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MANIFOLDS MODELLED ON THE DIRECT
LIMIT OF LINES

RiCHARD E. HEISEY

The main theorem of this paper is that topological mani-
folds modelled on R”=1i_1)n R" are stable. Combined with
previous work this theorem enables us to embed R”-mani-
folds as open subsets of R”™, classify R*-manifolds by
homotopy type, and triangulate R”-manifolds.

The results established here were announced in the [8].

1. Definitions and results. Let R" be the cartesian product
of n copies of R, where R denotes the reals. Define ¢,: R" — R™*
by .z, +--, x,)) = (&, -+, x,, 0). Then R* = lim {R"; 4,}. We regard
R* as the set {(x, ®,, ®;, --+,)|x; € R, all 3, an—g x; 0 for at most
finitely many 4}. We identify R with R" x {(0, 0, ---, 0)} C R**%,
k=1, and with R" x {(0, 0, ---)}c R*. With this identification, a
set & C R~ is open if and only if # N R" is open in R, n = 1. In
the terminology of [14], for example, R~ is thus the strict inductive
limit of {R"}. As such it is a locally convex [14, Prop. 1, p. 127],
nonmetrizable [14, Prop. 5, p. 129] topological vector space having
a natural simplicial structure.

A topological manifold modelled on R”, or, more simply, an
R*-manifold, is a Hausdorff space in which each point has a neighbor-
hood homeomorphic to an open subset of R*. By way of example
we note that countable direct limits of finite-dimensional manifold
are often R*-manifolds. Also by [9, Corollary 2], if X is a locally
finite polyhedron (more generally, a locally compact, locally finite-
dimensional ANR) then X x R~ is an R”-manifold. Our main result
is Theorem S, below, which asserts that R~-manifolds are stable
with respect to multiplication by R*. We remark that because R~
is nonmetrizable and not a countable product (one can show that
R~ is not homeomorphic to B® X R*® X R* X ---) many of the argu-
ments used in establishing stability of Hilbert space and Hilbert
cube manifolds as, for example, in [1] and [16] do not apply here.
Our proof uses an inductive argument on finite-dimensional sub-
sets.

By “=” we denote “is homeomorphic to”. We let I =[0,1]. If
7/ is an open cover of the space Y, two maps f,¢9: X Y are #-
close if for each x€ X there is a Ue % such that {f(x), g(x)} < U.
A map f: X — Y is a near homeomorphism if for each open cover
7 of Y there is a homeomorphism h: X — Y such that f and h are
Z/-close.
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For the remainder of this section let M and N denote paracom-
pact, connected R>-manifolds.

THEOREM S (Stability). The projection map M X R*— M is a
near-homeomorphism. In particular M X R = M.

The proof of the stability theorem is given in § 3 of this paper.

In [7] it was shown that M X R~ embeds as an open subset of
R>. Combined with Theorem S this immediately implies the open
embedding theorem for R~-manifolds.

THEOREM ¢ (Open Embedding). There is an open embedding
i M— R,

Using Theorem ¢, regard M as an open subset of R*. Let &
be an open cover of M consisting of convex sets. By Theorem S
there is a homeomorphism h: M X R* — M which is & -close to the
projection. Clearly, then, H: M X R~ x I — M defined by H((m, «,
1) =1 — t)a((m, x)) + tm is a homotopy in M, and the following
corollary results.

COROLLARY 1. There is a homeomorphism h: M x R* — M which
18 homotopic to the projection map.

Let f: M — N be a homotopy equivalence. By [7, Theorem II-9]
(f xid): M x B> — N X R* is homotopic to a homeomorphism g. Let
hy: M x R — M and hy: N X R* — N be homeomorphisms homotopic
to the corresponding projection maps. Then hyghy' is a homeomor-
phism homotopic to f, and we have proven the following classifica-
tion theorem.

THEOREM C (Classification by Homotopy Type). If fiM— N qs
a homotopy equivalence, then f is homotopic to a homeomorphism
h: M — N.

Since R*-manifolds have the homotopy type of ANR’s [7, Theorem
1I-10], Theorem C has the following corollary.

COROLLARY 2. If M and N have the same weak homotopy type,
then they are homeomorphic.

In [4] Dobrowolski obtains a special case of Corollary 2; namely,
that R = lim S*, where S" is the n-sphere. He obtains this result

by first sho;ing that compact subsets of lim S™ are negligible.
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Using Theorems ¢ and C we can now triangulate M. By
Theorem ¢ we may regard M as an open subset of R®. Since
open subsets of B> are Lindelof [7, Propositions III. 1 and III. 2]
M has the homotopy type of a countable, locally finite, simplicial
complex K [13, Theorem 1 and Proposition 2]. By [9, Corollary 2]
[K| x B* is an R~-manifold, and clearly, |K| x B* has the same
homotopy type as M. By Theorem C, M = |K| x R*. This estab-
lishes the triangulation theorem.

THEOREM T (Triangulation). M = |K| X R, where K is a coun-
table, locally-finite simplicial complex.

We remark that Theorems S and T answer affirmatively two
questions in the Appendix “Open problems of infinite-dimensional
topology” in [3].

The author gratefully acknowledges several helpful conversations
with Henryk Torunczyk and James West.

§ 2. Lemmas. Recall that we identify R" with R x{0, 0, ---, 0}C
R*** and with R x {0,0, ---}CcR>. If AcCR~, let A»= AN R".
Let d, be the metric induced on R* by the norm |z| = & «3)2. If
Z is an open cover of Y, a homotopy H: X X I — Y is limited by
z if for every xe€ X, H({x} x I)c U, some UecZ/. We abbreviate
“finite-dimensional” by f.d. and “piecewise linear” by p.l. If AcX,
by A we denote the closure of A4 in X.

LEMMA 1. Let A and B be f.d. compact metric spaces with
AcCB. Let f:B— R" be a continuous map such that flA is an
embedding. Then if m is sufficiently large, for every € > 0 there
is an embedding g.: B— R™ such that ¢./A = f/A and d,(f, g.) < e.

Proof. We may assume that 2(dimB) + 1 <% so that there
is an embedding a: B— R". Let 3: R*— R" be a continuous exten-
sion of af™: f(A) — R". Define h: B— R™ X R" by h(b) = (f(b), a(b))
and T: R X R~— R" x R* by T(x,y) = (x, y — Bx)). Then g = Th:
B— R x R* is an embedding extending f/A. Choose r > 0 such
that g(B)C R X {zeR"| ||z|| < 7}. If e(x, y) = (x, (¢/7)y), then ¢, =
eg is the desired embedding.

LEMMA 2. Let X be o f.d. locally compact metric space and A
and B closed sets in X such that X = AU B and B is compact. Let
U be an open subset of R*, Zz an open cover of U. Let f: X— U
be a continuous map such that f|/A is a closed embedding. Then
there is an embedding g: X — U such that g/A = f|A and such that
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H: X XI—->U defined by H(x,t) =1 — t)f(x) + tglx) s limited
by .

Proof. If C is a compact subset of U, then f*(C) is contained
in the compact set (f/A)™(C)U B. Hence f is proper. Thus, we
can choose a relatively compact neighborhood V of the compact set
FHf(B)) in locally compact X.

Let » be such that f(V)c UNR*. By Lemma 1 there is an
m > n and an embedding g.: V — R™ with g.(x) = f(x) for xe ANV
and d,(g., f/V) <e, where ¢ >0 is chosen smaller than d,(f(B),
f(A\V)N RBR™) and such that the e-neighborhood in R™ of any point
of f(V) is contained in a member of {WN R"| We%)}. Define
g: X— U by g&) = f(x) for x€ A and g(x) = g.(x) for x € V. Thus,
g is one-to-one. Moreover, g is proper, for the same reason for
which f is. It follows that g is the desired embedding.

LEMMA 3. Let A and B be f.d. compact metric spaces with
ACB. Let M be a paracompact space such that M= U,U U,
where U, 1 =1, 2, 18 an open subset of M homeomorphic to an open
subset of R*. Let f: B— M be a continuous map such that f/A is
an embedding. Then there is an embedding f': B— M such that

F1A = flA.
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Let {K, K,} be a cover of B by compact sets such that K, C
f(U,), i=1,2. By Lemma 2 there is an embedding ¢,;: K,U[4N
FHU)] — U, such that g,(x) = f(x) for e AN f(U,) and such that
fIK,U[AN f4(U)] is homotopic to g, by a homotopy H fixed on
AN fY(U) and limited by {U,n U, M\f(K,N K,)}. Note that
H[(K.NK,) x IlcU,N U, Define H:[(K,N K,)U(AN K,)]— U, by
H'(x,t) = H(z, t) for xe K,N K,, tel, and H'(z, t) = f(x), re AN K,,
tel

By Dugundji’s theorem [5, p. 188], B>, and, hence, [10, p. 42],
U, is an absolute neighborhood extensor for the class of metrizable
spaces. It follows, as in the proof of [10, Theorem 2.2, p. 117],
that U, has the homotopy extension property with respect to metrie
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spaces. Since H, = f/AN K, extends by f to all of K,, H' has an
extension H: K, x I — U,. Define g: B— U, U U, by ¢g/K, = ¢,/K, and
g/K, = H,. Then g extends f/A.

By Lemma 2 there is an embedding g,: ¢7(U,) — U, such that
g.(x) = g(x) for 2eg(U)N(AUK,. Define f:B—U,UU, by
fl(x) = g,(x) if xeg™(U,) and f'(x) = g(x) otherwise. Then f'/K, =
9./K, and f'/K, = g,/K, so that f' is continuous. If f'(x) = f'(%),
then either both x and y or neither « nor y is in (f")™(U,) = ¢~ (U,).
In the first case x = y since ¢, is one-to-one. In the latter case
x = y since g/K, is one-to-one. Clearly f’/A = f/A. Thus, f’is the
desired embedding.

The last lemma is probably known. We include a proof for
completeness.

LEMMA 4. Let X be a finite polyhedron and M a compact p.l.
manifold with boundary. If f,g9: X—IntM are homotopic topo-
logical embeddings, then for sufficiently large k there is an ambient
isotopy H on Mx[—1, 11* such that H/(f, 0)=(g, 0): X — Mx[—1, 1]~

Proof. Let H: X x I - Int M be a homotopy with H, = f and
H, =g. Define H: X x I »Int(M x [—1,1]*) by H(x, t) = (H(x, t),
t/2,0,0, ---,0). Then H, = (f,0) and H, = (g,1/2,0, ---, 0). Clearly
it is sufficient to show that (f, 0) and H, are ambient isotopic.

Since H/X x {0,1} is an embedding, Theorem 1 of [2] implies
that for sufficiently large &k, H/X x {0,1} is e-tame in Int (M X
[—1,1]¥). Thus, there is an ambient isotopy K,: Mx[—1, 1]* - M x
[—1, 1% such that K,(H(X x I)) cInt (M x [—1,1]*), tel, and such
that K. H/X x {0,1} is a p.l. embedding. Using general position
[15, 5.4, p. 61] there is, for sufficiently large k, a p.l. embedding
h: X x I —1Int(M x [—1, 1]*) such that »/X x {0, 1} = K,H/Xx{0, 1}.
By [11, Theorem 1.1, p. 426] there is an ambient isotopy E,: M X
[—1,1]* - M x [—1, 1]* such that Eh, = h,. Then K 'E,K, is an
ambient isotopy on M x [—1, 1]* with K'E.K,(f,0) = K.'EK,H, =
KEh, = K 'h, = H,, as required.

3. Proof of Theorem S. We first prove the following weaker
version of the stability theorem.

THEOREM S'. Let M be a paracompact R -manifold such that
M= UUYV, where U and V are homeomorphic to open subsets of
R>. Then there is a homeomorphism M — M X E>.

Proof. We first show that M can be suitably expressed as the
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direct limit of topological manifolds. Let v: U— U’ and 6: V— V'
be homeomorphisms onto open subsets of R*. Then U’ =limC,

where C, is a compact metric subspace of U’ N R" and where —5; C
Int,,.C,.,. Express V' =Ilim D, similarly. Let C, = 46*(C,) and
D, = 6-(DJ). -

Fix n =z 1. Since C, U D, is a compact f.d. metric space, there
is an embedding a:C,U D, — R*, some k. Since M is an absolute
neighborhood extensor for metric spaces ([5, p. 188] and [10, p. 45]),
a™ a(C, U D,)— M has a continuous extension 8 to a compact p.l
submanifold N of R* containing «(C,U D,). Let m: N x I— N be
the projection. Then Brn: N X I - M is an embedding on «a(C, U
D,) x {0}. By Lemma 4 there is an embedding 8': N x I - M such
that &'(a(C, U D,) x {0}) = Ba(a(C, U D,) x {0}) =C,UD,. Let X =
d(N x I), a closed p.l. manifold. Let X, = 8/(X). Note that X, D
C,U D, and, since M =1lim (C, U D,), M = lim X,.

Let AcM be a com_p)act subspace. Ci:n_c:ose an open cover {Y,,
Y,} of M such that Y,c U and Y,c V. Then A=UANTY)UuAnN
Y,). The compactness of AN Y, and AN Y, implies that for some
n, (AN Y)cC,and 6(4N Y, c D, sothat AcC, U D,. Thus, every
compact subspace of M is contained in some X,.

Now, let B, =[—n, n]", » = 1. Then R” = lim B,. Define j,.:
X, X B,— M by j,.(x,t) =«. By Lemma 4 ther:is an embedding
Ju: X, X B,— M such that j,,.(x, 0) = ¢ for each xe X,.

Let j, = j,,. Choose m, > 1 such that j,(X, X B,) c X,,. Consider

Xl X Bl_gi')an X Bkz

lj1 il/
/
J(X, X B)

where k&, > 1 is yet to be chosen, 7,(y) = (y, 0) and a,(z, t) = (x, (¢, 0)).
Since B is contractible 4,5, ~ a, (“~” denotes “is homotopic to”)
with the homotopy taking place in Int (X,, X B,,). Choose k, so
large that, by Lemma 4, there is an ambient isotopy F, on X, X
B,, such that (F)a, =1,j,. Let 7, = j,, .1 X,, X By, — 5i(X,, X By).
Let h, = j, and h, = j,(F,),. Consider

X, x B> X, X B,
lhl lhz
i(X, x B) -2 (X, x B)

where g(y) =y. Since ha, = j,(F.).a, = j;i.5, = B, the square
commutes. Also, ((y, t), s) — 7.F:((y, t), s) defines a homotopy from
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7, to h,.
Choose n, > n, such that j,(X,, X B,,)© X,,. Consider

X,, X B, —> X, X B,
k2 ’l.fz/|
P )

J(X,, X By,)

where k, > k, is yet to be chosen, a,(x, t)=(z, (¢, 0)) and 7,(y)=(y, 0).
Since j, ~ h,, we obtain homotopies 4.k, ~ 1,9, ~ «, taking place in
Int (X,, X B,,). By Lemma 4 we may choose &, so large that there
is an ambient isotopy F, on X, X B, such that (F.)a, = i,h,. Let
Js = j’ngykg and h, = 7,(F,),.

Continuing, by induction we obtain for every » = 1 a commuta-
tive diagram

X, X B, —» X

Mp41
hr lhyﬂ

JUX, % B,) =0 4, (X,

X Bkr—\‘-l

x Bkr+1)

r+1

where a,(z, t) = (z, (£, 0)), B.(y) = y and h, is a homeomorphism. Let
D =lim{X, X B,;a,} and FE=Ilim{j (X, X B,);8,}. The &,’s
induc(;~> a homeomorphism #h: D—»E_? As sets clearly D= M X R®
and E= M. Since j.(X, xB,)DX, and M =limX, it follows
immediately that = M. Also, M x R>is homeom_grphic to an open
subset of R~ [7, Corollary II-7] and is therefore the direct limit of
its compact subsets. If Cc M x R* is compact, then Cc x,(C) x
w(C)c X, X B,, some r. (Here m;:M x R*— M and w,: M X R*—
R~ are the projections.) It follows that D= M x R®. Thus, M =
M x R, and Theorem S’ is proved.

Theorem S now follows quickly. Let M be a paracompact, con-
nected R~”-manifold. As shown in [7, Proposition III. 1] every
subset of M is paracompact. Say that a paracompact space Z has
property P if for every open subset U of Z there is an open
embedding U -— R*. Then M has property P locally. Let X = UU
Vc M where U and V are open in M having property P. By
Theorem §' X = X x R*. By [7, Corollary II.7] X has property P.
Let Y=U.Y, where Y, is open in M and has property P, and
where {Y.,} is discrete. Since M is Lindelof [7, Proposition III. 1],
{Y;} is at most countable, indexed, say, by a subset of the integers.
Let fi: Y, — R~ be an open embedding. Let p,: R*—[(t —1/3, 1 +
1/3) x R X R X ---]N R be a homeomorphism. Then f:Y— R~
defined by f/Y; = p,of; is an open embedding, showing that Y has
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property P. By a theorem of Michael [12, Theorem 3.6] M has
property P. That is, there is an open embedding M — R*. By [6,
Theorem 1] the projection 7: M X R — M is then a near homeomor-
phism. This completes the proof of Theorem S.
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