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ON THE ITERATES OF DERIVATIONS
OF PRIME RINGS

W. S. MARTINDALE, III AND C. ROBERT MIERS

In this paper we study properties of associative derivations whose
iterates are related in rather special ways to the original derivation, or to
the iterates of another derivation. An associative derivation d: R -» R is
an additive (or linear when appropriate) mapping on a ring R satisfying
d(xy) — xd(y) 4- d(x)y for all x, y G R. A derivation d: R -* R is
called inner if d(x) = (ad a)(x) for some a E JR where (ad a)(x) =
[a, x] — ax — xa. In particular we ask when can the iterate of an inner
derivation be an inner derivation? When can the iterates of two deriva-
tions commute? More precisely, we characterize elements α, b E R, R a
prime ring, for which (ad a)"(x) = (ad b)(x) for all x E R, and we
characterize derivations d: R -> R, 8: R -> R for which [dn(x), δn(y)]
— 0 for all x, y E R, R prime. Applications are made to C*-algebras.

1. Introduction. In [15] it was shown that if dx and d2 are deriva-
tions of a prime ring not of characteristic 2 with dλ o d2 a derivation, then
either dx — 0 or d2 — 0. Consequently if d2(x) = 0 for all x , J a deriva-
tion on such a ring, then d — 0. In [6] it was shown that if (ad a)n(x) — 0
for all Λ: in a simple ring there exists a scalar λ such that {a — λ e ) [ ( " + 1 ) / 2 ]

= 0. And in [14] it was shown that if (ad a)3(x) — (ad a)(x) for a
self-adjoint a and all x in a von Neumann algebra then {a — z)2 — a — z
for some central element z. In [7] it was shown that if [d(x), d(y)] = 0 for
all x, y E: R where R is a prime ring and char R φ 2, thend = 0 or i? is a
commutative integral domain. Our results show that if d and δ are as
above, and R is prime of characteristic 0 then R is commutative, or

d3n-\ - 0 ? o r g3«-i _ Q if d= § = Sidb there exists λ in the extended
centroid of R such that a - b - λ satisfies a

{{2n+3ί)/^ - 0.
In §§2 and 3 we prove results in the full generality of prime rings.

Crucial use is made of the notions of extended centroid and central
closure of a prime ring and of a key result on tensor products of closed
prime algebras. We summarize these constructions by quoting from [11].
Let R be a prime ring and let T be the totality of all right i?-homomor-
phisms /: UR -» RR, where U ranges over the non-zero ideals of R. An
equivalence relation ~ is defined on T as follows: / (acting on U) ~ g
(acting on V) if / = g on W where W is non-zero ideal contained in
U Π V. The set Q — {/} of all equivalence classes forms a ring under the
operations induced by addition and composition of representatives of the
equivalence classes. R C Q via the map a -» άι where aι is left multiplica-
tion by a acting on JR. The center C of Q is a field containing the centroid
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of R and is called the extended centroid of R. The C-algebra A = RC + C
is again a prime ring and is called the central closure of R. In general we
define a prime algebra S over a field F to be a closed prime algebra over Z7

if 5 is its own central closure, i.e., the extended center of S is just F itself.
We list some examples of closed prime algebras which are important for
the purposes of this paper:

(1) The central closure of a prime ring ([12], p. 503).
(2) A ®ci% where A is a closed prime algebra over C and F is an

extension field of C ([2], Theorem 3.5).
(3) Any 2-fold transitive algebra of linear transformations on a

complex vector space ([4], Theorem 2.1.3 and [11], Theorem 12).
Finally, if A is an algebra over F we denote by Aι the algebra of left

multiplications at of A determined by the elements of A and Ar9 the
algebra of right multiplications ar determined by the elements of A. A key
result on tensor products is

THEOREM 1. If S is a closed prime algebra over F and S° is the opposite
algebra of S then

S® S° = SιSr via the map u ® v -> U[Όr.
F

In §4 the results of §§2 and 3 are applied to C*-algebras. Although
C*-algebras, in general, are not prime they have a complete set of
(algebraically) irreducible representations and, in our case, a phenomenon
which occurs in each of these representations can be translated to a
corresponding result for the original algebra. For a full account of
C*-algebras we refer the reader to [1].

2. Iterates of an inner derivation.

LEMMA 1. Let R be a prime ring of characteristic > n > 1, and suppose
(ad a)n = ad b for some a, b E R. Let C be the extended centroid of R,
A — RC + C the central closure of i?, F the algebraic closure of C, and
S = A ®CF. Then a is algebraic over F of degree < «, and if p(x) —
(JC — λ)ιg(x) is the minimum polynomial of a over F where λ E F is a root
of multiplicity I > 1, then b - β = cn,β E F9 and

(1) 2
k=0

holds in S ®FS° with c - a - λ.
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Proof. The condition (ad a)n = ad b clearly lifts to S, i.e.,
(aι - ar)

n = bι - br holds in the algebra S&. By Theorem 1, S ®FS° s
5,5,. via w ® t> -> w7wr since 5 is a closed prime algebra over i% and the
condition further translates to

(2) 2 (-l

It is clear that b E span{l, a,...,0*}. Writing b = Σ?=oA
 fl/> A E ^ a n d

substituting this into (2) we see that

(3) ( * " - Z> + β 0 ) ® 1 + (βx - nan'x) ®a+ -

1 ( ( ) M ) « M = 0 .

If 1, α,. . . ,tf" are independent then, in particular, βn_x + (~l)n~ιna = 0,
whence a= ±fin_x/n G F a. contradiction. Therefore {l,α,.. . ,α r t } is a
dependent set and we have established that α is algebraic over F of
degree < w. Hence we may set /?(JC) = (x — λ)ιg(x) as indicated in the
statement of the lemma. Setting c = α — λ we then see that m(x) =
/?(X + \ ) = J C / ^ ( X ) is the minimum polynomial of c over F with
deg m(x) = deg^(x) < w and #(0) T^ 0. Since ad α = ad c we may re-
write (2) as

(4) 2 (-l

We set t» = ^ " ^ ( c ) 7̂  0, note that cv = 0, and multiply (4) on the right
by 1 Θ ϋ to obtain

(5) cn®υ = b®υ-\® βυ,

whence (c" - b + β) ® υ = 0. Thus 6 = cn + β and (4) becomes

(6) 2 (-1)^(1)^"*®^ = ^ ® 1 - 1 ®cn

k=o X K J

which completes the proof of the lemma. D

In the following Theorem, C, A = RC + C and S = A ®CFhave the
same meaning as in Lemma 1.

THEOREM 2. Let R be α prime ring of char. > n > 1, and suppose
(ad a)n = ad Z? /or some α, b E /?. // /Λe minimum polynomial p(x) of a
over F (which necessarily exists in view of Lemma 1) contains a root λ Eί F
of multiplicity I > 1, then λ E C and (a - λ)K»+D/2] = 0 .
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Proof. By Lemma 1 we have

(1) 2 ( - l ) k ( l ) c n - k ® c k = c n ® l - \ ® c n

k=o x κ ι

holding in S ®FS°, where c — a — λ and the minimum polynomial of c
over F is m(x) = xιq(x), / > 1 , q(0) Φ 0. We remark that q{c),
cq(c),- - -,cι~λq(C) are /"-independent. Indeed, one would have a depend-
ency aiλc

iλq{c) + +airc
irq(c) — 0, α, 7̂  0, iλ < i2 < < ir < /, with

"length" r > 1 minimal. Multiplication of the dependency by cι~lr would
result in a dependency of shorter "length", a contradiction.

Now we multiply (1) on the right by 1 Θ q(c) to obtain

(7) 2(-l

By the preceding remark {ckq(c) \k = 1,•••,/— 1} is an independent set
so in particular c

n~{I~l) = 0. Thus c is nilpotent, with m(x) = Λ:7 where
/ < # ! - ( / - 1), i.e., / < ( / i + l)/2, and so c [ ( A ί + 1 ) / 2 3 = 0. In terms of a
this says that (a - λ ) [ ( / 2 + 1 ) / 2 ] = 0 and/?(jc) = (x - λ)7.

It remains to prove that λ E C. Since c = tf®l — l ^ λ E ^ ί Θ c i 7

(when written more precisely we see from p(x) — (x — λ) 7 that 0 =
(a ® 1 - 1 ® λ) 7 = Σ U o ί - 1 ) ^ ! ) ^ 7 " ^ ® λ* holds in ^ ® c ^ . It follows
that a is algebraic over C of degree < /. Let Λ(JC) be the minimum
polynomial of a over C On the one hand we must have degΛ(x) <
deg/?(.*) = /, and so h(x) — p(x). Therefore the coefficients of p(x) lie
in C and so from p(x) = (x — λ) 7 = xι — lλxι~ι + we have /λ =
a G C, whence λ = a/I E C. D

COROLLARY 1. Le/ R be a prime ring of char. > « > 1, αwd suppose
(ad fl)Λ = ad 6/or some? a, b <Ξ R. Then (a - λ ) [ ( w + 1 ) / 2 ] = 0 for some λ wi
the extended centroid C if either of the following conditions hold:

(a) n is even;
(b) 6 = 0.

By Lemma 1 we have
n

(8) 2 {-\)k[n

k)cn-k ® ck = cn

where c = a — λ has minimum polynomial m{x) — xιq(x), q(0) ¥= 0. We
show that if either (a) or (b) holds then c is nilpotent whence the
conclusion follows from Theorem 2, since then m(x) = xι and / > 1. If we
are given (a) then (8) becomes

(9) "Σ(-I;
A: = 0
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Multiplication of (9) by cι~ ιq(c) ® 1 on the left yields 0 = -2cι~ ιq(c) <8> cn

whence cn = 0.
If we are given (b) then (8) reads

(10) 2 (-1)'
k=0

Multiplication of (10) by 1 ® cι~ιq(c) yields cn ® cι~xq(c) — 0 so again
we obtain cn = 0. D

REMARK. Corollary l(b) was first proved for simple rings by Herstein
[6] and conjectured for prime rings by Kovacs [10] and Herstein and the
proof announced in [13].

The conclusion of Corollary 1 is false for prime rings in general. As
an example, let n — 5, R — M2(C), the ring of 2 X 2 matrices over C, and

" l 0
1 + ^3 . One may verify that (ad a)5 = ad(#5), but there is

no λ E C such that (a — λ) is nilpotent. A more complicated example of
the same nature can be constructed as follows:

Let n = 5, Rj = M2(C) fory = 1, 2, ,R = ®JLχRj, {θj}T=ι a c o 1 "
lection of distinct real numbers such that 0 < θj < π/6, z- — eiθj where

0

0
, and a = θ ^ . Then (ad a)5 = ad(α5)

2
and 0 has infinitely many distinct eigenvalues.

COROLLARY 2. Le/ Rbe a 2-fold transitive algebra of linear transforma-
tions on a complex vector space H and suppose (ad a)n — ad b, n > 1, for
some a, b E R. Then a is algebraic, and if the minimum polynomialp(x) of
a contains a repeated root λ (in particular if either n is even or b — 0) then

K 1 > / 2 ]

The following corollary shows that the example following Corollary 1
is typical.

COROLLARY 3. Let Rbe a 2-fold transitive algebra of linear transforma-
tions on a complex vector space H, and suppose (ad a)n — ad b for some
a, b E JR with n odd, n > 1. If the minimum polynomial p(x) of a has
distinct roots λ l5 ,λΛ, k<n, there exist idempotents Pi^'^p^ with
PtPj^Ofori^j, 2ϊ=xPi= 1 and a = 2ϊ=ιλipi.Ifk>2andO,\9μare
distinct eigenvalues of a, then λn — μn = (λ — μ)n. Conversely, if R is an
algebra over a field F of characteristic 0, with idempotents pλ, ,pk such
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that 1 = Σf=1 pi9 PjPj = 0 and \x, -,λk distinct elements of F such that

K ~ λ " = (λ, ~ λ y)", 1 < i,j < «, αwJ « odd, then (ad a)π = ad(tfπ) and

Proof. Standard linear algebra gives the existence of the p,
with the desired properties. Equation (1) of Lemma 1 becomes
lU0{-\)k{n

k)cn'kxck = [cn, x] for all x E R where c = a - λ. Since n is
odd we have

0 = 2 {-\)k(nΛcn-kxck forallxET?.

Let v φ 0 be such that αt> = μv. Then ct? = (0 — λ)t> = (μ — λ)v φ 0.
Hence

n-\

Λ

- Vf 1)

k=\

By transitivity,

n-\
\i / 1 \ ^ I I n — k. ί \ \ k / / Λ \ \ w n \ / \ \ w

~ Σι v~l) \ k) ' ^ ~ ^ = ( c ~ vM ~ λj) — c + (μ — λ) .
A : = l

In terms of a this says 0 = {a - μ)n - {a - λ)n + (μ - λ)n. Therefore,
the minimum polynomial p(x) must divide (x — μ)" — (x — λ)n +
(μ — λ ) \ Since 0 is an eigenvalue of a we have (-μ)n ~ (-λ)w + (μ — λ) Λ

= 0. The other part of the corollary is a straightforward calculation. D

3. Commuting iterates of derivations.

THEOREM 3. Let R be a prime ring and let d and δ be derivations on R
such that [dn(x), δn(y)] = 0 for all x, y E R. Then either R is commuta-
tive, or d3n~ι = 0, or δ 3 " " 1 = 0. Furthermore, if n — 1, and the characteris-
tic of R Φ 2, then either R is commutative, or d — 0, or δ — 0.

Proof Let W be the subring generated by {d"(x) \ x E R} and note
that d(W) C W. By the Leibniz formula we have

(1) dn(xy)= Σ (l)dk(x)dn-k(y)GW for all*, >> E Λ.
k o X k J
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For / = 1,2, ,/i we substitute dι~\x) for x and dln~ι{y) ίoτy in (1) to
obtain

(2) Σ

1= l,2, ,«foralljt, 7 GJΪ.

For/ = fl, (2) reads

(3) dn-\x)dln(y) G W,

and for / = n — 1, (2) reads

(4) d"-2(x)d2"+\y) + [n

χ)dn-\x)d2n{y) G W.

Together (3) and (4) imply that dn~2{x)d2nJt\y) e W. Continuing in this
fashion by comparing successive decreasing values of / from / = n to / = 1
we have that xd3n~\y) G W for JC, y G /?. Therefore, ZW3"""1^) C W
for all j e i ? . Similarly for all JC, /ίδ 3 1 1"^*) C V, the subring generated
by {δn(t)\t <ΞR}. Since [JF,F] = 0 by assumption, the left ideals
Rd3n'\y) and R83n~\χ) commute for all JC, j> G /?. Without loss of
generality we may assume that d3n~\y) φ 0 for somey and that δ 3 " " 1 ^ )
φ 0 for some x. Since we have two commuting non-zero left ideals
Rd3n~\y) and R83n~^\χ) in the prime ring R, R must be commutative.

For n — 1, if R is not commutative, we may assume d2 = 0. From
</2(jcy) = </2(x).y + 2rf(x)</( j ) + x</2( j ) we have d(x)d{y) = 0. In par-
ticular, 0 = d(xy)d(x) = [i/(x).y + xJ(j)]rf(jc) whence ^(JC)JJ(X) = 0
for all x9 y E R. Since R is prime it follows that d(x) = 0 for all
x G Λ. D

THEOREM 4. Lei R be a prime ring of characteristic > 3π
d= ad b be an inner derivation of R satisfying [^(.χ), dn(y)] — 0 for all
x, y G R. Then there exists an element λ in the extended centroid of R such
thata = b-λ satisfies a

[{2n+3)/3] = 0.

Proof. We can assume, by [7], that n > 1. The condition on d clearly
extends to the central closure A = RC + C of R. By Theorem 3, d3n~ι = 0
and hence by Corollary l(b) there exists λ G C such that a — b — \EA
satisfies a[3n/2] = 0. If / is the degree of nilpotency of a we have

(5) l^-f

and, assuming the theorem to be false, we may also suppose that

(6) l>^ψ-,
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in other words, 3/ — 2n — 4 > 0. We then set

(7) p = q = if / is even

and

ί*\ 3l-2n-5 3l-2n-3 AA

(8) p = r ,q — if/is odd.

In either case p + q — 31 — 2n — 4, which we wish to view in the form
2n +p + q = 3(l- 1) - 1.

Expansion of [dn(x), d"(y)] = 0 by the Leibniz formulas, followed
by replacement of x by ax, yields

0 = a?[dn(ax), dH(y)]a* = g - Λ

where

8= ϊ (-l)-

and

j,k=o

Since 2n + 1 + p + q = 3(1 — 1) the only possible surviving summand of
g occurs when j + p + I = q + k = I — I; for h it occurs when j + p =
q + k — I — 1. To see that these terms actually occur it is necessary to
show that they and k thus determined are indeed within the range 0 <y,
k < n. This means verifying

(9) 0 < / - / ? - 2 < w , 0 < / - / ? - l < w , 0 < / - t f - l < « .

We leave it to the reader to check that the various substitutions of (7)
and (8) in (9) lead to the following inequalities

(10) 0 < In - I + i < 2/i, / = 0,1,2,3

where ι = 0,2 when / is even and i— 1,3 when / is odd. But the
inequalities (10) follow readily from (5) and (6), so that we have estab-
lished

and

(12)
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Setting x—y in (11) and (12), noting that the coefficients of
al~xxaf~xxaf~x in (11) and (12) are of opposite parity, and knowing
g = h, we may conclude that aι~xxaι~λxaι~x — 0 for all x G i . This
means that the non-zero right ideal aι~xA is nil of bounded degree which
in view of [5], Lemma 1.1 provides a contradiction since A is a prime ring.

COROLLARY 4. Let R be a 2-fold transitive ring of linear transforma-
tions on a complex vector space H and let d—dAbbean inner derivation of
R satisfying [dn(x), dn(y)] = 0 for all x9 y E R. Then there exists a
complex scalar λ such that a = b — λ satisfies a[(2n+3)/3] = 0. D

4. Applications. If A is an algebraically irreducible algebra of oper-
ators on a complex Banach space H then A is 1-fold transitive (since it is
irreducible) and hence by [3] it is m-fold transitive if H is infinite
dimensional or is of dimension at least m. In particular, £(//), the algebra
of all bounded linear operators on H is 2-fold transitive so that the
previous results apply.

Let A be a C*-algebra of operators, containing the identity operator
1, acting on a complex Hubert space H. Let R = A" be the ultraweak
closure of A and let M be the universal enveloping von Neumann algebra
of R. If φ is any ^representation of R and m the natural injection of R
into M, there exists a normal ^representation φ of M such that φ(x) —
Φ(π(x)). We have that φ(M) = φ(R)". If φ is irreducible, φ(M) = Φ(R)"
= fc(Hφ), the ring of all bounded linear operators on Hφ9 where Hφ is the
representation Hubert space. If φ is a normal homomorphism of M onto a
von Neumann algebra N9 there exists a central projection c E M and a
•-isomorphism ψ of Mc onto JV such that φ(x) — ψ(xc) for all x in M.

THEOREM 5. Let A be a C*-algebra of operators acting on a complex
Hilbert space H, and assume A contains the identity operator 1. Let R — A'\
the ultraweak closure of A, and suppose (ad a)n(x) = (ad b)(x) for some
a, b E A and all x E A. If n is odd there exists a central projection c E R
and a central element z in R such that ((a — z ) c ) ( n + 1 ) / 2 = 0, 1 — c =
Σβ(ΞB>dβ, and ad^ = Σ/i'V λ$rf where the λf are distinct complex numbers,
the rf are (not necessarily self-adjoint) orthogonal idempotents, and the dβ

are orthogonal central projections. If n is even there exists a central element
z GR such that (a - z)n/2 = 0.

Proof. Let {Φβ}β<=B be a complete set of irreducible representations of
R. Then φβ(x) = Φβ(π(x)) where φβ is a normal *-homomorphism of M
on £{Hφ ). As above, for each /?, there exists a central projection cβ in M
and a *-isomorρhism ψβ of Mc on t(Hώ ) such that φB(x) = ψβ(xcR) for
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all x G M. Now (ad a)n(x) = (ad b)(x) for all JC G A implies
(ad 7τ(α))"(x) = (ad ir(b))(x) for all JC G M so that (ad Φβ(ir(α)))n(x) =
(adφ^(7r(Z?)))(x). Since φ^ is irreducible, the results of Theorem 2 and
Corollaries 2 and 3 apply. If n is odd then either (i) there exists λβ G C
such that (Φβ(π(α)) — λ ^ ) ( w + 1 ) / 2 = 0 (in the case that the minimum
polynomial of φβ(π(α)) has a repeated root or φβ(π(α)) is central) or (ii)
φβ(π(α)) — Σ/iγ λf/?f where the /?f are mutually orthogonal idemotents
and the λf are distinct. Since {Φβ}β<=B is complete we have LUBc^ — 1.
Choose mutually orthogonal central projections dβ G M such that J^ < cβ

and ΣpGBd'β= 1. Let c' = Σ ^ e B l ^ where 5, = {>S | (i) holds}. Then
^ ^ ^ 2

= ΣβGB^Bί=B.d'β. If βGBλ then 0 = ^ β

(Φ/*(<0 - λβY
n+l)/2 so that μ ^ | < \\φβ(α)\\ < | | α | | . Hence z'

2β^B] λβd'β G Z M Moreover, β G Bλ implies 0 = (φ(ir(α)) - λβ)
{n+λ)/1

= (Ψ/ι((^(fl) - *β)cβ))in+V)/2 so that 0 = (ir(fl) - \βY
n+l)/2cβ since φ^ is

an isomorphism. (τr(a) - z O ( " + 1 ) / V = ((π(α) - zf)cr)^λ^2cβd
r

β = 0 for
each β G 5^ Similarly if βEB\B{, φβ(π(α)) - Σ/i^ λ?/?f = ψβ(v(α)cβ)
so that τr(β)^ = Σ/I^ λ^f and *(*)</£ - Σ/I^ f ^

Let /: R -> iί be the identity map, i the normal homomorphism of Λf
on R for which /Ί>(x)) = i(x) for all jcGi? . Let c" be a central
projection in M and7 an isomorphism of Mc,, on i? such that i(π(x)) =
j(π(x)c"). j induces an isomoφhism between Z M the center of Mc,, and
ZR. Hence c'c" + (1 — c7)c" which is the identity of Mc.. is sent by j to 1,
the identity of R. Let c =J(c', c") and z = / ( z r , c"), dβ =J(d'βc"), and
rjβ=Rq?d'βc"). Π

THEOREM 6. Le/ A be α C*-αlgebrα, d α derivation on A such that
[dn(x\ d"(y)] = 0 for all x, y G A. There exists s G Λ, z G ZR the centre
ofR9 such that d(x) = [5, jc]/or all x G A and (s - z)iV»+W] = 0.

Proo/. By [16: 4.1.7] there exists such an s. Moreover d extends in this
way to a derivation on R. The result follows from Theorem 4 and an
argument as in Theorem 5. •

We finish with a result which does not fit the title of the paper but
which contains the same methods in its proof.

LEMMA [See 8: Theorem]. If R is a prime ring not of characteristic 2
and d: R -> R a derivation, then then either d — 0 or [x G R | [x, d(r)] = 0
for all r G R) C ZR9 the centre of R. D

Proof. Let b G [x G R \ [x, d(r)] = 0 for all r<ΞR}. Then 0 =
[b, d(r)] = ((ad b) ° d){r) for all r G R. By [15: Theorem 1] either d = 0
or ad Z> = 0. If ad b = 0 then [b, r] = 0 for all r so b G Z Λ . D
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THEOREM 7. Let A be a C*-algebra with identity e, R = A'\ and
d: A -»A a derivation. There exists a central projection c E ZR such that
dc(a) = 0 for all a E A, and {a(e - c) \ [a, d(b)](e - c) = 0 for all b E
A) C ZA(e - c).

Proof, d extends to a derivation (denoted by d) from Rio R. Let φ be
an irreducible representation of R and consider dφ: φ(R) -> φ(R) given
by dφ(φ(r)) = φ(d(r)). Then dφ is a derivation on the irreducible algebra

). By the lemma either dφ = 0 or {φ(r) | [φ(r), dφ(φ(s))] = 0 for all
E Λ) C Z φ ( Λ ) .

If ψ, 77, and c are as in the beginning of this section,

[φ(r) |[φ(r), dφ(φ(s))] = 0 for all s E *}

= {ψ (w(r)c) |[ψ (π(r)c), ψ (ir(d(s))cj\ = 0 for all s E 7?}

= {ψ (π(r)c) I[π(r)c, ίr(rf(J))C] = 0 for all s E R] .

Since ψ is a *-isomorphism from Mc onto t(Hφ) it carries centers to
centers so that if {φ(r) \ [φ(r), dφ(φ(s))] = 0 for all s E /?} C Z φ ( Λ ) we
must have {ττ(r)c | [π(r)c, π(d(s))c] - 0 for all s E i?} C Z M /

Let {φ }̂ be a complete set of irreducible ^representations of R and
dφβ as above. If dφβ = 0 there exists a central projection cβ in M such that
0 = dφβ(φβ(x)) = φβ(d(x)) = φβ(π(d(x))) = ypβ(π(d(x))cβ) so that
π(d(x))cβ = 0 for all JC E R. If dφβ Φ 0 there exists cβ in M such that
{π(r)cβ I [^(r)^, ί r ί^ j ) )^] = 0 for all s G R} Q ZM .

Since {φβ} is complete, LUBc^^e, choose mutually orthogonal
central projections cβ in M such that cβ < ĉ  and Σc£ = β. Let c0 = Σcβ

where the sum is over all β such that π{d(x))cβ = 0 for all c E ϋ .
Let i, / andy be as above with c, a central projection in Λf such that j

is an isomorphism of MCχ oni?. There exists c G ZR such that 7(c0C!) = c.
We have i(c0) = c. Now 0 = ίr(έ/(r))c0 for all r E i? so that 0 =
/(τr(d(r))c0) = d(r)c for all r E R. Moreover,

{<n{r){e - c0) || * ( r ) , *(</(*)) | (β - c0) = 0 for all s E i?}

= {π(r)(e - c0) \ ί([π(r), π(d(s))](e - c0)) = 0 for all s E i?}

= {π(r)(e - c0) |[r, d(s)](e - c) = 0 for all5 E i?}.

Hence {τr(r)(e - c0) | [ττ(r), w(d(s))](e - c0) = 0 for all ^ E Λ} C Z M _
implies {r(e - e)\[r, d(s)](e - c) = 0 for all j ε «} C i (Z w ) =
Z
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Finally,

{a(e - c) \[a, d(b)](e - c) = 0 for all b E A)

C {r(e - c) \[r, d(s)](e - c) = 0 for all s E R)

by the ultra weak continuity of d. Therefore

{a{e - c) \[a9 d(b)](e - c) = 0 for all b <E A)

C Λ(e - c) Π Z Λ ( ^ - c) = Z(e - c). Π
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