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COMPACT OPERATORS AND DERIVATIONS
INDUCED BY WEIGHTED SHIFTS

C. RAY ROSENTRATER

In this paper we study the question: which compact operators are
contained in $l(8s)~, the norm closure of the range of the derivation
8S(X) = SX- XS induced by a weighted shift S? We find that 9L(8sy
always contains the lower triangular (with respect to the basis (<?,) on
which S is a shift) compact operators. Further, <3l(δs)~ contains the
w-lower triangular (operators T satisfying (Ten ej) = 0 for i — j > n)
compact operators if and only if ex ® en+λ G 9 l ( δ s ) ~ . We also find
necessary and sufficient conditions on the weights of S in order that
e\ ® en+\ G &(3s)~ a™1 that ^ the algebra of compact operators, be
contained in $ί(δs)~~. These results completely answer the question:
which essentially normal weighted shifts are ^-symmetric?

Let T Ei(S>(%), the algebra of bounded linear operators on a complex
Hubert space %. The derivation induced by Γis the map δτ( X) — TX —
XT from %(%) to itself. Let (eΛ)"=i (respectively (*„)"=_«,) be an
orthonormal basis for % and let S be the unilateral (respectively bilateral)
weighted shift Sen — wnen+ι, n E N (respectively « E Z ) with nonzero
weights wn. By taking a unitarily equivalent weighted shift, we may
assume that wn = | wn \ > 0.

Recall that for f,g<Ξ%, the operator f® g G %(%) is defined by
8)h = (Λ, g)/for h E %. In particular, (e ® ^ y ) ^ n — β, if n =j and
ey )eΛ = 0 otherwise. In Theorem 2 we show that eλ® en+λ E.

s)~ if and only if Σkwk'Wk+x wn+k_x = oo. In Corollary 2, we
find that this is also equivalent to Sl(δ s )~ containing all the w-lower
triangular compact operators.

The above results enable us to characterize those essentially normal
weighted shifts that are ^-symmetric (i.e., satisfy Sl(δ 5 )~ = <3l(δs)~*).
Namely, an essentially normal weighted shift is ^-symmetric if and only if
S satisfies the total products condition Σkwk -wk+ι wk+n= oo for all
« G N . This yields another proof of the fact proved in Corollary 4 of [8]
that all hyponormal (and hence all subnormal) weighted shifts are all
^-symmetric.

T H E O R E M 1. Let S be the unilateral {bilateral) weighted shift Sen —
wnen+\ n G N ( z ) Then et ® ej E <&(δ5) for all i, G N (Z) with i >j.

Proof. Write i — j + n with n > 0. Let a0 = l/wJ9 ak —
Wj+n Wj+n+k-x/Wj Wj+k for k > 1, and ak = 0 for k < 0. Then
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for k > n, cancellation is possible and

ak = WJ+k+ι Wj+n+k_χ/Wj Wj+n-i ̂  \\S\\n-l/Wj 'WJ+a_λ.

Thus the ak's are uniformly bounded by some constant Bn. Also note that
akwj+n+k ~ ak+\wj+k+\ ioτ kφ\ so wJH+e_,e ._, = am_jwm for m-j
-\Φ-\.

Now define T = Σ? = o α*e y + I , + * ® «,+*+!• Then | | r | | = sup* α* < £„
so Γ e Φ ( 3 C ) . Further,

(ST- TS)(em) = 5 α ( m _ y _ 1 ) β / + l l + ( M _ y _ 1 ) ® e y + ( m _ y _ 1 ) + 1 ( e m )

~a(m-j)ej+n + (m-f) ® ej+{m-j)+\\Wmβm+ 1 /

O m-j-I Φ-I

O-aowJeJ+n m-j = 0

f 0 w

Thus ST- TS = -e, <8> ey and δ s ( - Γ ) = e, ® ey. D

LEMMA 1. If Sen — wnen+} n G N ( Z ) is a unilateral (bilateral) weighted
shift andf e ®(0C)* w /« the annihilator of<Sί(δs), then

for i, J 6 N (Z) απJ I t E N .

Proof. Since/annihilates

0 -

Thus/(^ + 1 ® e> + 1) = (Wj/w^fiβi ® ey ) for all ι, y and the lemma follows
by induction. •

COROLLARY 1. // Sen — wnen+l9 n G N ( Z ) is a unilateral (bilateral)
weighted shift and en ® em G <3ί(δs)~ , ίΛe« β ® ey G ̂ ( δ ^ ) " /or all i, 7 G
N (Z) satisfying the condition m — n — j — i. D
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THEOREM 2. Let S be the unilateral (bilateral) weighted shift Sen —
wnen+x, « G N (Z). For i G N (Z) and n G N, we have et ® ei+n G ^(8S)~
if and only ifΣkwk wk+x wκ+n_x = oo where the sum is taken over N
or Z as S is unilateral or bilateral.

Proof. By Corollary 1, it suffices to consider ex ® en+x.

Suppose that ex ® en+x E:<3ί(δs)~. If / is a trace class operator that
commutes with S, the equation

trace((&4 - AS)J) = trace(&4/ -

= trace(&4/) - trace(&4/) = 0

shows that trace( •/) annihilates ^(8S)~ . Since Sn commutes with S and

<?i ® *»+i)) = trace(w,-w 2 w π e Λ + 1 ® e π + 1 ) =
wM 7̂  0, it follows that Sn cannot be of trace class. Hence

oo = 2k(\ Sn \ ek9 ek) = Σkwk

H>2

Conversely, suppose that Σkwkwk+X •• w i k + π_1 = oo and that / G
® ( X ) * annihilates β l ( δ s ) " . Then l%=xwk-wk+x wΛ + l l_, = oo or (in

the bilateral case) Σl=owk'Wk+x wk+n

_x = oo. In the first case de-
fine TN = . Then || 7̂ 11 = 1 and using Lemma 1,

N+n
W

n+\
W

I

k — n

I «

k+n-\
G °° a sSince Σ^=^wΛ wΛ + 1 W

/(^i ® <VH) = 0 and e,
Now suppose that Σk=owk-wk+x

apply Lemma 1 to A: = -/ + 1 to show that
w

k+n_

-> oo, we see that

= oo. If / < 0, we can

or

H>
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Defining RN = Σj=~n"e, <S> en+ι, we see that

ii/ii >

W " + ι ~ ι

l=-n

Wl / - P

As before, the fact that Σ 7 ^
= 0 and ex ®en+x

wn+i-λ
oo implies that/(ej ®

D

REMARK. Note that if we take n = 0 in the proof of Theorem 1 then
the an become \/wn. Thus e. ® β, G ̂ t(δ 5) if the wn are bounded away
from zero. If the weights are not bounded away from zero, then taking
n = 0 in the proof of Theorem 2 we find that || /1 | > Σ ^ o J/(έ?j ® β,))
and thus et ® ̂  3 l δ

COROLLARY 2. Lei S be the unilateral (bilateral) weighted shift Sen

Λ+i5 w G N (Z). Γ/ien the following are equivalent.
(a) Sl(δ s)~ contains the n-lower triangular compact operators.

(b) * ! » * ! + , , e & ( θ s Γ
(c) e, ® e i+II E a ( δ s ) " /or 5ome / E N (Z).

n_λ = oo.

Proo/. The equivalence of (b), (c) and (d) has already been established
and (b) follows from (a) since eλ ® ex+n is compact and ft-lower triangu-
lar. It remains to be shown that (b) implies (a). From the proof of
Theorem 2, we see that if eλ ® en+λ G 9l(δ5)~ , then Sn is not trace class.
Hence Sm is not trace class for 0 < m < «. Thus
= oo and all operators of the form e
Since by Theorem 1, and the above remark,
m < 0, it follows that ίίl(δ5)~ contains the closed

w
k+1

ei+m are elements of
wfe+#n_x

£ , + w

G $l(δs)~ for
( 5 ) linear span of

w} (i-e., the w-lower triangular compact operators). D

REMARK. It is not true that if <3l(δ5)~~ contains an w-lower triangular
compact operator which is not (n — ί)-lower tήangular then $l(δs)~
contains all fl-lower triangular compact operators. In fact 9t(δ5)~ will
always contain such an operator; namely δs(ex ® en+2) = wxe2 ® en+2 ~~
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DEFINITION. A weighted shift satisfies the total products condition if
= oo for all n G N.

COROLLARY 3. Let Sen = wnwn+ι, n E:N (Z) be a unilateral (bilateral)
weighted shift. Then %C<Sl(δs)~ if and only if S satisfies the total products
condition. •

We now make application to the question: which weighted shifts are
d-symmetric? Recall that an operator T is d-symmetric if $l(δτ)~ —
<3l(δτ)~ *. In [2] it is proved that an operator T is d-symmetric if and only
if TT* - T*T G β(T) = {CE ®(3C): C<3>(%) + <$(%)C C &

THEOREM 3. The weights of a d-symmetric weighted shift S satisfy the
total products condition.

Proof. By Theorem 1, et ® e} G <Sl(δsy for i >j. By the d-symmetry
of S, we see that e} ® ̂  = (e f ® ̂ . ) * E ^ ( δ s ) ~ for j < /. Thus 9C, the
linear span of all et ® ey? is contained in $t(δs)~ and so by Corollary 3,
the weights of 5 satisfy the total products condition. D

The total products condition is not sufficient for ^-symmetry else any
weighted shift with weights bounded away from zero would be d-symmet-
ric. However the weighted shift with weights alternating between 1 and 2
has an irreducible representation as the operator ( ^ ) on C 2 , while in [2] it
is shown that any irreducible representation of a d-symmetric operator
must be over a Hubert space of dimension 1 or 8 0 . There are, however,
natural conditions under which the total products condition is sufficient.

THEOREM 4. An essentially normal weighted shift S is d-symmetric if and
only if it satisfies the total products condition.

Proof. The necessity of the total products condition follows from
Theorem 3 and sufficiency follows from the facts that SS* — S*S is
compact and that % C ^(δs)~ implies % C β(S)~ . D

COROLLARY 4. A hyponormal (in particular subnormal) weighted shift
Sen = wnen+λ is d-symmetric.

Proof. If S is hyponormal, then its weights are increasing and bounded.
Thus

SS* - S*S = diag(wI

2_1 - wf)

is compact and Σ™= λwk wh+ λ wk+„_ λ > Σ£= λw" = oo for all n GN. D
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