) g:ix) = fitx) for i<k, gi.(x)=o@),
g(x)=0 for i >k+1.

where g, (respectively f;) is i-coordinate of g (respectively f). Ine-
quality (12) follows from (11), (15). Let us show that

(16) 9(4) N g(B\Oy,9(C) = @ .

We assume on the contrary. Then there exist two points ¢ € 4 and
b € B such that

an @), 9©C) = % , 0(g(d), 9(C) = % » 0(g(a), (b)) < 27+

where 6 is a metric in I°. From condition (11), (15) it follows that

a(g(A\U), g(B\U)) =z 27 .

Consequently
either g(a) ¢ g(A\U) or g()¢g(B\U).
Let, for example g(a) ¢ g(A\U), then obviously a ¢ (4\U) and, conse-
quently ¢ € U. From condition (13) it follows that
AR 1
C —.
3(f(@), FO) < =
Consequently, for some point ceC
(18) 2@, FO) < o -
"
By virtue of (12), (18)

3(9(a), 9(C)) < 8(g(a), g(c))
= d(g(a), f(a@) + o(f(a), f(e)) + 0(f(e), g(e))

3 1
2 <=
<4n n
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which contradicts the condition (17). Consequently equality (16)
holds and geg,. We have proved that the set ¢, is everywhere
dense in C(X, I“). By Lemma 1.1 ¢, is open in C(X, I°). Since,
obviously

s

$=11¢.

1

El
Il

then by Baire’s theorem ¢ is an everywhere dense G,-set. |

Let X be a space, then we denote by G the set of all subsets
AcC(X, I°) such that A contains an everywhere dense G;-set in
C(X, I°). We note that from Baire’s theorem it follows that

(19) if AieGy(i=1,2--), then AcGy.

In what follows we shall use the assertion (see [5], Hurewicz
and Wallman).

(20) If X is a separable space, then the set of all homeomorphisms
f: X — I” contains an everywhere dense G,-set in C(X, I°).

The following two lemmas can be proved by well known
standard methods. However we shall prove them for the com-
pleteness.

We remind the reader that g: X —Y is an e-mapping if diameter
97 '(y) < ¢ for any point ye Y.

LeMmA 1.8. Let KC X be a compactum in a space X, then the
set of all mappings f: X — I° such that the restriction of f to K 1is
a homeomorphism is an everywhere dense Gy-set in C(X, I°).

Proof. Let ¢. be a set of all mappings f: X — I° such that the
restriction fr of a mapping f to K is an e-mapping, and «. be a
set of all e-mappings g: K— I°. Then 4 is open and everywhere
dense in C(K, I®), see [5]. Consequently ¢. is open in C(X, I*). Let
us show that ¢, is everywhere dense. Let f: X — I° be a mapping
and 0 > 0. Since «, is everywhere dense there exists an e-mapping
g: K — I such that

0
d(fK’ g) é E .

Since I“ ¢ AR there is an extension §: X — I“ of a mapping g. We
put
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gx) for [(f — @)=
h(x) =
0 (G- H® )
x) 4+ — 2L for |f—g|>—.
7O+ Z G = P 4 2
Then, obviously d(h, f) < 6/2 < 6 and since g(x) = () for x € K we
have heg.. Therefore, the set ¢, is open and everywhere dense in
C(X, I*). Our lemma now follows from (19) and the equality

o]

s

¢ = ¢1/n . D

n

1

LEMMA 1.4. Let A be a closed subset of a space X and dim A <
n, then the set ¢ of all mappings f: X — I such that

dim f(4) < n

18 an everywhere dense Gyset in C(X, I°).

Proof. Let K, be a set of all mappings f: X — I® such that

dn+1(f_r(_z)) < 5

where d,.,(f(4)) is an (n + 1)-coefficient of Urysohn, i.e., the inf of
¢ > 0 such that there is a covering of f(A) with open sets of di-
ameter <¢ and of order < n + 1.

Then, clearly

¢ = QlKl/n .

Therefore by virtue of (19) it is sufficient to prove that K, is
open and everywher dense set. Let fe€ K, then there exists a
finite collection of open in I® sets V ={V,, ---, V,} such that

P 8

@1) FAcUV, diamV, <L, order V<n+1.
i=1 n

It is evident that the set 0 of all mappings f: X — I° satisfying the
condition (21) is a neighborhood of f in C(X, I*). Thus, K, is open.
Let us prove that K, is everywhere dense. Let g: X—I* be a
mapping. Since dim 4 < n we can construct by Kuratowski method
[8] a mapping f: X — I*, such that

dX(f; g) < €

and f(A) is contained in n-dimensional polyhedra. Therefore dim f(A4)<
n and d,.,(f(4)) = 0. Consequently, fe€K,,. Thus the set K, is
everywhere dense in C(X, I°). O
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2. Further lemmas for the compactification theorem.

DEFINITION 2.1. A space X is called weakly infinite dimensional
if for any countable sequence of pairs {F}, G;} of closed sets in X
=12, ---), F;NG, = @, there exists for every 4 a partition C,
between F, and G, such that

k
n Ci =Q,
=1
for some £k =1,2, ...
Every finite dimensional space is clearly weakly infinite dimen-

sional.

DEFINITION 2.2. A countable system of open sets U,,n =1, 2, -,
in a space X is called convergent if for any discrete in X sequence
of points {x},7=1,2, ---, there exist numbers p and =, p, n =
1,2, --- such that x,€ U, for ¢ = p.

If the system {U,} is convergent then the set X\U5-,U, is called
the limit of this system. Let a space X be weakly infinite dimen-
sional and

U,={x:xe X, there exists a neighborhood 0,3z

1
(1) such that dim O, < n}.

Then we have, see [19], Sklyarenko:
(S1) The system of sets {U,} is convergent and has a compact
limit.

COROLLARY 2.1. If a space X is infinite dimensional and weakly
infinite dimensional then

(1) the set P(X) is a nonempty compactum.

(ii) Ind(X\OP(X)) < w, for any neighborhood OP(X) of a com-
pactum P(X).

Proof. The compactness of P(X) follows the equality
(2) P(X) = X\C_Jl U,

and Theorem (S1). Let P(X) = @. Since X is infinite dimensional,
there exists a sequence of points x; in X such that
(3) r; € Um\U{UJ.7<'nz}’ Wiy > My Wy = 1,2, --- .

From condition (8) it follows that a sequence {x;} is discrete in X
but by Theorem (S1) the system {U,} is convergent. We obtain the
contradiction. Consequently P(X) = @.
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If condition (ii) does not hold then there exists a sequence of
points {x;} with property (3) and such that x, € X\OP(X), consequently
a sequence {x;} is discrete in X and we again obtain the contradiction.
Therefore the property (ii) holds. O

We shall use the following theorem, see [21]; Smirnov.

(SM1) If the space X has dimension Ind X then X is weakly
infinite dimensional.

LEMMA 2.1. If sets A, B are closed in X = AU B and the set B
18 finite dimensional, o = w, and
IndAd<a (indA<a)
then

Ind(AUB) < a (ind(AUB) < a).

This lemma directly follows from [10] (Levshenko), Theorems 1, 1’,
p. 257. L

LemMMA 2.2. If B is a bicompactum (not necessarily metrizable)
and Cc B\P(B) is a closed subset, then

dim C < .

Proof. From Defininition 0.4 it follows that every point xzeC
has a closed finite dimensional neighborhood V(x). The lemma now
follows from the compactness of C and the sum theorem for dimension
dim.

LEMMA 2.8. Let X be an arbitrary normal space (not necessarily
metrizable) and (A, B) be a pair of two closed disjoint sets in X.
Let also PC X be a closed set and C be a partition in X between
A =ANP and B,=BNP. If the set C has a type G; in X then
there exists a partition C, in X between A and B such that

Cozcxuczy

where sets C, and C, are closed in X, C,cC,C,c X\OP for some
netghborhood OP of the set P. (We do nmot suppose here that A, + @
and B, # @.)

Proof. Since C is a partition between A, and B, there are such
open sets U, V of that

(4) UnvV=g, X\(UUV)=C, A, cU BCV.
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Consequently
AU)NP=B\V)NP=0.

Since X is a normal space, there exists a closed neighborhood W of
the set P such that

(5) Wn(AU)UB\V)) =0
and W has a type G,. We put
(6) Ui=(WUAUB\BUW\U)), V,=(WUAUB\AUW\V)).

Then sets U,, V, are openin WU A U B. Since AN B = @, by virtue
of (4), (5), (6)

UnV,=WUAUB\AUBUW\U)U(W\V) =a,
AcU,, BcV,.

Consequently the set

C,=(WUAUB\(U,UV) =AU V)N BUW\U)
=WwWnCcC

is a partition in WU 4 U B between A and B. Since the sets W and
C are G;, the set C, =W NC is also a G,set. Consequently there
exists a continuous function @: WU AU B —[—1, 1] such that

P70) =C,, A =-1, PB)=1.
Let ¢: X —[—1, 1] be any continuous extension of ¢. We put
C, =90, C,=C\C,.
Then obviously
C,=C UG,

since C\\C,c X\W and W is a closed neighborhood of P, there exists
a neighborhood OP C W of the set P such that

C\C, =C,c X\OP. O
DEFINITION 2.3. Let & ={F.:i=1, 2, ---} be a countable system
of sets in a space X and the set U X be open. Then the system
Z is called simple with respect to U if
( ( ) U= ZQ F i

(8) FnNF;=@g for |[i—j|>1
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(9) The system F is locally finite on U and sets F; are closed in X .

LEMMA 2.4. Let B be a bicompactum not necessarily metrizable
and f:B— K be a zero dimensional mapping® in a compactum K.
If there is a closed set PC B and a simple, with respect to (B\P),
system {B;} in B such that:

10) SFPYNSFB) =@ for every 1=1,2, ---
(11) dim f(B;) < o

12) the restriction of f to P is a homeomorphism
and

(13) IndK=sa

then Ind B < a.

Proof. We shall prove this lemma by induction on a. If @ < w,
then for any bicompactum B having zero-dimensional mapping in «
dimensional compactum K we have

IndB<IndK=£a«a.

(See [10], Pasynkov.) Let a@ = w, and for all &’ < a our lemma is
proved. Let F,G be a pair of two disjoint closed sets in B. By
virtue of (12)

FENP)NFGNP) =0 .

Then by virtue of (13) there exists a partition D between f(F N P)
and f(G N P) such that

(14) IndD=sgp<a.
We put
(15) C=r7D).

Then, since K is metrizable and D c K is closed, D is a G,-set. Con-
sequently, C is also a G,-set. Moreover the set C is a partition
between FN P and GN Pin B. By virtue of Lemma 2.3 there exists
a partition C, between F and G such that:

(16) ¢ =CuUGC,, Cc(C, CcX\OP

for some closed sets C, and C, and a neighborhood OP of a set P.

8 A mapping f is zero dimensional if dim f-(z) = 0 for any point z in image f.
? In our terminology a compactum is a metrizable bicompactum.
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We note that if B'c B is a closed set, B;=B,NB,P'=PNB,
K’ = f(B’) then all conditions of Lemma 2.4 are fulfilled for bicom-
pactum B’ (we have only to change notation). Consequently, if
Ind f(B’) < a then by inductive assumption Ind B’ < Ind f(B’) < a.
Therefore for proving inequality

amn IndC, <
we have only to prove that
(18) Ind f(C,) < oo .
Indeed, as it was mentioned above we have only to prove that
Ind £(C,) = Ind f(C) U f(C) < a .
By virtue of (14), (15), (16) we obtain the inequality
19) IndfC)=<=IndD=p<a.
By Lemma 2.1 and (18), (19)
Ind (f(CHU f(IC)) < .

Let us prove inequality (18). By conditions of the lemma we have
B\P={ B,

and the system {B,, i =1, 2, ---} is locally finite on B\P. Since C,C
B\P and C, is a subbicompactum of B then for some finite collection
B,, ---, B;, we have

C,c ljj B, .
Consequently, by virtue of (11)
dim f(C,) < max{dim f(B;):s=1, -+, k} < o .

Since f(C,)c K and K is a metrizable space, dim f(C,) = Ind f(C,).
Thus inequality (18) and consequently (17) holds. Therefore Ind B < «.

LEMMA 2.5. If for any two closed disjoint sets F, G in weakly
infinite dimensional space Z such that

FUG < P2)

there exists a partition C having the dimenmsion IndC < a(a = w,)
then Ind Z < a.
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Proof. Let (A, B) be an arbitrary pair of disjoint closed sets in
Z. If either ANP(Z)= @ or BN P(Z) = @ then either the set 4
or B belongs to the set Z\OP(Z) for some neighborhood OP(Z) of
the set P(Z). By virtue of Corollary 2.1 there exists a finite dimen-
sional partition C between A and B; consequently

IndC<w, 2.

Let A, =ANPZ)+ @ and B,=BNPZ)+ @. By the given
condition there exists a partition C between A, and B, such that

(20) IndC< a.

Since Z is metrizable, C is a G;set and by virtue of Lemma 2.3
there exists a partition C, between A and B such that

(21) C,cC, C,cX\0oP, C,=C, UG,

for some closed sets C,, C, and a neighborhood OP of the set P. By
virtue of Corollary 2.1

IndC, < .
From (20), (21) it follows that
IndC, < .

The inequality Ind C, < a now follows from Lemma 2.1 and (21). [

LEMMA 2.6. If for any point peP(Z) in a weakly infinite
dimensional space Z and for any closed set FC P(Z), F3p, there
exists a partition C in Z such that

ind C < ala = w,)

them ind Z < a.
The proof is similar to the proof of Lemma 2.5.

COROLLARY 2.2. For any weakly infinite dimensional space Z
the following assertions hold:

(@) IndZ < a <= for any closed sets F, G, FUGC P(Z), FNG =
@ there is a partition C with IndC < a. a = ®,.

(b) ind Z £ a = for any closed set FC P(Z) and a point x€
P(Z)\F there is a partition C with indC < a. (a = w,)

COROLLARY 2.3. If X has the dimension Ind X and YC X s
weakly infinite dimensional then
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(22) IndY<Ind X.

We shall prove this corollary by induction on @ =Ind X. If
a < @, our assertion is known. Let @« = w, and F,G be a pair of
two disjoint closed sets in P(Y). Since Y X we have

P(Y)c P(X) .

Since by Corollary 2.1 P(Y) is a compactum, the sets F, G are closed
in P(X) and by inductive assumption there exists a partition C
between F' and G in X such that

IndC< .

Then CNY is a partition between F and G in Y and since CNY is
closed in Y it is weakly infinite dimensional space. Consequently by
inductive assumption

IndCnY)<IndC< a«a.

Inequality (22) now follows from Corollary 2.2. |

LEMMA 2.7. Let zz = {U;:1=1,2, ---} be a system of open sets
in a space X, a a limit ordinal number <w, and

DU) <a
(23) o
U=UU..

Then for any sequence of ordinal numbers v, such that

(24) Ve >V, SUPY;=a 1=1,2, --.

there exists a simple, with respect to U, system F = {F,} such that
DF;) =7,.

Proof. We take a system of open sets 7 = {V;} such that
(24) V.cViucU, UV.=U (=12 --).
i=1

Since X is metrizable, there exists an open covering {D,} of the set
U such that the covering {D,} consisting of closures D, is a refinement
of 7 and %. Since coverings 7° and % are countable, we can
require a covering {D;} to be countable. Then there exists a closed
covering 57 = {H,} of U such that

(26) H =HcD, (=12 ).
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By virtue of (25) the sets H,, D, are closed in X. From condition
(23) it follows that

27 DH)<DD)<DD)=p<a.
We can now construct by induction open sets W, such that:
(28) UH,cW.cW.cUD,cU
k=1 =1
(29) W.c Wiy .

By (27), (28) and the sum theorem for union of finite number of
closed sets with D-dimension [3], Henderson, we have

(30) D(W) <max{DWD):i=1,---,k}=6; < a.

Since &7 is a covering of U, we have, by virture of (28)

(31) Uw.=U.

From conditions (24), (30) it follows that there exists such subsequence
"a}i=1,2, --- of a sequence {7;} so that

(32) DW) £ Yoy 2t +1)>n(@) >0, i=1,2 ---.

Since the space X is normal, from condition (29), it follows that for
any ¢ there exist such open sets

Vo ) Vn(i-l—l) (= 0, 1, <ee)
so that

33) Vo =W., Visy=Wii, Vi=@ for 0=<i<und).
(34) Viiwrsn C Vawrin S Vayanss =0, «++, 0@ + 1) — u(@) .
By virtue of (11), (32), (33), (34), (31) we have

@5  D(Vy) £ DWip) £ Yaw =7; for n@) £j= 0@+ 1)

(36) D(V)=—-1<v, for 0<7<nd)
37) V.cVcU UV, =U.
i=1
We put
(38) F.=V\V., for i>0, F,=0Q.

Then for j >4, VN F; = @. Consequently, by virtue of (37) the
system {F}} is locally finite. Conditions (7), (8) follow from (37), (38).
Inequality D(F;) < v, follows from (35), (36), (38). O
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COROLLARY 2.4. For any space X there exists a simple with
respect to X\P(X) system {C;} such that

(39) dmC, =i (=12 ---).

Proof. Let U, be the set defined by equality (1), then obviously
dimU, < n
and by definition
X\P(X) = UU, .
n=1
Hence by Lemma 2.7 there is a simple, with respect to X\P(X),
system {C;} such that
dimC, = D(C) =1 =7%) . O
LEmMA 2.8. If D(X) = w, then D(X) = 0, + D(P(X)).
Proof. If D(X) = 4 then our lemma is trivial. Let D(X) =
B < 4, D(P(X)) = a and the equality
P(X) = Ufd: ¢ = J( @)}

be the a-D-representation of P(X). By virtue of Corollary 2.4, we
have the representation

X=P(X)UQCi

for simple, with respect to X\P(X), system {C,} such that property
(39) holds. Let us put

B,:=A4,, B,=C;, for i<w,.
Then clearly the equality
X=U{B:¢& = J(w, + a) = w, + J()}
is a (w, 4+ a)-D-representation of X. Therefore
BEw +a.
Let the equality
X={4,=£=JB)}
be a g-D-representation of X and 8 = w, + 0. Let us put
B, = Ause
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and
(40) T=U{B:e=J0)}.

Then (40) is clearly a é-D-representation of 7. From conditions
(b), (e), (¢) of Definition 0.3 it follows that the set X\T is a union
of open finite dimensional sets. Consequently, P(X)c T and

DPX)=D(T)=0.

Hence w, + 0 = o, + a. O
3. Standard representations and standard mappings.
DerFINITION 3.1. Let

(1) X=PXUUC.

Then equality (1) is called a standard representation of a space X if

(@) The system {C;} is simple with respect to X\P(X). (In par-
ticular C,N P(X) = C,NC; = @ for |i — j| > 1.)

(b) dim C; £ n(2).

(¢) For any x¢C,, é(z, y) < 1/7 for some ye P(X), ¢ > 0, where
0 is a metric on X.

LEMMA 3.1. Let X be a weakly infinite dimensional space. Then
there exists a standard representation of X.
Proof. We put

1 1 .
— . < < - =>
C, {%i+2=&%HX»=i+J for i=1,

Q=pw@P@»g%y

Then, clearly the equality (1) and properties (a), (¢) hold. Property
(b) follows from Corollary 2.1. [:]

DEeFINITION 3.2. Let (1) be a standard representation of X and
f: X — I° be a mapping such that:

(a) f is a homeomorphism on P(X).

(b) FCYN FPX) = fCHN fC) =@ for i —j|> 1.

() dim f(C)) < dimC, < n; < oo.
Then f is called a standard mapping.

LEMMA 3.2. Let f: X — I° be a standard mapping of a weakly
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infinite dimensional and infinite dimensional space X. Then

(2) FX) = ) U Y FC) -

(3)  the system {f(Cy)} is locally finite on f(X)\f(P(X)).
(4) fTPFX)c P(X) .

(5) Df(X) < D(X) .

Proof. Let us show that

(6) for any sequence {y;}, such that y,¢c f(X), y,¢ f(C;) for j <1
we have

lim y,; = a for some point a € f(P(X)), and some subsequence
{¥rw) of sequence {y.}.

(7)
Indeed, we can take for any 4 a point f(x;) such that

(8) MﬂMJ»<%,meﬁ@3ﬁrj<%

Consequently ;€ P(x)U U{C;: § = 4} and by condition (c) of Definition
3.1 we have

(9) oz, P(X)) <1fi.

Since X is weakly infinite dimensional, P(X) is compact and from
(9) it follows that

(10) limx,, =b for some point beP(X) and some subsequence
{¢,.} of sequence {x,}.
Let f(b) = a, then property (7) follows from (8), (10). Let us prove
@2). Let ze f(X)\f(X), xz¢ f(C;) for any 4, and z¢ f(P(X)), then
clearly we can construct a sequence {y;} such that
limy, =« and y,¢ f(C;) for j<1i.

From condition (7) it follows that ze f(P(X)) and we obtain the
contradiction. Hence property (2) holds. Similarly we can prove
(8). Indeed, if xze f(X)\f(P(X)) and any neighborhood Ox of x

contains points of infinitely many sets f(C;), we can construct a
sequence {y;} satisfying (6) and such that

limy, ==x.

7—00

By virtue of (7) ze f(P(X)) and we again get the contradiction.
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Therefore the system {f(C))} is locally finite on fF(X)\f(P(X)). Let
us prove (4). Since P(X) is compact, the set f(P(X)) is closed and
the set f(X)\f(P(X) is open in f(X). By virtue of condition (2) and
(b) of Definition 3.2 we have

TRV PED) = U TC)

SAPX)) = P(X) .

From conditions (3) and (e¢) of Definition 3.2 it follows that

(12) Pf(X)C f(P(X)) .

1)

Consequently, condition (4) follows from (11), (12). Property (5) follows
from (12). Indeed, by Lemma 2.8

D(F(X)) = @, + D(PF(X)) £ @, + Df(P(X))
= @, + D(P(X)) = D(X) .

We used here the equality Df(P(X)) = D(P(X) which follows from
condition (a) of Definition 3.2. |

LEMMA 3.3. Let U be an open set in some closed subset A of a
space X and ¢ the set of all mappings f: X — I° such that

FAO)NfFAD) = @
then
seGy .
Proof. Let {F;:1=1,2, ---} be a collection of closed sets in a

space X such that Uz, F;, =U. Then by virtue of Lemma 1.2 and
(19) §1 the set 4 of all mappings f: X — I° such that

fE) N fAU) = o
belongs to G;. Since clearly ¢ D+, we have also ¢ € Gy. O
LeMMA 3.4. Let X be a weakly infinite dimensional closed subset

of a space Y and ¢ be a set of all mappings f:Y — I such that f
is standard on X. Then ¢cGy.

Proof. By Lemma 3.1 there exists a standard representation (1)
of a space X. Since the system {C;} is countable, our lemma follows
from Lemmas 1.2,1.3,1.4 and (19) §1. O

LEMMA 3.5. Let U be an open set in a space X and V = IntU
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(where IntU is an interior of U). Then

FrVcFrU, V=IntV, UcV

and the set X\(FrV UV) is everywhere dense in X\V. The lemma
18 trivial.
An open set V such that V = IntV is called canonic.

LEMMA 3.6. Let IndX =a,ind X =8a=8=w,) and Ny =
{(Uklvellpe = a,b be two system of open canonic in X sets such that
for all ver:

(k1) IndFrUt < a

(k2) ind FrUt < B

k38) A\a) forms a large base in P(X)® and \b) forms a base in
P(X).

Then if f: X —I° is a standard mapping such that:

(k4) Ind FrU; = Ind f(FrU?)

(k5) ind FrU;} = ind f(FrU?)

&6) F(TH) N FENUD) = FErUD

&7 If Ut c U then f(UL) N FX\UL) = @

k8) fFrUNN f(X\FrU}) = @.

For all eI’ and pt = a,b then

@@ IndfX)<IndX

(b) ind f(X) < ind X

(¢) Df(X) = D(X).

Moreover, for proving condition (a) it s sufficient to assume that
conditions k1, k3, k4, k6, k7, k8 hold and for proving condition (b) it
18 sufficitent to assume that conditions k2, k3, k5, k6, k7, k8 hold, and
condition (c) follows from the standardness of mapping f.

Proof. Condition (¢) follows from Lemma 3.2, property (5). Let
us prove (a). Let F, G be a pair of disjoint closed sets in Pf(X).
We put

(13) Fi=f7F), G=rG).

Since f is a standard mapping, by Lemma 3.2(4) we have
(14) F,UF, < P(X)

and clearly

FNF,=0.

8 This means that for any pair (F, G) of closed disjoint sets in (X) there is a set
%, open in X, such that Fc Uf c X/G.
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By virtue .of k1, k3 there exist such sets U7, U, U, € Ma) so that

(15) F.cU. cU;cU,cU,cU;,cX\G,,
(16) Ind U, < a.
We put

A7 U=U:, V=ItfT) = FONrf(T), A= FRNT .
Since f is a continuous mapping,

18) F(O) =TF0).

Let us show that

19) A= fX\D).

By virtue of (k6), (k8), (18)

(20) FO)n F&X\0) n FX\FrU) =

Since U is canonic set, from Lemma 3.5 it follows that the set
FX\U) N f(X\FrU) is everywhere dense in f(X\U), consequently

(21) FX) = FX\O)N FX\FrD) .

From (18), (20), (21) it follows that

(22) X\0) = f(X\U) n FX\Fr0) Cf(X)\f(U) A.
Since

FE\FO) = FX\U) U FIO\NO) < FX\D)
and the set f(X\U) is closed, we have
(23) A=FXNO)c XD .

The condition (19) follows from (22), (23). By virtue of (17), (18), (19)
we have

@4) V= FONFO) nFOFO) = FONFT) n FEXT)) .
From conditions (13), (15), (17), k7 it follows that

Fc f(U;), f(Uy) N f(X\U) =

Consequently,
(25) FcVv.
On the other hand, by virtue of k7, (15), (24), (13)
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Ve fO), FO)n fX\T;) =@, GCf&X\T;).
Consequently
(26) VcFX\G .

Since the set V is open (condition 17), it follows from (25) and (26)
that FrV is a partition between F and G in f(X). Since by (24)
Vc f(U) and V is open, we have

@ FrV=V\Vc f(O\V = f(U)n f(X\U) .
But by virtue of (19), (17)
(28) Frf(0) = f(0) n FROV@) = FO) n FE\D) -
From (k6), (27), (28) it follows that

FErU) = Frf(U)> FrV

f(FrU) = Frf(U)D FrV.
By virtue of (k4), (16), (17)

IndfFrU) < Ind FrU< a.

Consequently Ind F7»V < «a. Inequality (a) now follows from Corollary
2.2(a). Similarly one can prove inequality (b). O

4. Proof of the compactification theorem. First we shall
prove some general theorems.

THEOREM 4.1. Let X be a closed subset of a space Y and dimen-
ston Ind X exists. Let ¢ be the set of all standard on X mappings
f:Y — I° such that

Ind f(X) <Ind X
Df(X) = D(X) .

Then ¢ € Gy.

LEeMMA 4.1. Let X be a closed subset of a space Y and dimension
Ind X exists. (We note that by wvirtue of (2) (imtroduction) the
dimension ind X also exists.) Let IndX = a, ind X = 8 and 8 = w,.
Then there exist two countable systems M) ={U;:veljt=a,b of
open in X canonic sets such that for all YeI conditions k1, k2, k3
of Lemma 3.6 are fulfilled.

Proof. The existence of systems \(¢) with properties k1, k2, k3
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is evident. Since Ind X exists by (SM1) §2 and Corollary 2.1, P(X)
is compact. Consequently we can consider systems \(g) to be
countable. Indeed, from any base (large base) of compact metric
space we can select a countable subsystem which is also a base (large
base). By virtue of Lemma 3.5 all elements of these bases we can
consider to be canonie. O

LEMMA 4.2. Let in Lemma 4.1 ¢, be the set of all mappings
f: Y — I such that f is standard on X and conditions k6, k7, k8 of
Lemma 3.6 are fulfilled. Then ¢, € Gy.

Proof. Let ¢, be the set of all mappings f:Y —I° such that the
condition %,(¢ = 6,7, 8) of Lemma 3.6 holds. Since
FrU* = U'n X\U?

and the systems A(z) are countable, from Lemma 1.2 and (19) §1 it
follows that

$.€Gx .

Analogously ¢, € Gx. Inclusion ¢; € G, follows from (19) §1 and Lemma

3.3. Let 4 be the set of all mappings f:Y — I such that f is

standard on X. Then +€G; by Lemma 3.4. Since obviously
=9 NgNdNds,

our lemma follows from (19) §1.

Proof of Theorem 4.1. We shall prove the theorem by induction
on ¢ =Ind X. Let o < w, then by virtue of (8) (introduction)

Ind X = dim X = D(X)

and our theorem follows from Lemma 1.4. Let a = w, then by Lemma
4.1 there exists a countable system \(a) of open canonic in X sets
satisfying conditions k1, k8 of Lemma 3.6. Let 4 be the set of all
mappings f:Y — I such that the condition (k4) is fulfilled. Then
from inductive assumption and (19) §1 it follows that

b eGy .
Consequently,
@ = N¢E GY

where ¢, is the set defined in Lemma 4.2. Let feg, then f is
standard on A mapping. Morerver the conditions (k1), (k3), (k4), (k6),
(k7), (k8) are fulfilled. Consequently, by Lemma 3.6 fcg¢, where ¢
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is defined in Theorem 4.1. Hence ¢,C¢. Consequently ¢eG,. [

THEOREM 4.2. Let A be a closed subset of a space X and dimen-
sion Ind A exists. Let A be strongly metrizable’ and ¢ be the set of
all standard on A mappings f: X — I° such that

Ind f(4) < Ind(4)
(1) Df(A) £ D(4)
ind f(4) <ind 4.

Then ¢ C Gy.

Proof. We shall prove the theorem by induction on g = ind A.
By virtue of Theorem 4.1 it is sufficient to prove that the set «+ of
all mappings satisfying condition (1) belongs to G,. Let g8 < w,, then

indd=Ind4A=dimA4,

see [23], Zarelua. Consequently, our theorem now follows from
Lemma 1.4. Let 8 = w,. In this case our proof is completely similar
to the proof of Theorem 4.1.

COROLLARY 4.1. Let X be a space and {L;} be a countable system
of closed subsets such that the dimemsion Ind L, exists for every 1.
Let @ be the set of all mappings f: X — I° such that

@) Imdf(L;) £IndL, (=12, ---).

(b) Df(L) = D(L).

(¢) if L; is strongly metrizable for some j then ind f(L;)<ind L;.

(d) f is a standard mapping on L..

(e) fPf(Ly))cP(Ly)
for any 1 =1,2, ---. Then ®cGy.

Proof. By Lemma 3.2 the condition (e) follows from (d). Our
corollary now follows from Theorem 4.1, Theorem 4.2 and (19) §1.

Proof of Compactification Theorem (1.1). Let +, be the set of
all homeomorphisms f: X — I* of separable space X in Hilbert cube.
Then, see [5], Hurewicz and Wallman,

(2) P €Gy .
Since for every 7 and f €q
9 The condition of strong metrizability of X is equivalent to the following one:

There exists an imbedding f: X — I® X II7-; B;, where I* X II7., B; is a product of
Hilbert cube and a countable number of discrete spaces.
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Ind f(L;) =Ind L;, ind f(L,) =ind L,, D(f(L,)) = D(L,)
and f(L,) < f(L,), we have
(3) ind L, < ind f(L,), DL, < Df(L,)
see [3] (introduction). Inequality |
(4) Ind L; £ Ind 7(L,))

follows from Corollary 2.3 and SM1 §2. Let ¢, = ¢ N 4, Where ¢ is
defined in Corollary 4.1. Then from Corollary 4.1, (2) and (19) §1
it follows that

(5) 6 €Gy .

Since f is a homeomorphism, we have f(P(X)) = P(f(X))c Pf(X)
Inclusion Pf(X)c f(P(X)) follows from condition (e) of Corollary 4.1.
Consequently condition (d) of the Compactification Theorem also holds.
We obtain that + D¢, where the set « was defined in Theorem 1.1
and, by virtue of (5), +€G,. The theorem is proved. O

5. Uniformly zero dimensional mappings.

THEOREM 5.1. Let X be a space and a fixed countable system of
closed sets L; i =1,2, --- such that dimensions Ind L, exist. Then
the set «p of all uniformly zero dimensional mappings® f: X — I° of
the space X to the Hilbert cube I° such that for each i we have:

() Ind L, = Ind 7(L,)

(b) D(Li) = Df(Li)

() indL; < ind f(I;) < @, + ind L,

(d) ind L; = ind F(L,) if L, is strongly metrizable

(e) f s a standard mapping on L,
contains an everywhere dense set of type G, in the space C(X, I*).

To prove this theorem we need some preliminary lemmas.

LeMMA 5.1. Let X be a bicompactum, not necessarily metrizable
(respectively by a metric space) and f: X —Y be a zero dimensional
mapping (respectively uniformly zero dimensional) in a compactum
Y. Then

(a) indY=ind X

(b) D(Y) z D(X).

19 We recall that f: X —Y is uniformly zero dimensional if for any e > 0 there

exists d > 0 such that for every set .#CY of diameter .#Z < J the set f-Y(#) is a
union of a discrete collection of sets, each of them having the diameter <e.
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Proof. Inequality (a) was proved in [23] (Theorem 1), Zarelua.
Let D(Y) = a and

Y={Yr7= J}

be an a-D-representation of Y. Since zero dimensional mappings
of bicympacta (respectively uniformly zero dimensional mappings of
metric spaces) do not lower dimension Ind; see [17] (respectively
[6]), it is easy to see that

X=U{Y=/F"(Y):7=J)}
is an a-D-representation of X. Consequently, D(X) < a. M
LEMMA 5.2. Let X, Y be spaces with dimensions Ind X, IndY

and f: X—Y be a uniformly zero dimensional standard mapping.
Then IndY = Ind X.

Proof. We shall prove this theorem by induction on IndY. Let
IndY = a and @ < @w,. Then dimY = D(Y) = IndY ((8) introduction)
and our lemma follows from Lemma 5.1(b). Let a = w, and F, G
be a pair of closed disjoint subsets in X such that

FUGCPX).
By virtue of (a) definition 3.2 we have
FEINFG) =2.

Since X is weakly infinite dimensional (SM1 §2), P(X) is compact by
Corollary 2.1 and consequently sets f(F'), f(@) are closed. Let C be
a partition between f(F') and f(G) such that

(1) IndC< a.

Then f~*(C) is a partition between F' and G in X. Since clearly the
restriction of any uniformly zero dimensional standard mapping to
a closed subset is also zero dimensional standard mapping we have
by inductive assumption and (1)

Ind f7(C)£IndC< a.

Our lemma now follows from Corollary 2.2(a). O

LEMMA 5.8. Let X be a space with dimension Ind X. Then
ind X £ w, + ind P(X)."

Proof. We will prove this lemma by induction on ind P(X). If

1 We consider that w, + (—1) = w,.
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ind P(X) = 0, then for any point « € P(X) and a closed set F' < P(X)\{x}
there exists a partition C in X between {x} and F such that

CNPX)=0.

Then by Theorem SM1 and Corollary 2.1, C is finite dimensional and
indC < w, + ind P(X). Therefore ind X < w, + ind P(X) by Corollary
2.2(b). If ind P(X) = 1 then for any point x e P(X) and a closed set
Fc P(X)\{z} there exists a partition C in X between {z} and F such
that

ind(C N P(X)) < ind P(X) .
Since clearly P(C) cC N P(X) we have by inductive assumption that
indC £ w, + ind P(C) < w, + ind P(X) .

Our lemma now follows from Corollary 2.2(b). O

Proof of Theorem 5.1. Let R be the set of all uniformly zero
dimensional mappings f: X — I°. Then by virtue of [6], Theorem
2.15, p. 359 and (B), p. 354, Katetov

ReG, .

Let ¢ be the setdefined in Corollary 4.1. By virtue of this corollary
6eGy.

To prove our theorem it is sufficient to show that

(3) vOeNE.

Let fegnNR. Then (e) is evident and (a), (b), (d) follow from Corol-
lary 4.1 and Lemmas 5.1, 5.2. Let us prove (¢). Inequality

(4) ind L; < ind F(L,)
follows from Lemma 5.1. By virtue of Lemma 5.3
(5) ind f(L,) £ w, + ind Pf(L,) .

By Corollary 4.1(e)f*Pf(L;) C P(L;) and since f is a homeomorphism
on P(L,) (see Definition 3.2(a)), we have

(6) ind Pf(L,) < ind P(L;) < ind L, .

Property (¢) now follows from (4), (5), (6). Thus property (3) and
Theorem 5.1 are proved.

6. On bicompactifications of metric spaces.
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THEOREM 6.1. For any space X with dimension Ind X there
exists a bicompactification bX D X such that:

(@) IndbX =Ind X

(b) DbX = DX

() INdX=indbX=<w, +ind X

(d) inddX =ind X if X is strongly metrizable

(e) weight bX = weight X.
Property (a) was also proved in [17], Pasynkov, for normal spaces.
We note that for every metric space X there is not a bicompactum
bX suck that ind bX=ind X, Ind bX=Ind X. For example, if ind X=0,
Ind X =1 (see [18], Roy) then for any bicompactum bX with ind bX =
0 we have also IndbX = 0.

We recall that a mapping f: X —Y is called scattering (see [23],
Zarelua) if for any point x € X and its any neighborhood U > x there
is a neighborhood V3 f(x) such that for some open sets W,, W,c X
we have:

f_l(V):W1UW2, w.nw,= o, wercU.
Every uniformly zero dimensional mapping is obviously scattering.
Proof of Theorem 6.1. Since for a space X with weight X < R,
the theorem is trivial, we suppose weight X = &R,. By virtue of
Theorem 5.1 there exists a uniformly zero dimensional mapping
f: X — K in compact K c I such that we put bX = K the conditions

(a) — (d) hold and f is a standard mapping. Since f is scattering,
there exists a bicompactification 8X D X and a scattering mapping

F:0X— K

such that the restriction of F' to X is f and the condition (e) holds.
This result was proved in [23]. Since X CbX we have

(1) ind X < ind bX

see (1) (introduction). Since every scattering mapping is obviously
zero dimensional, we obtain by virtue of Lemma 5.1

(2) D(K) = D(X) =z D(bX)

(3) w,+ind X =z ind K = ind bX

(4) indX=indK=indbX if X is strongly metrizable .
Thus, conditions (b)-(e) hold. Moreover we obviously can consider

(5) bX = X
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where closures are taken in bX. Let us prove the inequality
(6) IndbX <Ind X.

Since f: X — K is a standard mapping there is a standard represen-
tation

(1) X:Hmuga

such that conditions (a), (b), (¢) of Definition 3.2 hold. Let us prove
the equality:

(8) bX =PX)U UC..
Let xebX\P(X) be any point. Then there are open in bX sets VDO
P(X) and Wz such that
(9) Vaw=g9.
We put
U=VnX.

Then U is a neighborhood of P(X) in X. Since P(X) is compact for
some & > 0, we have:

O.(P(X)) = {z: o(x, P(X)) < e} U.

Since (7) is a standard representation of X, by virute of (¢) (Definition
3.1) we have:

C,.cU for llji<e.
Consequently, by virtue of (9),

wn (P(X) U gk5j> = @ for any k such that 1/k <e.

This proves the condition (8) and shows that

(10) the system {C,} is locally finite on bX\P(X).
Moreover from condition (b) of Defininition 3.2 it follows that
)  FCynFPX) =FC)nFCy) =@ for |i—j>1
and consequently

(12) C:nC;=@=C,NnPX) for |i—j|>1.

From conditions (8), (10), (12) it follows that (see Definition 2.3),
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(13) the system {C,} is simple with respect to X\P(X). Since f
is a standard mapping, we have:

(14) dim 7(C)) = dim F(C)) < o ,
and
(15)  the restriction of F = f to P(X) is a homeomorphism.

From conditions (13), (11), (14), (15) it follows that conditions of Lemma
2.4 are fulfilled for B = bX, B, = C; and P = P(X). Consequently by
Lemma 2.4

Indb X <IndK=1Ind X.

If IndbX = X then our theorem is proved. Otherwise we can
put

b, X = bX

and consider the disjoint sum 8X = b,X U K which obviously satisfies
conditions (a)-(e). O

7. Separable spaces which have no compactifications with
the same dimension ind. By Theorem 6.1 (or by Corollary 1.1)
every separable space X with dimension Ind X has a compactification
c¢X such that

ind X =inde¢X.

In this section we construct examples of separable spaces which have
no compactification with the same dimension ind. Similar examples
for dimension D we shall give in the next section.

THEOREM 7.1. For any limit ordinal number a, w, = a < @,
there exists such complete” weakly-countable dimensional® separable
space X, with dimension ind X, = a such that for any compactifi-
cation Y O X, we have

indY >a=ind X, .

We note that by Hurewicz’s theorem [5] every finite dimensional
space X has a compactification ¢cX D X such thatindeX =ind X. It
also follows from Corollary 1.1 because for finite dimensional space
X Ind X = ind X.

2 We consider a space X to be complete if it is an absolute Gs-set or equivalently
if we can introduce on X a complete topology preserving metric.

13 A space X is weakly countable dimensional if X is a union of countable number
of finite dimensional closed subsets.
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DEFINITION 7.1. Let a be an ordinal number. We put
) =a for a=<®,.
If a > w, then o = w, + B for some B > 0 and we put
P(@) = W, + W, X B .
We will use the following results, see [13], §1, Luxemburg.

For any a < w, there exists a weakly countable dimensional
compactum Y, such that:

(1)
indY, = aIndY, = o(a) .

(2) For any compactum Y having a dimension indY we have
indY £ IndY £ (indY) .

From Definition 7.1 it follows that (see also [13, Lemma 1.1]).

(8) If a < g then p(a) < P(B).

(4) If a = sup{B.,} then p(a) = sup{p(B,)}.

Construction of the space X. Since « is a limit number there exists
such a sequence of ordinal numbers {v;} so that

T < Tin<a, 71:6i+1

5
(8) a=sup{v:1=12, ---}=sup{Bit =12 ---}.

By virtue of (1) there exists a weakly countable dimensional compacta
K, such that

Since by virtue of (3), (5), #(8,) < ®(7;) we can take in every com-
pactum K, a pair of closed sets F;,, G;(F; N G; = @) such that

Any partition C between F; and G, has the dimension IndC >
P(B)-

Let K; be a compactum which we obtain by identification of all
points of the F; with some point n; € F; and by identification of all
points of the set G; with some point v, G;. Let

(7)

(8) Z=UK/, KinKj=0 for i+j

be a discrete sum of compacta K;. We put
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U=U}, V=U@), @,uck).

Then U and V are disjoint closed subsets in Z. We take a countable
number of copies Z, of a space Z. The set in Z, which corresponds
to a set AcZ we shall denote by A,. In the set U;-.Z, with
topology of a discrete union of copies Z, we identify the point v}
with the point u?,, for all » and ». Then we obtain the space

C:s

(9) X.=Uz%

»=1

such that
Zy,NZpyy =V, =U,, .
We put
X, =X, U {3

where in a point 6 we define the topology by the open basis
k
Gk+1 = Xa\glzﬂ
and in X, the topology is preserved.

Proof. From condition (7) it follows that

any partition C between {u,} and {v;} has the dimension IndC =

10 P(By)-

Consequently Ind K; > @(B,) and by virtue of (2)
11) mdK; =g +1=1,.
Besides that

12) ndK;<v,+1<a.

Indeed, from (6) it follows that for any point x ¢ K;({v:;} U {u:})
ind, K; <7, .

Further if V is an arbitrary neighborhood of a point »; in K; and
V 3 u, then

Frvc K\({v} U {u})

and consequently ind F»V < v,. Similarly one can prove that
ind,, K < v;. Hence (12) holds. From conditions (5), (8), (9), (11),
(12) it follows that
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indX, =a.
Since obviously F#»G,,, =V, =U,,, and the set V, is countable, we
have ind; X, £ 1. Therefore
(13) indX, =«.

Since compacta K, are weakly countable dimensional, compacta K;
are also weakly countable dimensional. Consequently the space X,
is also weakly countable dimensional. Since X, is a union of locally
compact separable spaces X, and a point §, X, is complete and
separable. Let us prove that X, is not contained in any compactum
Y with

(14) indY = a.

We suppose on the contrary. Then Y D X, and (14) holds. By virtue
of (2)

IndY = ¢(a) .
We consider a neighborhood O; in Y of the point § such that

(15) o,NU,=2.

Since IndY < ¢(a), it follows that there exist neighborhoods W, 1 =
1,2, ---, of the point ¢ such that for all ¢

(16) W.c0,, W,CcWiy,, imdFrW, <o) .

Since sets G,, k=2, 3, ---, constitute a basis in X, at the point J,
there is some integer m such that G, cW,. Thus for k& = m the
sets U, are contained in W,. We shall show that U,_\W, contains
only finitely many points. Indeed, if wli, w,>, ---, is an infinite
sequence of points which does not lie in W,, then since u.!, u.2, -+-C
U,cW,c W, we have that the set FrW, separates points u.:, and

kg

V., and by virtue of (10)
an Ind Fr W, = 9(B8:,) for any <.

By virtue of (5) sup{B,;:7 =1, 2, ---} = a and consequently by virtue
of (4) sup{p(B:):7=1,2, ---} = (). Therefore from (17) it follows
that

Ind FrW, = o(a)

which contradicts the condition (16). Therefore, the set U,_\W, is
finite. Analogously to the case = m — 1 we can show by induction
that for v1=1,2, ---, m — 1 the set U\W,,,,_, consists of only finitely
many points. From this taking =1 we get that the set U\W,, is
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finite, but this contradicts conditions (15), (16). Thus, assumption

of the existence of a compact space YD X, with indY = a = ind X,
leads us to a contradiction. O

8. On compactifications of spaces with D-dimension. In [4],
Henderson, it was proved that every separable weakly infinite
dimensional space has a compactification of the same dimension D.
This result also follows from Corollary 1.1. In that paper it was
the conjecture which we prove in the following theorem:

THEOREM 8.1. FEwvery separable space X has a compactification
¢X D X such that

(1) D(cX) = D(X) + 1*.

This result appeared also in [7] earlier than ours. In [4]
Henderson gave an example of separable space X(D(X) = w,) which
18 mot contained in any compactum with the same D-dimension. In
the following theorem this result will be gemeralized for all a < w,,
a = ,.

THEOREM 8.2. For any a, w, = a < w, there exists a separable
space X, such that D(X,) = a and X, is not contained in any com-
pactum with the same D-dimension.

To prove Theorem 8.1 we need some preliminary lemmas.

LeEmMA 8.1. Let
(2) X=Ul4r7=Jp)}

be a B-D-representation of a separable space X. Then X is homeo-
morphic to a subset of a separable space Z such that for some G-D-
representation of Z

(3) Z = U{B:7 = J(B)}
the set B, 18 compact.

Proof. By virtue of Lemmas 1.4 and 3.3 there exists a homeo-
morphism f: X — I° such that:

dim f(A;p) < dim A,
FA;) N f(X\Ayp) = @ .

1+ We will prove that it is possible to take such compactification ¢X that ¢cXe€ AR
and inequality (1) holds.
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We put Z = f(4;4) U f(X), Br = f(A) N Z, (v =J(B)). Then
clearly B, = f(4,) and the equality (3) is a needed g-D-represen-
tation of Z. O

LEMMA 8.2. Let (2) be a B-D-represntation of a space X, a =
J(B) = w,, then for any sequence of ordinal numbers {V;} such that
Vi > T Sup{’yi:is 17 2, "'} =

there exists a simple with respect to U = X\A,; system of sets
& = {F}} such that

DF)=1;:.

Proof. Let 6 < @ then we put
U=X\{An0=7v=J(B)}.

Then by Lemma 8.8 in [13], Luxemburg, D(U,) < @. From Definition
0.3 it follows that the sets U; are open and since the system
(Uy:1=1,2, ---} is countable, our lemma follows. O

LeEmMA 83. Let P,t=1,2,3, be clssed subsets of a space P =
P UP,UP, and PNP,=@. Let f:P— K be a homeomorphism.
Then there exists a homeomorphism g: P— K X I, where I = [0, 1],
such that g(P) N g(Py) = @.

Proof. Let @:P—]0,1] be a continuous function such that
o(P) =1, p(P,) = 0. Then we put

g(x) = {f(®), p(x)}, zeP.
Then, clearly, g: P— K x I is a suitable mapping. ]
DEFINITION 8.1. Let spaces P, P;i = 1, 2, 3, satisfy the condition

of Lemma 8.3 and A: P, U P, — K is a homeomorphism in a compactum
K such that

h(Pl)mh(szPa): D .

We put T = h(P,) U h(P,) C K and in disjoint sum 7T U P, we identify
every point h(x) e T with a point z for x€ P, P,C P,. Then we
get a factor space, which we denote by u(, K, P, P, P,).

LEMMA 8.4. There exists an imbedding n: P — p(h, K, P,, P,, P;) =
L. Moreover, the space tt is separable and metrizable if P is separable
and metrizable, w(P) is everywhere dense in [,
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U= HE) U 77.'(P2) U 7Z'(P3)

the set w(P;) is closed in p, n(P,) is compact, w(P) U n(P,) is closed
n t and can be imbedded in K and w(P) U n(Py) = @. The lemma
18 evident.

We will consider the following conjecture:
& (). For any separable space X with D(X) < a there exists
a compactification K> X with D(K) < a.

DEFINITION 8.2. Let X = U{X;:1€l} be a union of spaces X,
then X is called an inductive limit X = Lim{X;} if a set Uc X is
open in X =UnN X, is open in X,.

LeEMMA 8.5. Let a be a limit ordinal number and conjecture
C(a) is ture. Let the system {F}(1 =1,2, --:) in a separable space
X be simple with respect to X and D(F;) < a. Then there exists a
locally compact separable space G, the system of compacta {G.} in G
and imbedding f: X — G such that:

(a) m) =G,

(b) G; is a compactum.

(¢) The system G, is simple with respect to G.

d D@G)<a DG L a.

Proof. We will define by induction spaces Y; 2 X,7=0,1,2, ---
such that

(4) Y, =P U---UPUF,,UF,_,U---

(5) F;=P; and P;is compact j=0,1,---,4.
where F; is a closure of F; in Y,.

(6) AN =0, Q=Q, Q=Q, F,=F,
where Qf = Ui Pp U Fipy, @ = Uil Fy, @F = Fiy.

(7) P.NP,=PNF,=@ if |[k—/>1.
(8) D)< a.

We put P,=F,= g, Y, = X. Let a space Y; for ¢ = i, be defined.
We put Qi = F,,,. Then from (6) it follows that sets Qi, Qi Qi are
closed in Y,. Since D(F},) < a, from condition (8) and the sum
theorem for D-dimension (see [3], Henderson), it follows that D(Q:U Q<
a. Consequently, by C(a) there exists an imbedding f: QiU Qi — K
in a compactum K with D(K) < @. From Lemma 3.3 it follows that
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there exists an imbedding +: Qi U Qi — K X I such that +(Q}) N
Y(@:NQ) =a. We put Y, = p(y, K X I, Qi, @, Q3), Piy, = [Fiy],
where [F',,,] is a closure of F';,, in Y,,,. Conditions (4), (5), (6), (7), for
1, + 1 follow from Lemma 8.4. Since by Lemma 8.4 Qi+ = Qb+ y
Qi can be embedded in K x I, we have D(Q») < D(K x I). Since
« is a limit number, property (8) follows from the inequality D(K x I) <
D(K) +1 (see [3], Henderson). Hence, space Y, are constructed.
Let us put

G =l1im{Y}}, G;=n,(P)

where 7;:Y, — G are inclusions. From conditions (6), (7) it follows
that for every point zeG there exists 4+ and an open in Y, set
U,z UCP; U P;..(j +1 < i), such that 7,(U) is a neighborhood of
2 in G. Consequently, by virtue of (7) we obtain the condition (c).
Conditions (a), (b) follow from (5). Since 7, is a homeomorphism,
inequality D(G;) < a follows from inclusion P; C Qi(j < 1) and (8).
Since collection of compacta {G,} is locally finite, the inequality
D(G) £ a follows from sum theorem for D-dimension (see [3],
Henderson). Hence property (d) and Lemma 8.5 are proved. |

NOTATION. Let KCY, XcCY, K is compact and f: K— R is a
mapping in a compact space R, such that if xe KN X then for any
ye K,y #+ x, we have f(x) # f(y). We will consider points z,yeY
to be equivalent if either x = ye Y\K or f(x) = f(y) and %, y € K.
We get a factor space which we will denote by F = F(X, X, Y, f)
and a factor mapping 7:Y — F.

LEMMA 8.6. If a space Y is metrizable and separable then F is
also metrizable and separable. Moreover, the restriction of @ to X
18 a homeomorphism.

The lemma follows from well known theorems on factor mappings.

DEFINITION 8.2. The equality
(9) Y=KUUF.

we will call canonic representation of a space Y if

(a) the system {F'} is simple with respect to Y\K.

(b) any sequence of points {x;} such that x; € F,,, i(k + 1) >
1(k), has an accumulation point y € K.

LEMMA 8.7. Let X be a separable space and (2) be a B-D-
representation of X(B8 = w,). Then there exists a separable space
YD X such that Y has a canonic representation (9) and
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(i) K is compact.
(ii) D(F) < a=J(@B).
(iii) KNX= A,4.

Proof. By Lemma 8.2 there exists a simple with respect to V =
X\A;; system {F7} in a space X such that
10) DF)<a.

Since {F} is a simple system, sets F'; and P, = A,, U U{F;: |k — i|>1}
are closed and disjoint. Since the set of all homeomorphisms ¢: X —
I° contains an everywhere dense G,-set in C(X, I*), we get by Lemma
1.2 and (19)§1 a homeomorphism f: X — I” such that

(11) FP)NFfFH =@ for any 1.
We put

12)  K=UfF)UAmcl, K=NK, F=fEF)
(13) Y=KUUF..

Since f is a homeomorphism, YD f(X), we can consider that X =
f(X). Then conditions (i)-(iii) follow from (10), (11), (12), (13). Let us
prove that representation (13) is canonic. Property (a) of Definition
8.2 follows from (11). Let {x} be such a sequence as in (b) of
Definition 8.2. Then x,C F,,, C K4 Since K,,,C K; and K, are
compact, there is an accumulation point y e N, K; = K. The lemma
is proved. N

NoTATION. It is known (see [1], Bothe) that every separable
n-dimensional space is contained in compact separable (n + 1)-dimen-
sional AR-space R"™. In particular R"** contains a universal n-

dimensional compact space A4, c R™*.

LeEmMMA 8.8. In Lemma 8.7 we can also require that K = R*™,
RN X = Ay C A, where n = K(B).

Proof. By Lemma 8.1 we can consider the set A,; to be a
compactum. Let Y be a space from Lemma 8.7. Since dim A4;; <
K(B) = n (see Definition 0.3 (d)), there is a homeomorphism g: 4, —
A,CR,,,. Let i K—R,,, be an extension of g. We put Y' =
F(K, X,Y, f). Then by Lemma 8.6 we can consider that XY,

and the equality
14) T=RMUQE
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is clearly a canonic representation of Y’. Condition

Rn+1 n X = AJ(m
is evident. O

LEMMA 8.9. Let X be a separable space, D(X) < 3,8 =0a + n,
a=J(B), n = K(B). Then there exists a compact space KD X such
that

(i) DIKyspg+1=a+n+ 1.

(i) K= R*"U Uz H,H=Uz H, HN B = g.

(iiiy DH) < a, D(H) £ a.

(iv) H,; is compact and the system {H;} is simple with respect
to H.

(v) There ewists a homeomorphism i: R — R™' gsuch that
(XN R cA, R,

Proof. We shall prove our theorem by induction on 8. If g <
@, then we put K= R"",G=@. Let 8= w, Since D(X) < g,
there exists a g-D-representation of X and by Lemma 8.8 there
exists a separable space Y’ D X such that representation (14) is canonic
and

(15) XnNR*"cd,, DF)<a.

Sinee the conjecture C(a) holds by inductive assumption, by Lemma
8.5 there exists a separable locally compact space G such that
Uz, G, = G, G, is compact, the system {G,} is simple with respect to
G.

(16) DG)<a, D@ =«

and there exists a homeomorphism h4:Y'\R"* — G such that A(F;) C
G.. Let us put

G=wUG

where @ is a compactification point and G’ is a compactum. Then
obviously D(G’) = D(G). We put:

) K=R"XG, H=R"xG,H=R"XG R"=R*"xuwo.
Then from (16), (17) it follows that

DK)=DGE)Q DR =DE@Sn+H=sa+n+1=+1.
Since « is a limit number from (16), (17) it follows that

15 Here we use the inequality D(X XY) < D(X) @ D(Y), where @ is a natural
sum of ordinal numbers, see [3], Henderson.
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(18) DH)<DG)DDER*")=DG) +n+1<a.

Moreover the system H; is simple with respect to H because the
system {G;} simple with respect to G. Consequently, from (18) and
the sum theorem for D-dimension (see [3]) it follows that D(H) < a.
Thus conditions (i)-(iv) of our lemma are satisfied. We have only
to prove the existence of homeomorphism F:Y’ — K such that

(19) FX)NR"CcA, Xw.

Then condition (v) will take place. Since R"*' is AR space, there
exists a retraction 7:Y’ — R"*'. We define a mapping ¢:Y' — G’ by
the equalities

qy) = h(y) for yeY\R", qy) =weG for yeR"*™.

Then obviously ¢ is a homeomorphism on Y'\R"*. We define a
mapping F:Y’ — K by the equalities:

o F(y) = q(y) , woF(y) = r(y)

where 7,: K = R** X G¢' - G, w,: K— R"™ are projections. The con-
dition (19) follows from (15). Let us prove that F' is a homeomor-
phism. The mapping F is obviously injective and continuous.
Moreover, since ¢ is a homeomorphisms on Y'\R"** and 7 is a homeo-
morphism on R"**C Y’, the mapping F'is a homeomorphism on Y’\R"**
and on R"*. Besides that

F( YI\RrH-l) C H . F(Rn+1) — Rn+1 s F( Y'\Rn+1) n F(Rn+1) o @ .

Therefore, for proving that F' is a homeomorphism, we have only
to prove that for any sequence {F(x,)} such that

(20) F(x,) e H, lim F(x,) = F(y) e B*™
we have
(21) limz, =9 .

n~—>00

From condition (20) it follows that lim, .. (7, cF(x,) = q(x,) = h(x,)) =
woF(y) = w. Since G, and G’ = «,(K) are compact, there exist two
subsequences of natural numbers {n(k)}, {i(k)} such that

(22) W) C Gy, nk+1)>mnlk)+2, wk+1) >4k +2.

Since A(F,) € G; and systems {G,}, {F}} are simple [from condition (22)],
it follows that

(23) Ty © Fiy— U Figy U Fiygss -



ON COMPACTIFICATIONS OF METRIC SPACES 441

Let j(k) is such a number so that x,4 € F;.), then since {F} is a
simple system, from conditions (22), (23) it follows that j(& + 1) >
j(k). Since (14) is a canonic representation, a sequence {z,.} has an
accumulation point y’ € R**' and consequently %’ = lim{z;} for some
subsequence {z;} of the sequence {x,,}. Moreover F(y') = F(y) and
since F' is injective, we have y = y’. We have proved that for any
sequence with condition (20) there exists a subsequence {z;} of a
sequence {x,} such that limz; = y. From this fact it follows (21).
The lemma is proved. (|

Theorem 8.1 obviously follows from Lemma 8.9. Let us prove
Theorem 8.2.

DEFINITION 8.3. (See [20], Smirnov). For any ordinal number
B < ®w, we shall define a compactum K;. For g < w,K; is a gS-
dimensional cube. If g is a limit number we consider K, to be a
one-point compactification (with point p;) of a discrete union of
compact K:v< B. If g=a+ n,a=J(B),n = K(B), we put K, =
K, x I", where I" is an n-dimensional cube.

In what follows we will consider @ to be a limit number < w,
and n=20,1,2, ---. For any K;

(24) mdkK, = g.
(See [20], Smirnov.) Since for any compactum Z
(25) D(Z)=z1Ind Z,

see [4], Henderson (Theorem 2), D(K;) = Ind K; = 8. By transfinite
induction it is easy to prove that D(K,;) < 8. Therefore

(26) D(K;) =8B .
By definition we have
(27) Koppnin =0} X I" U U{K, X Iy < a} .

Let S™ be a sphere which is a boundary of the cube I**. We put:
(28) Xpin = {0} X SHU UK X I 7 < a} T Kpina -

Then X,,, =Y U ({p,} X S™), where Y is a discrete union of compacta
K, x I": v < a. From (26) it follows that

DY) =sup{D(K; X ")y < a}=a.

Since Y is open in X, ., and {p,} X S"is closed we have the inequality
(see [3], Henderson, Theorem 4)
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D(X,a) = D(Y) + D(p, X ") = a + n.

Let A be an n-dimensional face of the cube I**!, then K, X AC
X, CK, i and K, X A is homeomorphic to K,,.,. Consequently

D(X,1n) 2 DK, X A) = D(Kp) =+ .

Thus D(X,,,)=a +n. Let {A, B} =1,---,n+ 1 be a system of
all pairs of opposite faces in cube I"*, then clearly {K, X A;, K, X B}
is a system of compact disjoint pairs in X,,,. Let CD X,,, by any
compact space, then we have to prove that

(29) DC)za+n+1=p+1.

We put F;, = K, X A, G, = K, X B,. Let D, be a partition be-
tween F; and G, in C.
Since clearly

FNK, xI"=K, x A, GNEK XI'"=K, X B(v<a)

the set C7 = D, N K; x I is a partition between K; X A, and K; X
B, in K, x I"** = K, ,,, for all ¥ < a. Consequently, by virtue of
[13], Luxemburg, Lemma 4.8 we have for all v <

Mn+1 Tn+1
md[NC=|ADNEK x I ||z 7.
Therefore Ind (N D,) = sup{v:7 < a} = a and by virtue of [13],
Luxemburg, Lemma 4.7
(30) IndCza+n+1=p8+1.
Inequality (29) now follows from (25), (30). The theorem is proved. []

9. On completion of metric spaces. It is known, see [15],
Nagata, that every finite dimensional subspace X Y is contained in
G;set GCY with the same dimension IndG = Ind X. Here we
extend this result to infinite dimensional case.

THEOREM 9.1. For any subspace X of a space Y, such that the
dimension Ind X exists, there is a G;-set G, such that Ind G = Ind X,
XcGcCY, P(X) = P(G).

We note that by Lemma 2.8 we have also D(X) = D(G@).

COROLLARY 9.1. For any space X with dimension Ind X there
exists a completion G = X*® such that Ind X = Ind G, weight X =

18 We call a space GO X a completion of a space X if G is an absolute Gs-set. It
is equivelant to the fact that we can introduce in G a complete metric (see [8]).
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wetght G.

Proof. Let Yo X be any complete space and G, be a G,-set in
Y such that Xc G,C Y, Ind G, = Ind X. Such G, exists by Theorem
9.1. Weput G=G,NX. Then G is G, in Y, and consequently is
an absolute G;-set. Also, Ind G £ Ind G, = Ind X. Inequality IndG =
Ind X follows from Corollary 2.3 and (SM1) §2. O

For proving Theorem 9.1 we need some preliminary results.

(S2) [19], Sklyarenko. If in a space X there exists a convergent
system (see Definition 2.2) of weakly infinite dimensional open sets
with weakly infinite dimensional limit then X is weakly infinite
dimensional.

LeMmA 9.1. Let K(KcC X) be a limit of a system of open sets
{I'.} in a space X, then if KC Y C X the system {[", N Y} is convergent
n Y and K is a limit of this system im Y.

The lemma is evident.

LEMMA 9.2. Let a space X have the dimension Ind X and Y X
18 a subspace such that YO P(X). Then the dimension IndY exists
and IndY < Ind X and Y is weakly infinite dimensional.

Proof. Let U, be the set defined by equality (1) §2. Since
Ind X exists, the space X is weakly infinite dimensional by (SM1) §2,
consequently by Theorem (S1) §2 the set X\U;-.U, = P(X) is a limit
of the system {U,}. By Lemma 9.1 P(X) is a limit of the system
{U,.NY}. Since dimU,NY<dimU,<n sets U,NY are weakly
infinite dimensional. Moreover P(X) is closed in X and, consequently,
is also weakly infinite dimensional. Therefore, by virtue of (S2) Y
is weakly infinite dimensional. Our lemma now follows from Corol-
lary 2.3. N

Proof of Theorem 9.1. We shall prove this theorem by induction
on Ind X. If Ind X is a finite number then this theorem is known
(see [15]), and in this case P(X) = . Let Ind X = @w,. Then P(X)
is a nonempty compactum (Corollary 2.1). We put

( 1 ) Vn = Y\OllnP(X) .

Then by Theorem SM1 §2 and by Corollary 2.1 the set V, N X is
finite dimensional. Then by inductive assumption there exists G;-sets
G, such that
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(2) V.oG, >V, NnX, IndG, < w,.
We put
(3) F=U(V\G), D.=(X\F)NV,.

Then F is F, set in Y, D, is open in Y\F' and

(4) XcY\F, D, cCG,.

Consequently, by virtue of (2), D, is finite dimensional. By virtue
of (3) we have

(5) 6 = P(X)U QanzY\F.

Since P(X) is compact, by virtue of (1), (38) the system {D,} is
convergent in ¢ and P(X) is a limit of this system. Since P(X) is
closed in X, it is weakly infinite dimensional. Since D, are finite
dimensional and consequently weakly infinite dimensional, ¢ is also
weakly infinite dimensional by

THEOREM S2. Since F is F,set, ¢ =Y\F is a G;set in Y.
Moreover, since X C ¢ and D, are fininite dimensional, we have

(6) P(p) = P(X) .

Let Ind X = a = w,7 then there exists a countable system {U,}
of open in Y sets such that a system {U,} forms a large base in
P(X) and

(7) IndFrUNX<S B < a.

By inductive assumption for any k there exists such G;set W, in Y
so that

We put Hy = FrU\W, then H. is F,-set in Y and H, N X = Q.
Consequently the set G = ¢\Uji-, Hx is a G;-set and

(9) XcG, FrUNXCFrUNGCZW,.

From conditions (8), (9) it follows that P(FrU, N X) = P(FrU, N G) =
P(W,) and by Lemma 9.2 we have

(10) IndFrUNG=<IndW, =28 < .
Since X G c ¢, by virtue of (6) we have
P(G) = P(X) = P(g) .
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Consequently by Lemma 9.2 G is weakly infinite dimensional, because
¢ is weakly infinite dimensional.

Since {V}} is a large base in P(G), for any closed subsets F', F,
in P(G) there exists a set U, such that FrU,N G is a partition in
G between F, and F,. Therefore from condition (10) and Lemma
2.5 it follows that

IndG=a.
The inequality Ind G = Ind X = a follows from Corollary 2.3. O
THEOREM 9.2. Let X be a separable subspace of a space Y, and

the dimension ind X ewxists. Then there exists a Gsyset G CY such
that ind G = ind X, X CG.

Problem. Is this theorem true for a nonseparable space? The
answer is still unknown even for finite dimensional spaces.

COROLLARY 9.2. For any separable space X with dimension
ind X there exists a separable completion G DX with the same
dimension ind G = ind X.

The proof is similar to the one of Corollary 9.1.

Proof of Theorem 9.2. We shall prove this theorem by induction
on ind X. For ind X = —1 the theorem is evident. Let ind X =
a > —1. Since X is separable for any » =1, 2, ---, there exists a
countable system of open in Y sets {V,;} such that

nd(FrV,)NX= B <a
and

1

(11) XcH,=UV,, damV, < =
=1

By inductive assumption for every pair (i, n) there exists a set G,
of a type G; in Y such that
12) FrV,NnXcG,, indG,=indF»rV,NX)=g:<a.

We put
(13) A= H)J EFrV,AG), G=NA.
=1 n=

Then A,D X and A, is a G,-set in Y. Consequently GO X and G is
also a Gy-set in Y. Let us prove the inequality
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(14) indG < a.

Let zeG,e >0 and 1/n <& for some n. Then by virtue of (11)
there exists an open set V,, such that e V,;. From (12) and (13) it
follows that

FrV, NnGCFrV,,UA,CG,

and consequently ind(FrV,, N @) < ind G,; < a. Hence inequality (14)
is true. Since X< G we also have ind G = ind X. 1

THEOREM 9.8. Let X CY then there exists a Gs-set G in 'Y such
that D(X) = D(@), XCQG.

COROLLARY 9.3. For any space X there exists a completion
G D X such that D(G) = D(X), weight G = weight X.

The proof is similar to the one of Corollary 9.1.

LEMMA 9.83. Let & = U{A,: e _#Z} be a locally finite system
of F,-sets in a space X. Then the set A= U{A4,: e _#} is also a
F-set in X.

The lemma follows from the fact that a union of locally finite
system of closed sets is also a closed set.

Proof of Theorem 9.3. We will prove this theorem by induction
on D(X). If D(X)< w, then D(X)=Ind X and our assertion is
true. Let D(X)= 8 = w, and the equality

X=U{4;:0 < a=JP)}
be a B-D-representation of X. We put
Z=Y\A,

where A, is a closure of A, in Y. Let U, = X\U {4,: 6" > 6} where
0 < a. Then from condition (e¢) of Definition 0.3 we have

(15) X\A4, = U{U;:0 < a}

and by Lemma 8.3 in [13], Luxemburg, U, is open in X and

(16) DU)<a=JpB)=p.

Let V, be an open in Y set such that V,;c Z and

17 V.nX=U,.

We put V= U{V;:0 <a} then Vc Z and V is an open set in Y.
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Since V is paracompact, we can find a closed in V locally finite
refinement . = {F.: p e _#'} of the covering {V;: d < a}. Consequently
from (16), (17) it follows that

DF.NX)<a (ue #Z).

By inductive assumption for every pe._# there exists a G;set G,
in F, such that

XnF,cG,cF, DG)=DF.NX)<a.

Since the system .# is locally finite in V, the system & = {L,=
F\G, pre #} is also locally finite in V. Moreover, since G, is a
Gsset in V the set L, is F,-set in V and by Lemma 9.3 the set L =
U{Ly;:pe #} is F, in V. We put G, V\L, then clearly, G, is a
G,set in V (and consequently in Y) and

ZoG DO X\A, .

Since F,NG, = F\L, sets F,\L are closed in G,. Moreover, the
system {F\L, pe 2} is locally finite in V (and consequently in G,)
and F\\L c G,. Therefore

DF\NL) £ DG) < a.

By the sum theorem for locally finite union of closed sets (see [3],
Henderson) we get

(18) D(G)=D(U{F\L: pe #}) < sup{DF\L): pre £} < a=J(B).

Let us consider the set A,CcY\ZCY\G,. Since Ind 4, < K(8) < w,
(see condition (d) of Definition 0.3) there exists a G;-set G, in Y such
that

A,cG,, D) =IndA,=D@G) =< K({@).

We put G; = G, N (Y\Z), then clearly G, is closed in G = G, U G, and
G, is a Gy-set in Y, because Y\Z is a closed set. Moreover, we have
obviously that

(19) XcG, DGy =DG,) = KB

and G is a G,-set in Y as a union of G,sets G, and G,. Since G, is
closed in G, the set G, = G\@, is open in G and consequently (see
[3]) from (18), (19) it follows that:

D(G) = D(G) + D(Gy) = J(B) + K(B) = 8= DX) .
The inequality D(X) < D(G) follows from the inclusion X< G. []

10. On the necessary and sufficient conditions of the existence
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of transfinite dimensions. As it was mentioned in the introduction,
dimensions ind X and Ind X do not exist for every space X. In this
section we shall consider that D-dimension of a space X exists if
D(X) is an ordinal number. The following theorem gives a criterion
of the existence of transfinite dimensions in terms of compactifications.

THEOREM 10.1. Let X be a separable space, then

(a) Ind X exists = there is a countable dimensional’” compactifi-
cation ¢X D X such that P(cX) = P(X).

(b) ind X exist < there is a countable dimensional compactifica-
tion ¢ XD X.

(¢) D(X) exists = there is a weakly countable dimensional
compactification ¢X D X.

To prove this we need the following assertions:

(1) If Ind X exists then X is countable dimensional, see [21],
Smirnov.

(2) If X is a countable dimensional compactum then Ind X
exists, see [22], Smirnov.

(8) If X is a complete countable dimensional space then ind X
exists, see [5], Hurewicz and Wallman.

(4) If ind X exists, X is a separable space, then X is countable
dimensional, see [5], Hurewicz and Wallman.

(5) If X is a complete separable space, then D(X) exists = is
a weakly countable dimensional®®, see [4], Henderson.

Proof of Theorem 10.1. (a) Let Ind X exist, then the existence
of such a compactification ¢X follows from Corollary 1.1 and (1). If
there exists a countable dimensional compactification ¢X D X then by
virtue of (2) Ind X exists and our assertion follows from Lemma 8.2.

(b) Letind X exist, then by Corollary 9.2 there exists a separable
absolute G;-set pX DO X such that ind pX = ind X. Since pX is an
absolute G,-set there exists a compactification ¢X D pX such that the
set ¢X\pX is countable dimensional see [9], Lelek. Since ind pX
exists, by virtue of (4), the space pX is countable dimensional,
consequently the compactum c¢X is also countable dimensional. If a
space X has a countable dimensional compactification ¢X > X, then
by virtue of (8) ind ¢X exists. Consequently, ind X also exists (see
(1), introduction).

Property (¢) follows from (5), Theorem 8.1 and (1) introdue-
tion. O

17 A space X is countable dimensional if X is a union of countable number of

zero-dimensional sets.
18 Tt is easy to prove this theorem also for nonseparable spaces.
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COROLLARY 10.1. For any separable space X with dimension
ind X there exists a compactification c¢X such that the dimension
ind ¢X also exists. This corollary follows from Theorem 10.1(b) and

3).

Theorem 7.1 shows that we can not require that the equality
ind ¢X = ind X holds for some compactification ¢X> X. However I
think that the technique of the proof of Theorem 1.1 will permit
proving the following.

Conjecture. If X is a separable space and ind X = & + p, where
a=Ja+p),p=Ka+p) =012 ---, then there exists a com-
pactification ¢X > X such that indeX <« + 2p + 1.

We also note that using Theorems 9.1 and 9.3 we can easily
obtain criteria of the existence of dimensions Ind X and D(X) in
terms of completions for nonseparable spaces.
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