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APPROXIMATING CELLULAR MAPS BETWEEN
LOW DIMENSIONAL POLYHEDRA

JAMES P. HENDERSON

A compact subset X of a polyhedron P is cellular in P
if there is a pseudoisotopy of P shrinking precisely X to a
point. A proper surjection between polyhedra f:P—Q is
cellular if each point inverse of f is cellular in P. It is
shown that if f: P—Q is a cellular map with either (i) dim
P=3, or (ii) dim Q=<3, then f is approximable by homeomor-
phisms.

Introduction. As a generalization of the concept of cellularity
in a manifold, J. W. Cannon proposed in [3] that a set X in a
polyhedron P be called cellular if X is compact and there is a
pseudoisotopy of P which shrinks precisely X. He then defined a
cellular map between polyhedra P and @ to be a proper surjection
f: P— @ such that for each qe@, f7'(q) is cellular in P. Cannon
first asked if a cellular map f is approximable by homeomorphisms
when either P or @ is an m-manifold, » = 4. He conjectured that
an affirmative solution to that question would lead to a solution of
the more general problem of approximating cellular maps between
arbitrary polyhedra. It was shown in [6] that if P or @ is an =-
manifold, n # 4, then f: P— Q is approximable by homeomorphisms.
Here we prove that if dimP <8 or dim@ < 3, then f is approxi-
mable by homeomorphisms. This, then, can be viewed as an
extension of the approximation theorem of Armentrout [1].

While the proof of the approximation theorem given here relies
in many cases on the techniques used by Handel [5], it should be
pointed out that the type of map considered by Handel is more
restrictive than those considered here and in [6].

The reader is encouraged to read at least §§1 and 2 of [6] to
gain an understanding of the stratification and cellular sets being
used here before reading this paper.

1. Definitions and background. A polyhedron P is a subset
of some Euclidean space R" such that each point b € P has a neigh-
borhood N = bL, the join of b and a compact subset L of P.
Throughout, P and @ will denote polyhedra. A homotopy H,: P—P
for which H,, 0 < ¢ < 1, is a homeomorphism is a pseudoisotopy. A
compact subset X of P is cellular in P if there is a pseudoisotopy
H,: P— P such that X is the only nondegenerate point preimage
of H,. A proper surjection f: P—Q is a cellular map if for each
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y€@, f(y) is cellular in P.

The intrinsic dimension of a point x in P, denoted I(x, P), is
given by I(x, P) = max {n € Z|there is an open embedding i: R* X
¢l — P with L a compact polyhedron and A(R" X ¢L) a neighbor-
hood of A(0 X ¢) = a2}, where ¢L is the open cone on L. The
intrinsic n-skeleton of P is P™ = {x e P|I(x, P) < n}, and the in-
trinsic m-stratum of P is P[n] = P™ — P"?, It can easily be
shown that given a triangulation T of P, there is a subcomplex K,
of T such that |K,| = P™. Also, P[n] is always a topological n-
manifold.

Three results from [6] will form the basis for the proof of the
main result. We list them here.

THEOREM 1.1 ([6], Thm. 2.2). The following are equivalent:

(1) X s cellular in P

(2) The projection w: P— P/X is approximable by homeomor-
Phisms

(8) X=Nx. N, where the N;s are homeomorphic cellular
neighborhoods with N, N,.

A cellular neighborhood is an open set U which is homeomorphic
to R™ x cL, the type of set used in determining the intrinsic dimen-
sion of a point in P.

THEOREM 1.2 ([6], Thm. 4.1). Let f: P—@Q be a cellular map
with Q[4]=@. Then P[i]l# @ if and only if Qi+, and fIP?P=
fo: PP = QY 45 a cellular map with Q[i] = f(P[i] — fi(f(P™)).

THEOREM 1.3 ([6], Thm. 4.2). Let f: P—@Q be a cellular map.
If P or Q is an m-manifold, possibly with boundary, and Q[4]=,
then f is approximable by homeomorphisms.

It should be noted that the statements of Theorem 1.2 and
Theorem 1.3 given here differ from those of Theorems 4.1 and 4.2
of [6]. It has been pointed out that the proof of Theorem 4.1 of
[6] depends only on Theorem 8.5 of [6]. Thus we need only restrict
the possible dimensions of strata of @ and not P. Hence the hypo-
thesis that P[4] = @ need not appear in Theorems 1.2 and 1.3.

The last theorem of this section is an application of the local
contractability of the manifold homeomorphism group and the
approximation theorem of Armentrout for » = 38 or that of Sieben-
mann [9] % # 4, 5.

THEOREM 1.4. Suppose that f:M"— N" is a cellular map
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between n-manifolds with boundary, n +4,5. Then for each
& M™— (0, o), there is a 0: 0M" — (0, o) such that if g:0M" — oN"
18 a homeomorphism which b-approximates f|oM", then there is a
homeomorphism h: M™ — N™ which e-approximates f and h|oM"=g.

2. Decomposing cellular maps. The purpose of this section
is to show how to consider a cellular map f: P— @ as a collection
of cellular maps defined on closed subpolyhedra of P. The spirit of
this idea is similar to that of Theorem 1.2. However, rather than
restricting the map f to a particular intrinsic skeleton, we will
want to consider the map f restricted to the closure A of a com-
ponent A of a stratum P[i] of P.

LEMMA 2.1. Suppose that U is a cellular meighborhood in P
homeomorphic to R™ X ¢L, C is a compact subset of U, N is a
neighborhood of C in U, and ¢ > 0. Then there ts a stratum pre-
serving homotopy h,: P— P such that

(1) h,=1id

(2) h(U)cU

(8) h, is the identity off of N and on a mneighborhood of
PnlnU

(4) hy(C) C N(P[n])).

Proof. The proof is essentially that of Proposition 1.5 of [6],
except that one takes a simplicial neighborhood N* of C in N and
use that neighborhood N* to redefine the homotopy of Proposition
1.5 to be the identity off of N*. This technique is described in
the proof of Lemma 5.2 of [6]. It should be noted that 4, will not,
in general, be an isotopy.

At this point, we want to consider a closed subset of 4 — 4,
with A as above. Let D be a closed subset of A — A such that
D=DUD,U---UD,, where each D; is a component of a stratum

of P and dim D; < dim D,;,,. We note that A — A is such a closed
set.

ProPOSITION 2.2. With D as above, let U;=D;— f(f(U:<; D.)).
Then given € >0 and a meighborhood V of f(f(U))), there is a

neighborhood N of f(f(U;) and a stratum preserving homotopy
hi: N — V such that h,(N)C N.(D;).

Proof. Cover fY(f(U;)) with a locally finite collection of saturat-
ed open sets {U;}, where n = dim D;, such that for each U}, there
is a cellular neighborhood C? of the form R" x c¢L such that U*
Crc V. Let T, be a triangulation of U; such that for each simplex
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oeT,, f'(f(o)) lies in some Ur. Then for each simplex zeT? 7,
the (n — 1)-skeleton of T,, cover f'(f(zr)) by a finite number of
saturated open sets {Up'} such that for each U}™!, there is a
cellular neighborhood Cp~* = R™ X ¢L, such that if U >Df'(f(0)),
then U cCptcCprtcUr. Thus {Up} is a locally finite open
cover of fYf(T ™). Let T,_, be a sub-division of T'** such that
for each simplex oeT,,, f(f(o))c Upr* for some Q. Similarly,
we may inductively define T,_,, {Uf™}, and {C}'} given T,, {U%},
and {C}}. We also require that {Cj} be a collection of pairwise
disjoint cellular neighborhoods.

We now want to identify the neighborhood N. Let N,= U{Uj}}.
For each l-simplex ¢ in T, let N, be a saturated open set contain-
ing f(f(¢ — N,)) and lying in some U, such that if ¢ and = are
different 1-simplices of T, N,N N. = @. Define N, = U{N,|c is a
1-simplex of T.}. Similarly construct N,, 1<k<m. Let N=Up,N,.

The desired homotopy will first pull N, close to D;, then it will
keep N, fixed and pull N, close to D;, and so forth. We can apply
Lemma 2.1 to each of the disjoint U’s using the cone structure on
the disjoint Cs to find a homotopy H: N — V such that H(V,)
lies close to D;. At the following stages, we will not be trying to
homotopically move the U}’s close to D;, but the subsets Hf* ..
HXN, cUf. We can, however, construct the homotopies moving
the Hj™*..-H)N,) close to D; to be in a sense the restriction to
the set H}™*-.. HXN,) of homotopies which do move U’ close to D;.
There is a neighborhood w¢ of D; N Ck* on which such homotopies
are the identity. If we have defined H*'H*?*...H: N—V so
that for each k-simplex ¢ in T, with N,c Uf we have H}'H} . .-
H)N.)cwkt for each 7eT,, 1<k, such that o, then we can
apply Lemma 2.1 to Hf*'-.. HX(N,) and C! to get a homotopy which
fixes H} '+« H(NyU-++-U N,_,), and pulls H!*-.- H(N,) into wk™
for each U} containing Cf. Piecing these homotopies together,
we can then define the product homotopy H*H**'..-H N— V so
that Hf--- H(N,U---N,) lies so close to D; that subsequent homo-
topies will not move Hf.-- H)(N,U---U N,). The product homotopy
HmH™*'...H N— V is then the desired homotopy.

PRrROPOSITION 2.3. Let f: P—Q be a cellular map with Q[4] =
@, and suppose that A is a component of a stratum of P. Then
given a closed subset D of A — A as before, A — f~(f(D)) is a non-
empty connected set.

Proof. We first note that the fact that A — f'(f(D)) is non-
empty follows from Theorem 1.2.
If we assume that the closed set U, ; D, has the desired pro-
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perty, we need only show that f'(f(U,)) does not separate A —
7 (fMJse; Do), where U; = D; — f7(f(Uic; Di)). Note that this
will also cover the initial inductive case when D = D, = D;.

Assume that x, and z, lie in different components of the sub-
polyhedron A — f7(f(D)) of A. There is an embedding «: [0, 1] —
A — F(f(U.c; D)) with a(0) = z, and a(l) = z,. Let V be a neigh-
borhood of f~'(f(U,)) in P such that V N {x, .} = @. There is a
neighborhood N of f~*(f(U;)) in V and a stratum preserving homo-
topy h,: N — V such that h(N) N «([0, 1]) = @. Let N* be a regular
neighborhood of a simplicial neighborhood of f(f(U;))N A in A —
F U fWUic; Dy)) such that N*c N. We may assume that 7 and «
are in general position. It then follows that there is a component
M of the boundary of N* such that «([0, 1]) N M consist of an odd
number of points, which we may assume to be one point. The
component of 7 (a([0, 1])) N (M x I) containing the point 2 *(a([0, 1])) N
(M x {0}) must be homeomorphic to [0, 1), which is not possible.
Therefore A — f7'(f(D)) must be connected.

THEOREM 2.4. Let f:P—Q be a cellular map with Q[4] = O,
B o component of Q[n], and A the component of P[n] containing
fiUB). Then f,= f|A: A— B is a cellular map.

Proof. Since each component of each stratum of P is an isotopy
class of P (see Proposition 1.2 of [6]), the restriction of a pseudo-
isotopy of P to A will yield a pseudoisotopy of A. Therefore, if
yeQ and f'(W)NA#= @, f7(y)NA is cellular in A. Thus we need
only show that f(A4) = B.

If dim B = 0, then by Theorem 1.2, f(4) = f(A) = B=B. We
now assume that this theorem is true for components of strata of
dimension less than %, and that dim A = .

Let B, ---, B,, be the components of strata of @ such that B—
B = pr, B;. Since dim B, << n, for each 4, there is a component
A; of a stratum of P such that f(A4,) = B,. It then follows that
FUB)N(A — A) =D is a closed subset of A — A consisting of the
union of components of strata of P. We now apply Proposition 2.3
to conclude that 4 — f~'(f(D)) is a connected nonempty open subset
of A. If E= (A — A) — D is nonempty, there is a path g in A4
from f(B) to f(f(E)) which misses f(f(D)). But this implies
that f(B)NB=+# @, f(BINQ™ —~B)# @, and f(BAINB—-B= Q.
Therefore £ = @ and f(4)c B. Since BcC f(A), BC f(4A) and the
proof is complete.

3. The approximation theorem. We now present the main
result.
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THEOREM 3.1. Let fi: P— Q be a cellular map with (i) dim P<3,
or (ii) dim Q@ < 8. Then f is approximable by homeomorphisms.

Proof. We first note that if dim P < 8, we must have dim Q<
3 since dimQ < o« [4]. Now Theorem 1.2 gives us that dim P =
dim@. If dimQ < 8, the same theorem applies and again dim P =
dim Q.

Let e:P— (0, ) be given. We must find a homeomorphism
g: P— Q such that d(f(x), g(x)) < e(z) for each x ¢ P.

Since f(P[0]) = Q[0] and Q[0] is a discrete set in @, it follows
from Theorem 1.1 that we may assume that fis 1 — 1 over Q[O0].
The problem is then reduced to approximating f|P—P[0]: P—P[0]—
@ — Q[0] by a homomorphism which may be extended to agree with
J on P[0]. Therefore, it may now be assumed that P[0]=Q[0]=©.

The following lemma contains the key to the proof.

LEMMA 8.2. Let f: P— Q be a cellular map with Q[0]=P[0]=0
and dim P = dim Q < 3. Then if w is a cellular neighborhood of a
point in Q, there is a cellular map h: P— Q such that h|f~(w) s
a homeomorphism and h|P — f~'(w) = f|P — f~(w).

We will complete the proof of the theorem and then return to
the proof of the lemma.

Let 0:Q — (0, ) be such that for each xeP, 4(f(x)) < e&).
Choose a locally finite open cover w of @ with w=w, U w, U --- Uw,,
where » = dim @ and each w,; consist of open sets w,, w;,, --- such
that (1) w,; Nwy = @ for j+k, (2) w,; is a cellular neighborhood
of a point in @, and (3) diam st**'(w,;, w) < inf {0(y)|y € w;;}.

We may apply Lemma 3.2 to all of the elements in w, and to f
at the same time to obtain a cellular map h,: P— Q@ which is a
homeomorphism when restricted to f~*(Uw, and agrees with f on
P — f(Uw,). Now apply Lemma 3.2 to Uw, and h,. Proceeding
in the same manner, we obtain %,: P — @ which is a homeomorphism
over w,Uw,U -+ Uw, = @. The desired homeomorphism is thus
h, if we can show that d(f(x), h.(x)) < e(x) for each x in P.

For x ¢ P, {f(x), h,(x)} C st"™(w,;, w) for each w,; containing f(x).
But diam st"*(w,;, w) < inf {6(y)|y € w;;} < 0(f(®)) < e(x). Therefore
d(f (@), ha(x)) < &().

Proof of Lemma 3.2. In order to show that f can be approxi-
mated by a homeomorphism on f*(w), we need to fully understand
the structure of the cellular neighborhood w. We will consider the
possible structures of w in the order of increasing dimension of w.
Since Q[0] = @, we begin with cellular neighborhoods which are
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1-dimensional.

Case I. dimw = 1.
Again, since Q[0] = @, we must have w = R

Case II. dimw = 2.

There are two possibilities for the cellular neighborhood. Either
(@) w= R, or (b) w=R" Xc(py, -+, Pp,), n+*2, Where p,, ---, p,
are distinet points. In the latter situation, w can be viewed as
R: Ur R ---Ur: R%, the union of n-copies of R?% identified along
the common R' boundary.

Case III. dim w = 3.

Here, either (a) w = R?, (b) w = R* X ¢(p,, * -+, D), ® #+ 2, or (c)
w = R' X ¢L,, where L is a compact, 1-dimensional polyhedron. The
neighborhood of type (b) is seen to be R% Urz- - Ur: R%, the union
of m-copies of R’ identified along the common R®.

The third possibility is the most interesting. In order to under-
stand w, we need to look at the relationship between the stratifi-
cation of L and the stratification of R'xc¢L. It follows from Prop.
1.4 of [6] that there is a subcomplex L, of L such that (R'XcL)®=
R' X cL,.

Claim. L,= L[0].

Proof of claim. If zeL[0], z has a neighborhood in L homeo-
morphic to zJ, where J = @ or J ={q, ---, ¢.}, » # 2. Now R'X
czJ) —R*"Xc=R'X R X 2J = R* X zJ. Hence R'X c¢(z) — R X ¢
is a subset of (R' x ¢L)[2] and z € L,.

If zeL[1], then z has a neighborhood homeomorphic to zJ,
where J = {q,, ¢.}. Hence R'Xc¢(zJ) — R*XR'}Xc = R'XR' and z ¢ L,.
This completes the proof of the claim.

We now know that (R X ¢L)[3] consist of open sets of the
form (R' X ¢K) — (R* X ¢), where K is a component of L[1]. Each
component K of L[1] is homeomorphic to either R' or S’.

If K= S8* then R' X ¢K = R®. Note that in this case, we must
have K # L since w is a cellular neighborhood of a point in Q[1].

If K= R, it is not as important to consider R' X ¢K as R!' X
cK, where K is the closure of K in L. Note that K — K will con-
sist of either one or two points. In either case, K — Kc L[0].
The set K is homeomorphic to either I' or S!. Hence R!' X c¢K is
homeomorphic to either R’ or R?®, respectively.

At this point, we want to reconstruct w. We already know
that (R' X ¢L)® = R' X ¢L[0] = R% Ug:-- - Ur: R:, with one copy of
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R’ for each point of L[0].

We now adjoin to R? X ¢L[0] a copy of R' x ¢cK for each com-
ponent K of L[1]. If K = S', then we identify the R* X ¢ in R'X
¢S* to the R' X ¢ in R* x ¢L[0].

If K= R and K = I', we attach a copy of R' X ¢(I') to R' x
cL[0] with R! x ¢(bd I*) being identified with the two copies of R
corresponding to the two points of K — K in LJ[0].

When K= R' and K = S, a copy of R' x ¢(S!) is attached to
R x ¢L[0] with R' X ¢z being identified with the copy of R in
R' x ¢L[0] corresponding to the point K — K = z € L[0].

Now that the structure of w has been determined, the cellular
map h: P— @ can be constructed. We proceed by working on neigh-
borhoods w of increasing dimension.

If dimw = 1, then it follows from Theorem 1.3 that there is a
homeomorphism A': f~*(w) — w which may be extended to agree with
fon P— f(w).

There are two cases to be considered when dimw = 2. If w=
R?, then we may apply Theorem 1.3 as above.

Otherwise, w = R%. Un:---Ur R%. The construction in this
case provides a good example of the proof technique for the remai-
ning cases. It follows from Theorem 2.4 that for each component
B of wN Q[2], there is a component A of f~(w)N P[2] such that
fi= f|A: A— B is a cellular map, where A and B are the closures
of A and B in f(w) and w, respectively.

Given e:cl (f*(w)) — [0, o) such that el (f ' (w)) — f(w)=¢"0),
this cellular map may be c-approximated by a homeomorphism h,
by Theorem 1.3. Furthermore, there is a d, such that if g,: f~*(w)N
P[1] - w N Q[1] is a homeomorphism within d, of f|f(w)n P[1],
we may assume that h,|f(w)N P[1] = g, according to Theorem
1.4. Let g: f~*(w) N P[1] — w N P[1] be a homeomorphism such that
g is so close to f that each homeomorphism k, may be chosen to
agree with g on P[1] N f'(w). The desired map h: P— @ can now
be defined by

 (f@), ze fw)

h(x) = ha(x), x€ A, A a component of P[2] N f*(w) .

Suppose now that dimw = 3. If w = R®? the construction of &
is straightforward. When w = R’ Ug:--- Uz R%, we proceed as in
the similar case where dim w = 2.

The interesting case is then w = R' X ¢L, where L is a 1-dimen-
sional polyhedron. The first thing to be noted is that wNQ® =
R* x ¢(L[0]). If L[0] = @, then w N Q® = R'. Otherwise, w N Q®=
R X ¢(p,, ---, »;) for some 5 =1. In either case, we can use the
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previous techniques to approximate f,|P® N f~(w): P® N fw)—
QP Nw by a homeomorphism ¢ is as close as desired to f,|P® N
S (w).

If B is a component of w N Q[3] such that B, the closure of B
in w, is homeomorphic to R, then f,: A — B is approximable by
homeomorphisms %4, according to Theorem 1.3. Here A is the closure
of the component of f~'(w) N P[3] given by Theorem 2.4 applied to
B and f|f'(w). Also, it follows from Theorem 1.4 that if g,: A —
A — B — B is a homeomorphism which closely approximates f,A— A,
we can assume that s, A — A = g,.

The next possibility to be considered is a component B of w N
Q[3] such that both B and B are homeomorphic to R®. This corres-
ponds to R!' x ¢(K), where K is a component of L[1] such that
K=8"and K— K==zecL[0. We know from Theorem 1.3 that
A = f7(B) is homeomorphic to R®. Also, P*N f7(Q® N w) is a sub-
complex of f;'(B)= A which is homeomorphic to R:. We must
construct a homeomorphism h,: A — B such that r,(A — A) =B — B
and h, approximates f,.

Let B the space obtained from B by removing BN Q[2] and
replacing that copy of R® with two copies of R* in the natural
fashion. There is a natural projection 7,: B— B which is 1 —1
over B — (BN Q[2]) and 2 — 1 over BN Q[2].

Similarly, we split A along AN P[2], the subcomplex of A
homeomorphic to R? and then attach two copies of AN P[2] to
obtain a 3-manifold with boundary A. Again, there is the projection
7, A— A whichis 1 —1 over A — (AN P[2]) and 2 —1 over AN
P[2].

Each nondegenerate point inverse f;'(y) has a defining sequence
of neighborhoods of the form R: R® X ¢{p,, ».}, or R' X ¢(S*), where
the lowest dimensional stratum of A that f~'(y) intersects is 3, 2,
or 1, respectively. The splitting of A will then leave point pre-
images of the first type unchanged. Those of the second type, with
neighborhoods homeomorphic to R* X ¢{p,, p,}, will be split into two
pieces, each having a defining sequence of neighborhoods homeomor-
phic to R.. The last type of nondegenerate point preimage will be
split along A N P[2], but will still be connected. This split cellular
set will have a defining sequence of neighborhoods homeomorphic to
R' x ¢(I'), and hence be cellular in A according to Theorem 1.1,
Thus the induced map F: A — B is a cellular map between polyhedra,
each of which is a 3-manifold with boundary.

Given &,: A — (0, ), there is a &, 04 — (0, =) such that a
homeomorphism that &,-approximates f|dA can be extended to an
¢ -approximation of . We can find a homeomorphism g,: A — A —
B — B which induces a §,-approximation §,: 04 — 9B such that if
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mi(x) = wy(x,), then m,g,(x) = wzd.(x;). Let h, be the &,approxi-
mation extending §,. The desired approximation to f, is the homeo-
morphism h,: A — B given by hu(x) = w5k, a7 ®).

The last case to be considered is the one where B = R' x ¢(S%),
with R* x ¢ = BN Q[1]. Again, B and A are both homeomorphic
to R°. We must find an approximating homeomorphism which takes
A N P[1] onto BN Q[1].

Given a point yeB — B, we will show how to approximate
fa:A— B by a cellular map g, which is a homeomorphism over a
neighborhood of y in B, takes A — A onto B — B, and equals f,
outside of that neighborhood. The approximating homeomorphism
can then be constructed in the same way that the lemma is used to
construct the general approximation theorem.

Since f, (A — A) = B — B, we can assume that f, is a homeo-
morphism over B.

There is a cellular neighborhood N = R' x ¢(S*) of fi'(y) in A.
Choose ¥, and %, to be points in B — B such that the arc « in B —
B with endpoints %, and ¥, containts ¥ in its interior and f;(a)cC
N. Since each of fi*(y,) and fi'(y,) is cellular, we can assume that
Sfi'(y,) and f['(y,) are points in NN P[1]. Let S be a tame 2-sphere
in B bounding the 8-cell D in f,(N) such that (D, @) is homeomor-
phic to the pair (B? B'). Since f, is a homeomorphism over S, f:*S)
is a 2-sphere in N which bounds a 3-cell E in N. Also, f7(S)N
(A — A) consist of the two points fi'(y,) and fi'(y,). Both (A—A)N
N and f7%(S) are tame subsets of N, and we would like to conclude
that [(A — A) N N]U f7%S) is tame in N. Let 8, and g, be disjoint
subarcs of A — A which lie in N such that g, N f%(S) = fi'(y). It
then follows from [7] that f7%(S)U B, U B, is tame in N, and so is
[(A — 4) N NTUSS).

Since (A — A)N N corresponds to R' X ¢ in R' X ¢(S*), we can
find a simple closed curve 7 in N such that YN (A — 4) = B, U B: N
(E N P[1]) and v bounds an embedded tame 2-cell in N. Therefore
v is unknotted in N and (E, EN P[1]) is homeomorphic to the
standard pair (B? B'). Since f,|0F is a homeomorphic taking oFE N
P[1] onto 8D N a, there is a homeomorphism g,: (B, E N P[1]) — (D, a)
which agrees with f, on 0E. Hence we may define g, to be g, on
E and f, on A — E.

Since P[1] N A has a neighborhood U in A such that (U, P[1]n
A) is homeomorphic to (R? R'), given any &: A — (0, «), there is a
8: A — A— (0, ) such that if g, A — A— B — B is a homeomor-
phism which §-approximates f,|A — A, then we can find k,, an e-
approximation of f, which extends g,.

We have now shown that if we are given a component B of
w N Q[3] with the corresponding component A of f~'(w)N P[3] and
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€4 A— (0, ), there is a 6, A — A— (0, ) such that if g,: 4 —
A— B — B is a homeomorphism which d-approximates f,|A — A4,
then we can find %,, an ¢-approximation of f, which extends g,.

To complete the proof, we let e:ecl(f(w)) — [0, ) be a con-
tinuous function such that ¢7%(0) = el (f*(w)) — f~*(w)). This induces
e A — (0, ) for each component A of P[3]N f~%(w). Let 4, be
the function described above. We now choose 4: f(w)N P? —
(0, ) to be a positive function such that if x€ A — A for any
component A of P[3] N f(w), then &(x) < d,(x). Otherwise, we
require that for x€ P® N f~Y(w), d(x) < e(x). We now approximate
F1f M w) N P2 f~(w) N P® - wNQ® by a d-approximation g. For
each component A of P[3]N f *(w), we approximate f,: A — B by a
homeomorphism %, such that h,|/A—A=g|A—A. Then h*: f~(w) —
w defined by

9(@), x € fH(w) N P®

h*(z) = _
ha(x), xe A, A a component of P[3]N f*(w)

extends to h: P— Q by the map f on P — f~(w).
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