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CONSTRUCTION OF IRREDUCIBLE HOMOLOGY
3-SPHERES WITH

ORIENTATION REVERSING INVOLUTION

L. C. SlEBENMANN AND J. M. VAN BUSKIRK

A simple procedure is described for constructing infinitely many
homology 3-spheres which admit an orientation reversing involution with
two fixed points, yet are irreducible (in that each smoothly embedded
2-sphere bounds a 3-ball); they are 2-fold branched cyclic coverings of
suitably chosen knots.

1. Introduction. It is appropriate to explain why Ron Stern asked

us if examples such as those herein exhibited could be found. They make

it seem a little more difficult to triangulate all closed topological mani-

folds of dimension > 5 so as to make them finite simplicial complexes.

Recall first that the triangulation theory of D. E. Galewski and R. J. Stern

or of T. Matumoto, combined with the double suspension theorem

(Σ2Hn « SnJrl, n > 3) of R. D. Edwards and J. W. Cannon show that

such a triangulation is possible if and only if there exists a smooth closed

homology 3-sphere H3 satisfying

(a) the Rohlin invariant μ(H3)in Z/2 of H3 is non-zero, and

(b) H3#H3 bounds a smooth acyclic 4-manifold.

Appropriate references appear in [9].

Now (b) is certainly verified if there is an orientation reversing

diffeomorphism of H3, for then

where HQ is H3 minus the interior of a 3-ball. Reasonably enough,

topologists began by testing i/3 's that admit an orientation reversing

involution; however J. S. Birman [3], Galewski and Stern [9], and W. C.

Hsiang and P. Pao [12] have recently proved (in three different ways) that

any homology 3-sphere with orientation reversing involution has Rohlin

invariant zero.

We are providing non-trivial examples to which this vanishing theo-

rem applies, in contrast to the hitherto known examples which were

derived from S3 with an orthogonal orientation reversing involution by

(equivariant) connected sum, namely H3#S3#(-H3) (the summation

being taken away from the fixed points). Indeed, it was believed, for a
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short time, that any homology 3-sphere admitting an orientation reversing
involution was necessarily of the form H3#~H3 (from which the vanish-
ing of the Rohlin invariant follows trivially).

We restate our result:

THEOREM. There exist infinitely many irreducible homology 3-spheres

with orientation reversing involution fixing two points.

The examples produced are 2-fold coverings M% of S3 branched over
knots K carefully constructed (in §2) to satisfy

(1) the determinant, 8K ofK is 1 (see §4).
(2) K is strongly positive amphicheiral (see §2).
(3) K is prime.
The determinant condition (1) implies that Mκ is a homology 3-sphere

(§3).
Condition (2) assures the existence of an orientation reversing involu-

tion (§2).
The irreducibility of Mκ follows from condition (3), since a necessary

and sufficient condition for the irreducibility of such branched covers is
that K be prime (necessity [23]; sufficiency [14]). Actually, we will show
directly (§5) that (30 Mκ is irreducible.

Joan Birman has indicated to us that other examples can be given
using Heegard diagrams as in [3] together with W. Haken's (easy!)
theorem [11] to the effect that any Heegard splitting of a connected sum
M3#Ml is a sum of Heegard splittings of M3 and Ml.

We would like to thank Ron Stern for encouragement, John Conway
for advertising his efficient knot polynomial methods, and Ray Lickorish
for organizing a very congenial 1978 summer seminar at Cambridge
University around which all this transpired.

2. The construction. A knot is strongly positive amphicheiral if, as
the 3-strand, 5-bight Turk's head knot in Figure l(a), it is invariant under
reflection a through the origin 0, but it does not pass through the origin so
that its string orientation is necessarily preserved by a. Beware that there
are other forms of rigid positive amphicheirality; namely, by rotary
reflection of order 4,8,16,... ,2*, Here α is a rotary reflection of order
2 (cf. [5] and [22]).

Now if ά is either of the two automorphisms of Mκ covering α, then,
since ά2 covers the identity, we see that a2 is either the identity or the
covering translation. It is not the latter, since ά2 fixes the two points in Mκ
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over the origin; so we conclude that the orientation reversing diffeomor-
phism ά has period 2, and hence that for any strongly positive amphicheiral
knot K, the covering Mκ has an orientation reversing involution. We note
that a would have had period 4 if K had passed through the origin (and
hence through oo).

(a) (b)

FIGURE 1

(c)

Our description of knots satisfying properties (1), (2) and (3') will
employ tangles in the sense of J. H. Conway [6]. A tangle T consists of a
copy of a standard 3-ball containing a given smooth 1-submanifold (also
called T) which meets the boundary transversely in four fixed standard
points, say (± yfΐ, ± \/2,0), of an equatorial circle as in Figure l(b). Our
tangles are, for convenience, somewhat special in that (see Figure 2(a))

(i) T joins points of the equatorial circle which are horizontally, or
vertically, opposite one another (rather than joining diagonally opposite
points).

(ii) T carries an orientation of its strings so that the entry and exit
points alternate as the equatorial circle is traversed.

(M) m
(a) (b)

FIGURE 2

(c)
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In Figures 2(b) and (c) the tangle T of Figure 2(a) is completed to
oriented 1-submanifolds of S3 called respectively the denominator TD and
the numerator TN of Γ, one of which is a knot and the other a link of two
components. Observe that, by (ii), TN and TD have unique orientations
compatible with the orientations of T. When T has two component strings
(as all of our examples will) there are just two orientations (of its strings)
permitted by (ϋ).

Our construction of knots satisfying (1), (2) and (3') is indicated in
Figure 3(a), where the copies of the tangle P in the two outermost
positions are reflections of one another in the origin 0, as is also the case
for the copies of Q in the innermost positions.

00

FIGURE 3

(c)

We choose the tangles P and Q (which have knots as denominators)
such that

(a) the 2-fold branched covers of S3 over the denominators PD and
QD of the tangles P and Q are homology 3-spheres; equivalently, the
denominators have determinant ± 1 [19], [20, p. 213]

(β) the 2-fold branched covers BP and BQ of the containing 3-balls
branched over the tangles P and Q are irreducible; sufficiently, the
numerators of P and Q are unlinks (cf. Lemma (A) in §5)

(γ) neither BP nor BQ is a solid torus; equivalently, neither P nor Q is
(diffeomoφhic to) the null tangle of Figure l(b) (cf. Lemma (B) in §5).

The tangles of Figures l(c) and 2(a), which replace the tangles P and
Q in Figure 3(a) to form the knot of Figure 3(c), satisfy these conditions:
the determinant condition (α) is discussed in §3; the irreducibility and
non-triviality conditions are verified in §5.

A simpler choice for P and Q is the tangle of Figure 4(a); its 2-fold
branched cyclic covering is the Seifert fiber space over B2 with 3 excep-
tional fibers of types 1/2, 1/3, 1/5 (cf. [18]). This is irreducible with
incompressible torus boundary by [24]; thus (β) and (γ) are verified. The
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denominator is the (3,5) torus knot with 2-fold branched cychc covering
the Poincare homology 3-sphere (cf. [20,p. 309]); hence (a) is verified.
There are infinitely many similar examples whose 2-fold branched cyclic
covers are distinct Seifert fiber spaces over B2 (cf. [21, Chap. II], [18]).

(a)

FIGURE 4

A simpler way to generate infinitely many examples is to add together
k — 1,2,3,... copies of the tangle 4(a), as indicated in Figure 4(b)
(condition (a) is clear; as for (β) and (γ), the 2-fold branched coverings
of the tangles are distinct irreducible graph manifolds classified by F.
Waldhausen [24] (cf. [5])).

When K is constructed from the iterated sum of tangles as in Figure
4(b), the 2-fold covering M\ is itself an irreducible graph manifold whose
compact characteristic Seifert manifold part [13] includes 2k + 2k' copies
of the 2-fold cover of tangle 4(a) (supposing P is a Λ -fold sum and Q a
A:'-fold sum). Thus we have infinitely many examples as our theorem
asserts.

The tangles l(c) and 2(a) have 2-fold coverings that are neither Seifert
nor graph manifolds. Although the irreducibility of such manifolds is
sometimes difficult to establish, ad hoc considerations, as in §5, often
work. The addition trick of Figure 4(b), used to generate infinitely many
examples, still works; with these tangles, the 2k + 2kf Seifert components
mentioned above are replaced by at least as many atoroidal (hyperbolic)
components; as for irreducibility, the reader will find that the arguments
of §5 apply.

3. Recollections about determinants. We exploit Conway's methods
of calculation [6]. For any link L (i.e. oriented 1-submanifold of S3) there
is defined a genuine polynomial PL(x) with integer coefficients which (for
a knot) is related to the usual Alexander polynomial ΔL by PL(x — x~ι) =
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All of the properties of PL(x) except its existence follow (often
trivially) from PL(x) = 1 for the unknot and Conway's first identity
(compare Alexander's relation 12.2 [l,p. 302])

where L + , L_ and Lo are links that differ only in a single vignette where
we see respectively

4- - 0

(we have written P + for PL , etc.).

Conway recommends that PL(x) be defined in the first place by using
the matrix methods of J. W. Alexander [1] with suitable normalizations
(cf. [7]. Conway's article [6] discusses the Laurent polynomial DL(x) =
PL(x — x"1) rather than PL, which makes (*) a little more difficult to use).

For a link L of an odd [even] number of components, PL(x) involves

only even [respectively odd]powers of x.

The determinant δL of L is defined to be PL(2i) where i2 — - 1 . Then,

for a knot δL = ΔL(-1) is an integer, while for a link of 2 components it is

i times an integer.

We shall need to know that simultaneous reversal of all string orienta-

tions leaves PL(x) and δL unchanged, while reversal of ambient orientation

(i.e. mirror reflection) changes PL(x) to PL(-x) and hence changes 8L to its

complex conjugate δL.

EXAMPLE. For the 2-comρonent unlink, PL(x) = 0. For the (2, n)
torus link (i.e., the closure of the 2-component braid σf), the determinant
is nin~~ι

9 which for n — 0,1,2,... is 0,1,2/, -3, -4z, 5,6/, -7, -8/,
For a knot K we recall that Pκ(x — x~ι) = Δκ(x2), where Δ^(/) is

the Alexander polynomial in Z[t, t~λ] normalized so that A^(l) = 1 and
Δ ^ O = Δ^-ί) (cf. [16]).

For a 2-component link L, the polynomial PL(x — x~ι) is, up to
multiplication by an odd power of x equal to ΔL(x2) where ΔL(/) is a
polynomial that Alexander defined for such links [l,p. 296]. In terms of
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the polynomial ΔL(w, v) which R. H. Fox termed the Alexander poly-
nomial of the 2-component link L in [8, p. 131] we have

(which is plausible if we recall that PL(x) is divisable by x in Z[x]).
A precious tool for the calculation of determinants is the determinant

fraction of an (oriented) tangle Γ; it is the formal fraction (integer pair)
δ(TN)/δ(TD), also written Tn/Td. According to Conway [6,p. 336], the
determinant fraction of the sum S + T = U of (compatibly oriented)
tangles S and Γ, illustrated in Figure 3(b), depends only on the determi-
nant fractions of S and T. Its formula, which the notation anticipates, is
the formal fraction sum

un/ud = [snτd+τnsd]/sdτd.

Rather than directly compute the determinants of the denominators
of the tangles of Figures 2(a) and l(c), in verifying the determinant
condition (a) for these tangles, we will use the fact that the denominator
of the former (pictured in Figure 2(b)) is a 10-crossing knot with Alexander
polynomial Δ(ί) = t3 - t2 - t + 3 - r 1 - r2 + T~3 [20, p. 414], while
that of the latter is, for n > 2, a non-trivial knot with trivial Alexander
polynomial [15]. In each case δκ = Δ(-l) = 1.

4. M\ is a homology 3-sphere. It suffices to show that the determi-
nant of any knot K constructed in §2 is ± 1 , and for this calculation we
exploit Conway's determinant fraction of a tangle introduced in §3.

Consider the construction of K illustrated in Figures 3(a) and (c).
Note that if P has determinant fraction Pn/Pd, the reflection of P in the
origin (of Figure 3(a)) has fraction {-Pn)/Pd. Also, P rotated m/2 in the
plane has fraction Pd/Pn. Thus we calculate that the two composite
tangles that face each other across the dotted ellipse of Figure 3(c) have
determinant fractions Pn/Pd + {-Pn)/Pd = O/Pj and Qj/O and that their
sum has determinant fraction (PdQd)

2/0. (In fact, the determinant of any
strongly positive amphicheiral knot is a square [22], while that of any
positive amphicheiral link of 2-components is 0 [6, p. 340]). Since K is the
numerator of the sum of these two tangles, it follows that its determinant
δ i f i s ( ± l - ± l ) 2 = l .

5. Irreducibilίty of M\. This remains to be established when K is
built, as in Figure 3(c), using the tangles of Figure l(c) or 2(a). We shall
show that M\ is the result of fitting six irreducible 3-manifolds together
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along their incompressible boundaries; namely, along the four tori cover-
ing the 2-sphere boundaries of the 3-balls containing the prime tangles in
K and the torus covering a 2-sphere separating the central pair of tangles
from the others. The position of these five 2-spheres is indicated in Figure
3(c) for a specific knot K. It then follows classically that M% is irreducible
(since a 2-sphere in Mχ9 which has been isotoped to have minimal
transversal intersection with the five tori, could have on it no "innermost"
component of the intersection, it would not meet the tori).

First consider the two pieces of Mj- (of the six defined above) which
have three boundary components. They are identical, each being the
2-fold covering of a 3-ball with two 3-balls removed from its interior,
branched over six arcs situated, as in Figure 5(a), so that each pair of its
boundary components is joined by a pair of arcs. Since this branched
covering is Sι X DQQ, where Dω is a disc with two discs removed from its
interior, shown in Figure 5(b), it is irreducible with incompressible
boundary.

(a) (b)

FIGURE 5

Next consider the four pieces of M\ which are 2-fold coverings B3

A of
B3 branched along the strings of a tangle A (namely P, Q or a reflection
thereof) such that

(a) the numerator of A is the unlink
(b) A is not (freely) null; i.e., not pair diffeomorphic to the null tangle

(Figure l(b))
(that the 2-fold covering of B3 branched over the tangle of Figure 4(a) is
irreducible with incompressible boundary has been established in §2).

LEMMA (A). // the numerator of any tangle P is the unlink, then its

branched cover 2?| is irreducible.

Proof. First observe that the 2-fold covering of S3 branched over the
2-component unlink PN is S2 X Sι and that any 2-sphere embedded in
S 2 X Sι is, up to isotopy, either S2 X {point} or the boundary of a 3-ball.
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Now Bp, the 2-fold covering of Bp* (the containing 3-ball) branched

over P, is the complement in S2 X Sι of the interior of a solid torus T\

namely, the 2-fold covering of the complementary 3-ball, S3 — Bp,

branched over the complementary (null) tangle PN — P, as illustrated in

Figures 6(a) and (b) for the tangle P of Figure 2(a).

We claim that T is homologically essential in S2 X Sι. To see this,

first note that its core c is the full preimage of an arc b joining the two

components of the unlink PN9 as indicated in Figures 6(a) and (b), and

imagine a 2-sphere Σ which separates the components of PN and is met

transversely by the arc b (necessarily) an odd number of times, as in

Figure 6(c). But then Σ lifts to a pair of 2-spheres Σ + and Σ_, each

isotopic to S2 X {point}, and it follows readily that the intersection of

c-Σ± is odd and thus that c is homologically essential mod2.

180

(a)

Branched covering

of exterior of Bp

(b)

FIGURE 6

(c)

Finally, suppose S is a 2-sphere in B3

P - S2 X S^-int T. Now T can't

lie in the ball which S bounds in S2 X S \ for then it would be homologi-

cally inessential in *S2 X S1; thus Πies outside the ball and it follows that

Bp is irreducible.

The following lemma is conceptually helpful although not strictly

necessary here. It was perhaps first proved by F. Bonahon as an unstated

corollary of his study of Z2-characteristic submanifolds [4]; the following

proof has different scope.

LEMMA (B). A tangle P is freely null Bl is a solid torus.

Proof. Implication =» being obvious, suppose that the 2-fold branched

cover Bp is a solid torus. There exists, we claim, a meridianal disc D of

this solid torus whose image in B3 is a disc q(D) which is disjoint from P

and (hence) separates the two strings of P. Indeed, the Z2-equivariant

Dehn's lemma-loop theorem, proved in [14], [10] and [17] (the last proof
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using minimal surface theory and valid for Zn as well as Z2), assures a
meridianal disc so that q(D) is a disc transverse to P; but a transverse
intersection of > 1 point with P would make the disc D a 2-fold branched
covering of q(D), that separates B3

P because q(D) separates B3\ this would
prevent D from being a meridianal disc.

Cutting B3 apart along q(D), we get two 3-balls B\ and Bl, each
containing one arc of P, say P + and P_ respectively, and each covered by
a 3-ball in the solid torus Bp. The Z2 Smith Conjecture proof of Waldhau-
sen [23] (see [2] for the Zn Smith Conjecture proof) then shows that P± is
unknotted in B3

± . Gluing B3 back together we see that P was freely null.
We pause to note that this argument, with at worst an induction on

the number of existing strings, proves the following.

PROPOSITION. Let P be an oriented \~submanifold of the 3-ball B3 (a
generalized free tangle) and let n > 2 be an integer. Then the n-fold cyclic
covering B3

P of B3 branched along P is a solid multiple torus if and only if P
is freely null; i.e. isotopic to linear segments (secants). Also B3

P has com-
pressible boundary if and only if there exists an embedded disc q(D) in B3

such that either
(i) q(D) is disjoint from P and separates P,

or
(ii) q(D) meets P in one point x, transversely, and neither of the two

(generalized) tangles into which q(D) cuts P is just an unknotted arc.

Returning to the proof that M% is irreducible, we have to check that,
when a tangle A satisfies conditions (a) and (b) preceeding the lemmas,
then B3

A has incompressible boundary torus. This is true since cutting
along a compression disc shows that any irreducible 3-manifold with
compressible torus boundary is a solid torus, while B3

A is forbidden to be a
solid torus by (b) and Lemma (B). In a specific case, e.g. Figure 4(a) or
(b), it may be otherwise obvious that B3

A is not a solid torus.
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