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A HAUSDORFF-YOUNG INEQUALITY FOR
5-CONVEX BANACH SPACES

J. BOURGAIN

A vector valued analogue of the classical Hausdorff-
Young inequalities for characters of groups is obtained.

Introduction* For Banach space notions and terminology not
explained here, we refer the reader to [5], [6] and the several papers
which are mentioned further on. Let us start by recalling the defini-
tion of type and cotype of normed spaces. We say that a normed
space X, I] || has type p (resp. cotype q) if there is a constant M < oo
(resp. δ > 0) such that for every integer m and every choice of vectors

in X

(1) {(llΣε^^H2^}7 ^ M(Σ

respectively

(2)

holds, where (εέ) denotes the sequence of Rademacker functions. Take
further px the supremum of all types 1 <; p <; 2 of X and qx the
infimum of all cotypes 2 <; q <; oo. The space X is said to have type
(resp. cotype) provided px > 1 (resp. qx < oo).

The numbers px and qx have a geometrical interpretation. As
shown in [7], if X is an infinite dimensional Banach space, then sp*
and /qχ are both finitely representable in X (see also [8]). In par-
ticular, X has type (resp. cotype) if and only if s1 (resp. °̂°) is not
finitely representable in X The first of those properties is also
called U-convexity, a notion which was introduced in [4]. Very
recently, see [12], it was proved that if X is i?-convex, then px and
qx* are conjugate exponents, i.e., (p^)"1 + {qx*)~λ = 1.

One may ask for an analogue of (1), (2) if the Rademacker func-
tions (ε,) are replaced by distinct Walsh functions ws — ΐlies^i on
the Cantor group {1, —1}* or, more generally, by characters of an
arbitrary compact abelian group (integrating with respect to the
Haar measure). In this spirit, we will prove

THEOREM 1. If X is a B-convex Banach space, there exist some
p > 1 and q < oo and constants M < ©o, 8 > 0, such that
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and

(4)

whenever {xr}r<=r is a finitely supported sequence of elements of X and
Γ the spectrum of a compact abelian group.

Theorem 1 is a Hausdorff-Young theorem for jB-convex spaces
and gives a new characterization of I?-convexity. In [1], Th. 1 was
established for the circle group, under the strong hypothesis that
X is super reflexive. Again, we may introduce px as the spremum
of the p and qx as the infimum of the g. A standard duality
argument shows then that px and qx* are conjugate. Obviously
Px ^ Px and qΣ <Ξ qx and there is not necessarily equality. If we
take indeed for X the space La with 2 <; a < oo, then px = 2 and
Px = al{a - 1).

I wish to thank V. D. Milman and G. Pisier for some valuable
discussions concerning the content of this paper.

Preliminary results* This section deals with certain facts which
are needed for the proof of Theorem 1. The first result concerns
an extremal representation of uniformly bounded orthogonal systems
of real functions. It seems to be important in the proof of Theorem
1 except in the case of the group {1, —1}* for which it is not needed.
Assume (Ω, P) a diffuse probability space and fix a positive integer
n. Consider the Banach space B — 0 n L\P) obtained by taking direct
sum of n copies of the real L2(P)-space. Let έ? be the subset of B
consisting of the w-tuples ς = (ξlf •••,£»), where the ζk are uniformly
bounded by 1, of mean zero and mutually orthogonal. Obviously &
is norm closed in B.

We agree to call extreme point of a set in a vector space any
point of the set which is not midpoint of two different points of
the set.

The next fact is elementary. We omit its proof since it is
essentially contained in [2] (see Lemma 2.3).

PROPOSITION 1. The set & of extreme points of έ? consists of
the ζ = (ζlf •••,£«) in d? such that each function ζk is ±\-valued.

Our aim is to obtain each member of & as barycenter of a
measure supported by g7. Remark that since έ? is not weakly compact
in B one can not use simply Choquet's integral representation theorem
(cf. [9]). However, we can apply here a more general result due to
G. Edgar (see [3]), in order to obtain the following
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PROPOSITION 2. For all ξ = (ξlf , ξn) in & there exists a Borel
probability measure μ on tf for which

ξk = I VkKdy) for k = 1, , n .

It is important here to notice that the measure P may be taken
separable. The space B is then a separable Banach space with the
so called Radon-Nikodym property in which frame Edger's theorem
applies. Actually, the result as stated in [3] requires also the con-
vexity of the norm-closed set but in fact this additional hypothesis
is never used in the proof which is based on a martingale technique.
Let us point out that the measure μ obtained by Edgar's argument
also satisfies for k = 1, , n

ςk(t) = ί Vk(t)μ(dη) for almost all t e Ω .

If A is a finite set, denote %A its cardinality. For positive
integers d, let Dd be the set {1, — l}d. The next fact which we need
is the following probabilistic lemma.

PROPOSITION 3. Let ξ — (ξlt •••,£«) be a fixed member of if and

fix a positive integer d. For each seDd and t19 •••,** in Ω, define

Aε(tlf , td) = {k = 1, , n; &&) = el9 , ξk(td) = ed} .

For K > 0, consider the following subset of Ωd

ΩdiK = {&, , U) e Ωd; I #A.(tif • • - , * * ) - 2~% | ^ ttn for all ε e Dd) .

Then the product-measure of Ωd>κ in Ωd is at least

(1 - (1 + V~2)//c)(2d/n)1/2 .

Proof For fixed εeDd, we estimate the measure of the set

Cδ - {(ίlf • , td)eΩd; |#Λfe, , U) - 2~*n\ > icn).

Define the following functions on Ωd

/0 = constant function n

and for j = 1, , d

Λ(*i, •• ,* ί) = Σ Π [ l + e<

Clearly
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Hence

dta = \ \fd -/o| ^ g

Now

Λ+i - Λ = e i + ι Σ Π [1 + s

and thus, by orthogonality of ξu , £„,

{\ IΛ+i - Λl}1 ^ $

= 2% .

Therefore,

(IΛ - /.I ^
J

Σ

which shows that Ce has measure less than (1 + v/12)lκ(2dny/2, by
Chebychef's inequality. The statement of the proposition is now
immediate.

Assume X a normed space. Let p be a type of X* and denote
C the type constant (cf. [1]).

PROPOSITION 4. If d is α positive integer and {fε)teDd are func-
tions in UX(Ω, P), then

il2^}172 Cd^Ύ maxj~Σ \ HΣ

where pf = #>/(#> — 1).

Proof. If (#£)e6z>d

 a r e vectors in X, then

(Σ...
i £ ε

This follows from a duality argument, seeing the ε̂  as Rademacher
functions. Hence, by Holder's inequality,

i s ι II ' i ^ΐ^ε || / r= ^sus v *^
i ε

Replacing the xε by functions /„ we find

i f \ 1/2 f C ^1/2

Σ \ IIΣ SίfεW II dt\ ^ Cα p v 2 i^j \
i J £ ( ε J

from which the required estimate follows.
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Proof of the main result* It is clear that only part [3] of
Th. 1 must be shown. Indeed, if X is J3-convex, then -X"* is also
5-convex and [4] for X follows from a dualization of [3] for X*.
For a given (complex) Banach space X, we introduce the numbers

φ{n) = sup \[ |] Σ &/?(*) ||2dίl

The supremum is taken here over all subsets A of the spectrum
Γ\{1} of a compact abelian group G and families {xr)r&A in the unit
ball of X, assuming $A — n and ΎL Φ 72 for Ύλ Φ 72 in A.

Remark that the Haar measure of G can be taken diffuse, since
G may always be replaced by the group G x {1, — 1}*. The proba-
bility space (Ω, P) considered in the previous section will be the group
G equipped with its Haar measure.

Our purpose is to establish a recursive estimate on the <p(ri).
For 7 e Γ , denote Re7 (resp. Im7) the real (resp. imaginary) part
of the character 7. By the assumptions on A, both sets

{Re Ύ ΎβA} and {Im 7; 7 e A}

belong clearly to 0* introduced in the previous section. Application
of Prop. 2 gives Borel probability measures μ and v on if satisfying

Re 7 = ί ξrKdξ) and Im 7 = ί

for all 7 eA.
Using the fact that the 7 are group characters and the trans-

lation invariance of the Haar measure, we get by substitution

^ {\\ ||ΣRe7(ίK7(tt)||2d%<ZίJ1/2 + Hi

Our next purpose is to estimate an integral of the form

where (ζr)reΛ belongs to S?.
Let p be a type for X* with type constant C. Then
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PROPOSITION 5. For any positive integer e, the following in-
equality holds

IIΣ tr(t)xrV(u) fdudt\ S Cd-w2dφ(2~i+1n) + 2(-Ξ_) φ(n) .

Proof. Take in Prop. 3 κ=2~d and let Ωa—Ωiκi which has measure
at least 1 - (1 + l/¥)(8d/»)1/2

We have

\ \ II Σ ξr(t)Xr7(u) fdudt = j [ ί Σ j

^ SUP 14" Σ ( IIΣ ζr{tdXrΊ{u) fdu\

/ Qd \l/2

2 ) ( ° )

For fixed (ίx, , td) in Ωo, we estimate

which can be rewritten as

where s ranges in Dd and yίs = Aε(tl9 , ίd).
Taking /, = Σre^ε ^r^, application of Prop. 4 gives then the es-

timate

^ max || Σ
ε U re^e

1/2

by definition of the set Ωo.
Combining inequalities, the required result is obtained. As a

consequence of Prop. 5 and the estimate given above involving the
extremal representation, we find

PROPOSITION 6. For any positive integer d, the following holds

φ(n) ^ 2Cd-1/pf2dφ(2-di'1n) + 4( — ) φ(ri) .
V n *

PROPOSITION 7. Assume p > l α ί̂ /pe for X* and C the corre-
sponding type constant. Then, there is a constant K < oo such that
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( * ) φ(n) ^ Kτΐ-τ for all n

where 1/τ = (17C)*\

Proof. Fix a positive integer d satisfying (16C)p/ < d < (ΠC)p/

and let K be such that

9>(rc) S Krΐ-τ for α ̂  8d+i .

We now show that (*) also holds for n > 8d+4 proceeding by
induction. Application of Prop. 6 yields namely

φ(ri) ^ 2Cd-1/p'2dK(2-d+1ny~T + — φ(n)

and thus

φin) ^ ZGdrw&Kn1-* S Kn1^

by the choice of d.
If now A is a finite subset of Γ, one may write A as disjoint

union A — A! \] A" of two sets A', A" such that Ίx Φ τ2 for Ίx Φ T2 in
yl' or in A". Hence

IIΣ xr

Using a well-known technique (see [10], Lemma 2), [3] of Th. 1
follows for any p < 1/(1 — τ).

This concluded the proof of Th. 1.

Remarks and questions*
1. It is clear from the preceding that the numbers p, q, M, δ

in Th. 1 only depend on the type and type constant of X and X*.
2. Theorem 1 has an analogue if we replace the L^-norm by the

I/J-norm for l < α < o o . If p is a type for X* with type constant
C, the same argument yields

for some constant Λfα>5, provided

<—(17C)p if 2<a<p'
(ΠC)pf - 1 ~ ~

and
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3. One may ask the question whether or not Th. 1 remains
valid for arbitrary ortonormal systems. Using results of [11], a
positive solution should solve the following conjecture affirmatively.

Question. Does there exist for all p > 1 and C < oo some ε > 0
and K < oo such that

d(E, Z2(dim E)) S K{άim E)1/2~ε

holds if E is a finite dimensional normed space of type p with type
constant C? (d is the Banach-Mazur distance).

The fact that the characters is heavily used in our argument.
Using Prop. 3 and Prop. 4, one can show estimates for general orto-
normal systems, but these are only of logarithmic order.
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