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CLIFFORD'S THEOREM FOR ALGEBRAIC GROUPS
AND LIE ALGEBRAS

JOHN W. BALLARD

The standard results for comparing the irreducible representations
of a group to those of a normal subgroup were obtained by A. H.
Clifford. The object of this paper is to discuss a variation of these results
in which the group is assumed to be an affine algebraic group and the
role of the normal subgroup is played by the Lie algebra.

1. Introduction. Let G be an affine algebraic group over an alge-
braically closed field of positive characteristic. Let V be an irreducible
rational representation space for G. We show that when viewed as a
representation space for the Lie algebra g, V decomposes as the direct
sum of isomorphic irreducible representations. This is the analog of the
first two results in [4]. Let Wbe an irreducible g-subspace of V. We show
that V factors as the tensor product of two rational protective representa-
tions of G, one of which is induced by W while the other is a representa-
tion of the quotient group G/Q. Since the field has positive characteristic
it follows that V— W ® [/, where U is the Frobenius power of a projec-
tive representation of G. This is the analog of Clifford's Theorem 3. We
assume that the Lie algebra has no non-trivial one dimensional restricted
representations and show that this factorization may be continued to
express V as the tensor product of irreducible representations of g and
their Frobenius powers. The Curtis-Steinberg decomposition [3] for the
irreducible representations of a simply connected semisimple group then
follows as a corollary.

In the course of the discussion we construct a Schur representation
group Gs of G relative to its Lie algebra and a relative Schur multiplier.
Essentially Gs is the smallest covering group of G which linearizes the
irreducible representations of g. Our identification of Gs as the simply
connected covering group of G answers a question originally posed by
Curtis [6, p. 325] in the context of Chevalley groups. We identify the
relative Schur multiplier with the Picard group of the algebraic variety G.
This amounts to showing that the Picard group is generated by the
irreducible representations of the Lie algebra which do not arise as the
differential of a representation for the group.
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2. Preliminaries. Let K be an algebraically closed field of char-
acteristic p and let G be a connected affine algebraic group defined over
the prime subfield of K. We identify G with its group of .fiΓ-rational points
and denote by g or L(G) the Lie algebra.

Let A = K[G] be the coordinate ring of G and let A* denote the
linear dual. If V is a rational G-module with comodule map Δκ: V -* V ®
4̂, then K is a module for the algebra A* with the action of X G A* given

by(l ®X)ΔK.
Let M be the kernel of the augmentation map of A and let Mn denote

the ideal of A generated by mq {q—pn, m GM). The nih infinitesimal
hyperalgebra un of G is the finite dimensional Hopf algebra (A/Mn)*. So
uλ is the restricted universal enveloping algebra of g while un is the algebra
of invariant differential operators on A of order </Λ We let Δ denote,
generically, the comultiplication map of un. The tensor product of two
wπ-modules is also a wn-module, with the action of X E un given by Δ(Z).
The hyperalgebra of G is the union of the un. If τ: G -» i ί is a moφhism
of algebraic groups, let λy(τ) denote the corresponding map of hyperalge-
bras.

If α,,... ,am is a jK-basis for M/M2, then the monomials αf1 α^"
(0 < αz </?Λ) form a #-basis for ^ί/MM [13]. Let X^a) G wπ be dual to af.
Then

j=0

and so {^α) 10 < α < p π } is a sequence of divided powers over
The monomials X/0^ ^ 2

α - ) (0 < α7 < /?w) form a ϋΓ-basis for wn.
Let V be a rational G-module. Since we may view un as the subalgebra

of A* vanishing on Mn, V is also a module for wn, which we denote by
V\ un. If 7r denotes the action of G on F, we denote the action of un on V
by JTΓ. The relation between the adjoint action Ad of G on un and the
action on V is given by

(2.1) dτr(X)π(g)v = π(g)dπ(X*)v (X G un, g G G),

where X* = (Ad g" ])X
The following argument, which is adapted from [l,p. 132], shows that

every irreducible w -̂module is a submodule of a rational irreducible
G-module. Every irreducible w -̂module W is realized as a submodule of
w* = A/Mn. Specifically, W is isomorphic to a submodule of the space
spanned by the coordinate functions for W. Since the map A -* A/Mn is
w^-equivariant, we may choose wrt-submodules U, V C A with ί / / F = PF.
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View G as acting by left translations on A and choose a finite dimensional
G-subspace N with U C N. Since the action of un on A is the differential
of left translation, U and V are w^-submodules of N\ un. If m is the
dimension of V, then Em+\N), the m + 1 exterior power of N, contains
the wπ-submodule U A Em(V). On the other hand, UΛ Em(V) is un-iso-
moφhic to W® Em(V). Since V C Mn, Em(V) is trivial as a ί^-module.
So Wis isomorphic to a «n-submodule of the rational G-module Em+ι(N).

We note that un = (A/Mn)* is the dual algebra for the infinitesimal
group scheme G". Here Gn denotes the scheme theoretic kernel for the «th
power of the Frobenius morphism G -» G. The classical results for com-
paring the irreducible representations of a group to those of a normal
subgroup were given by Clifford in [4]. The intent of this paper is to
discuss the analogous results for G and its normal subgroups Gn. Since Gn

has but one point over K, we prove the results from the equivalent
viewpoint of un.

We begin by considering the analog of Clifford's first theorem with
the role of the normal subgroup played by un.

(2.2) THEOREM (Clifford). Let V be an irreducible rational G-module.
Then

where the Wi are mutually isomorphic irreducible un-modules.

Proof. Let Wbe an irreducible un-submoάule oϊ V. Since X(gW) =
g(X gW) (X Eun,g G G), gWis also a wn-submodule. Hence

gGG

is a completely reducible un-modυle. Let Wl9...9Wsbe representatives for
the isomorphism classes of irreducible ww-submodules of V. Let Vι denote
the sum of the ww-submodules of V which are isomorphic to Wt. Then
V = ®i=lVi and G permutes the Vi9 transitively since Fis irreducible. The
stabilizer of Vλ is a closed subgroup of G of index s which, by connectiv-
ity, equals G. So s = 1 and the result follows.

In the context of Theorem 2.2, Clifford shows that V factors as the
tensor product of two irreducible projective representations. By way of
preparation for considering the analogous result, we conclude this section
with a few elementary remarks on projective representations.
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A projective representation of G on a vector space V is a mapping TΓ:

G -> GL( F ) such that for all J C J G G

TΓ(X)TΓ( J ) = α(x, y)π(xy) and τr(l) = 1

where a: G X G -* Kx . We refer to a projective representation with trivial

cocycle as a linear representation. A projective representation is irreduci-

ble if it has no non-trivial G-stable subspaces. Two projective representa-

tions π,.: G -> GL(J^ ) (/' = 1,2) are said to be projectively equivalent if

there is a linear isomorphism θ: Vλ -» F2 such that for all g E G

where c(g) is a non-zero element of K.

We define a rational projective representation of G as a projective

representation TΓ: G -> GL(F) for which the mapping 7r': G -» PGL(V) =

GL(F)/iίΓ x is a moφhism of algebraic varieties. The tensor product of

rational projective representations is again one and the following lemma

yields a form of the converse suitable for our purposes.

(2.3) LEMMA. Let TΓ,.: G -» GL(F;.) (/' = 1,2) fee two projective represen-

tations whose tensor product mx ® τr2: G -> GL(Vλ ® F2) w ^ rational projec-

tive representation. Then πx and π2 are rational projective representations of

G.

Proof. It suffices to show that each TΓ/: G -> PGL(l^) is a morphism

of varieties. Let P ( F ) denote the projective space corresponding to the

vector space F and view PGL(V) as the automoφhism group of P(F) .

The Segre embedding P(V}) X P(F 2 ) -> P(F, ® F2) yields a closed

immersion

p: PGLίK,) X PGL(F 2 ) ^ PGL(Fj ® F 2)

with p(a, b) = α ® fe. Since the comoφhism for p is surjective and

(TΓJ ® π2)' = p(τr( X τr2), it follows that π{ X τr2 is a rational map of G

into PGL(VX) X PGL(V2) and the result follows.

3. Clifford's Theorem. Let m denote either a restricted Lie ideal of

g which is stable under the adjoint action of G or one of the infinitesimal

hyperalgebras un. Define P(m), the primitive elements of m, as the

collection of all X G m with Δ(Z) = X ® 1 + 1 ® X With our choice of

m, i ^ m ) = m if m is contained in Q and equals g otherwise. Let G/m

denote the affine algebraic group whose coordinate ring is Am, the

subalgebra of A annihilated by m (see [2, p. 372]). The quotient moφhism
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G -> G/xn is said to be purely inseparable since the quotient field of A is a

purely inseparable extension of the quotient field for Am. The following

result is the analog of Clifford's Theorem 3 from [4] while our proof

follows that of [7, p. 351]. We note that by Theorem 2.2 every irreducible

rational G-module satisfies the hypothesis of the theorem.

(3.1) THEOREM (Clifford). Let Vbe a rational G-module such that V\ m

is the direct sum of isomorphic irreducible xn-modules. Let W be an irreduci-

ble m-submodule of V. Then there are rational projectiυe representations

πλ:G->GL{W) and ττ2:G -> GL(U)

such that ττ(g) — πx(g) ® π 2(g) defines a rational linear representation of G

on W ® U with V=W ® U. Moreover, W\ m is projectiυely equivalent to

W, πx is an irreducible rational projective representation of G and π2 is a

rationalprojective representation of G/xn.

Proof. By assumption,

V\xxι= Wx® - ®WS

where each Wt is m-isomorphic to W. If T is the representation of m on W

and ΊΪ the representation of G on F, then T = dπ | W.

For g E G, let Wg denote the module W with the action of m given

by

= τ(X8)w (lGm,w

Then W8 is m-isomorphic to eπ(g)W and hence isomorphic to W. Since

Wg has the same underlying /^-vector space as W9 we may choose an

intertwining operator πx(g) E GL(W) with

(3.2) τ(χs) = ̂ (gy\(X)^(g),

for all X €Ξ m. For JC, y G G, the definition of πλ shows that

πx(x)πλ(y)πλ(xyyx is an m-module isomorphism of W. Now W is irre-

ducible and K is algebraically closed, so πλ(x)πx(y) — a(x, y)tnx(xy) for

some α(x, y) E Kx . Hence iτx: G -> GL(W) is a projective representation

of G.

Let U be an ^-dimensional K-vector space and let / j , . . . Js be a basis

for £/*. Choose m-module isomoφhisms φ^ W -* Wr Then the map φ:

PF® J7-^ Fgivenby

ψ(w® u) = Σfi(
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is an isomorphism of vector spaces. We give W ® U the structure of a
rational G-module by requiring that φ be a G-isomorphism and identify V
with W® U. With this identification, dπ(X) = τ(X) ® 1 for all X E m.
Since ^(gX^ίg)"1 ® 1) commutes with τ(X) ® 1 (JfGm), Burnside's
theorem shows that it commutes with /? ® 1, for all β E End(W). So

i(g) ® ̂ (g) for some ττ2(g) E GL(U). lΐx,y E G, then

π2(xy) = τr(xy) = 7r(x)τr(>>) = α(x, ^)τr1(x^) Θ 7Γ2(x)7Γ2(.y).

Hence π2(.x)7r2(j>) — α(^, ̂ )~1^2( x:>;) an<3 s o ^i1 ^ "̂  GL(U) is a projec-
tive representation of G.

Since TΓJ ® π2 — π is a rational linear representation of G, Lemma 2.3
shows that πι and τr2 are rational projective representations of G.

I f l G P ( m ) , then

1 - diτ'(X) = dττl{X) ® 1 + 1 ® d

so dτr[ I P(m) = Ί' while dir{ \ P(m) = 0. If m = MΛ and * = A), then

7 = 0

for 0 < α < pn. By induction on α,

τ'(χ«*)) ® 1 = j77((X(α)) ® 1 + 1 ® dπί(X<a))9

hence rf7r( | m = T' and ί/ττ21 m = 0. Now the former shows that W\ m is
projectively equivalent to the original action T of m on W while the latter
insures that π[ factors through G/xn [2, p. 376] to yield a rational projec-
tive representation of G/xn on f/, which completes the proof of the
theorem.

As the proof of the preceding result shows, £/= Homm(W, V). We
note that if W and U are linear G-modules, then this is a G-isomorphism.

For λ E Hom(m, K), let S(λ) denote the one dimensional m-module
affording λ.

(3.3) COROLLARY. In the notation of Theorem 3.1, πx and π2 may be
chosen to be rational linear representations of G if and only if there is a
rational G-module Wo and a linear character λ E Hom(m, K) such that

W.
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Proof. First assume that τrx\ G -> GL(WQ) and π2: G -> GL( ί/0) are

rational linear representations of G such that V =W0® UQ with dτr( | m =

T' and dττ2'1 m = 0. Then dπ2 — λ for some λ E Hom(m, AT). Since r ® 1

= dm, τ(X) = λ(X) + </τr,(X), for all X E P(m). If 0 < a <pn and

7 = 0

So S(λ) ® Wo\ m = ΪΓ and hence, denoting by S(λ*) the dual of 5(λ),

Now assume that p: G -> GL(PΓ0) is a rational linear representation

of Gsuch that W0\m^S(λ) ® W. Then

+ τ ( ^ ) - d p ( ^ ) - p ( g r ^ p ( JΓ)p(g)

p(g)-1τ(ΛΓ)p(g),

for all X E P(m) and g E G . Since λ( Z*) = λ(X), we have τ(X g ) =

p(g)- 1τ(X)p(g) for ^ e P(m). It follows that τ(Xη - p(g)-V( X)p(g)

for all X E m and so we may choose ir^g) = p(g) in equation (3.2). The

linearity of π2 then follows from that of π and 77,.

REMARK. Let WΓ be a one dimensional g-module and suppose that W

is a submodule of an irreducible rational G-module V with W Φ V. Then

Corollary 3.3 shows that V ss J ^ ® J7, where WΓ0 is the trivial one dimen-

sional representation and U is an irreducible rational projective represen-

tation of G/Q = G. SO V = U is the Frobenius power of a rational

projective representation of G.

(3.4) COROLLARY. Le/ V be a rational G-module and let W be an

irreducible xn-submodule. Let O(W) denote the G-submodule generated by

W. Then there are rational projective representations

7rx:G-+GL{W) and π2: G -> GL(U)

such that O{W) = W® U, an isomorphism of linear G-modules.

Proof. Since O{W) is the sum of the G-translates of W9 O(W)\m is

completely reducible. Write, as in the proof of Theorem 2.2,

O(W)\ m = Vx θ . . . ®VS
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where the Vi are the homogeneous components. The connected group G

permutes the Vi transitively and so s = 1. The result now follows from

Theorem 3.1.

Denote by g m the Lie algebra for the multiplicative group of K. If U

is a rational G-module, let U(n) denote the nth Frobenius power of U.

Suppose that Hom(G, GLλ) = 1 and that every irreducible rational projec-

tive representation of G is equivalent to a rational linear representation.

The remark following Corollary 3.3 shows that Hom(g, gm) = 0. Let Fbe

an irreducible rational G-module. Then Theorem 3.1, with m = g, shows

that V = Wo ® U9 where Wo and U are uniquely determined irreducible

rational G-modules with Wo | g irreducible. Since U\ g is trivial, U = ί/|(1)

for some rational G-module Uv Applying Theorem 3.1 to Uλ and continu-

ing shows that

(3.5) V^ Wo® Wx

0)® ••• ®Wn

in)

where the Wi are irreducible rational G-modules which remain irreducible

when viewed as modules for g. So Clifford's theorem, in this context,

yields the Curtis-Steinberg decomposition [3] for the irreducible modules

of a simply connected semisimple group. We refer the reader to [5] for an

alternate approach to this decomposition.

4. Schur representation groups. We now consider the problem of

obtaining a factorization similar to that of (3.5) for the irreducible

representations of a group G. We construct a Schur representation group

Gs of G relative to its Lie algebra for which (3.5) yields a factorization of

the irreducible representations of Gs and hence a projective factorization

of the irreducible representations of G. Since our decomposition is to be

in terms of the irreducible representations of the Lie algebra, it is

necessary to assume that Hom(g, gm) = 0. Lacking a convenient refer-

ence, we begin the discussion by giving an elementary procedure for

obtaining PGLn as a quotient of SLn.

Let n be a positive integer and write n = psm, where (p, m) — 1. Let

T = GLX be a one dimensional torus with coordinate ring B = K[x, x'1].

Then Bf — K[xn, x~n]'ιs the coordinate ring of an affine group T which

may be obtained as a quotient of T as follows.

The affine group T/L(T) has coordinate ring BL{T) = K[xp, x~p].

So by defining Ti+λ = TJLiT^) and setting Γo = Γ, we obtain a sequence

of purely inseparable quotient morphisms μ,: Tt -> 7)+ 1. If X is a genera-

tor for L(Γ), then the image of X{q) (q = pι) under the corresponding
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homomorphism of hyperalgebras is a generator for L(Tt). Now let M be
the finite subgroup of rath roots of 1 in Ts. Then

K[TS]
M = K[x\ χ-»]

and so Ts/M = V. Let τs: Ts -> 7" be the quotient moφhism. Since τs is
separable, uλ{Ts) =uλ(V) and hence ux{T) ^us{T)/us_λ(T). We show
that a similar sequence of s purely inseparable moφhisms followed by a
separable moφhism yields PGLn as a quotient of SLn.

Let K be an ^-dimensional vector space over K and set H — SL(V),
Hf — PGL(V). Let T: H -* H' be the restriction of the quotient moφhism
GL(V) -* ίΓ. Since t/r: ί) -» ίj' is the natural map and n = psm, we note
that Im dτ has codimension 1 in ί)' if s φ 0 and codimension 0 if 5 = 0.

We first discuss the case where s Φ0. Let W denote the GL(F)-mod-
ule obtained by tensoring the rath exterior power of V(s) with the one
dimensional module affording det"1. The representation factors through
H' to yield a rational representation W -> SL(W) for which the diagram

H -» SL(V)

(4.1) i i

commutes.
Let T be the one dimensional subtorus of H of diagonal matrices of

the form: diag(α,... ,a, aλ~n) for a E Kx . Let S be the group of scalar
matrices from GL(V), so τ(T) — TS/S. Choosing a complement for S in
the two dimensional torus 7^ shows that the comoφhism of r identifies
the coordinate ring of τ(Γ) with K[xn, x~n], where K[T] = K[x, JC"1]. So
our preceding discussion shows how τ(T) may be expressed as a quotient
of T. If X is a generator for L(Γ), then JT(/) (i<ps) lies in the kernel of
/zy(τ) while the image of X(η) (q — ps) generates L(τ(T)). The commuta-
tivity of (4.1) shows that L(τ(T)) acts on W by a non-trivial linear
character. Since Im dτ annihilates W we have, for dimensional reasons,
ί)' = I m d τ θ L ( τ ( Γ ) ) .

Now define a sequence of purely inseparable quotient morphisms
Hι -* Hι+λ as follows. Let Ho = H and Γo = Γ. For / < 5, set i/ ί + 1 =
H/LiT,) and let Γ ί+1 = μ^), where /ιz: Hι-^Hι+λ is the quotient
morphism. To show the existence of these quotient groups it suffices to
show that L(T() is central in §..

Since we are assuming s > 0, L(T0) is central in ΐ)0. Assume the result
for i — 1 and form the quotient group //z. Then V{ι) is a rational



10 JOHN W. BALLARD

//-module and T factors through //z to yield a group morphism τf :
Hi -» //' for which the diagram

H -> SL(V)

i i

(4.2) H, ->

//' -* SL(ϊF)

commutes. Then L(7] ) is generated by the image of X{q) (q — pι) which
acts non-trivially on V{ι). Since Imrfμ^, annihilates K(/) we have, again
for dimensional reasons, ί),f = Im dμ£_! θ L{Tt).

If i < Λ , then Λr(^) lies in the kernel of hy(r) and so L(7)) is contained
in the kernel of dτr A dimension comparison shows that the two are equal
and hence L{Tt) is central in ί}, . On the other hand, L(TS) is not contained
in the kernel of dτs. Consequently,

ϊ)' = Imdτ® L(τ(T)) = Im drs

and so τs: Hs -> H' is a surjective separable morphism. If M is the kernel
of τs9 then M is isomoφhic to the group of mth roots of unity in K and
Hs/M = H'.

In case s = 0, we have Hs — H and ///Λf = /Γ.

REMARK. Each /^ is, in the context of Chevalley groups, the group
corresponding to the lattice of weights determined by pιλ, where λ is a
fixed dominant weight. The inseparable morphisms Hi -> Hi+X alter the
structure constants of the respective Lie algebras to yield a group Hs

whose Lie algebra is center free. The group //' is the Chevalley group
corresponding to the lattice of weights determined by mpsλ = nλ. From
the viewpoint of group schemes, //' is the quotient of H by the diagonaliz-
able group scheme represented by us{T)* X K[M]*, where K[M] is the
group algebra of M.

(4.3) LEMMA. Assume that Hom(g, gm) = 0 and let π: G -> GL(V) be
a rational projectiυe representation. Then there is a connected affine alge-
braic group G(V) and a rational representation p: G(V) -» SL(V) such that

(a) G(V) has a finite central p'-subgroup N with G(V)/N = G, and

(b) the following diagram is commutative,

G(V) -> SL(V)

i I
G -> PGL(V).
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Proof. Let H = SL(V), H' = PGL(V) and write dim K = psm. Re-

taining the notation of (4.2) we define Gs as the connected component of

the identity in the fibred product of TΓ': G -» H' and τs: Hs -> H\ Let JV be

the kernel for the projection of Gs onto G. Then JV = (1 X M) Π Ĝ  is a

central/?'-subgroup of Gs with G5/7V = G.

Composing <πf with a power of the Frobenius map F yields a mor-

phism Fιπ'\ G -» PGL(V{ι)). We show, by descending induction on /, the

existence of group morphisms pz: Ĝ  -> SL(V^) such that the following

diagram is commutative

Gs -> SL(V(ι))

i i

G -* PGL(V(ι)).

The lemma follows by setting G(V) — Gs and p = p0.

For / = s, we define ρs as the projection of Gs into //̂  composed with

the representation of Hs in SL{V{s)) given in (4.2). Assume the existence

of p, (0 < / < J ) and let βt: SL(V(ι)) -> PGL(V(ι)) be the quotient mor-

phism. If a: Gs -+ G denotes the projection map, then our induction

hypothesis shows that βipι — Fιπfa and consequently dβidρi = 0. Hence

Im dpt < Ker dβi which is either 0 or gm. Since Hom(g, g j = 0, Im dρι

= 0. So there is a group morphism pt_x\ Gs -» SL(V°~])) such that

F o pιX — pr The commutativity of the corresponding diagram follows

from the choice of p ^ , .

Assume that Hom(g, gm) — 0 and let Ŵ  (/ e /) be a set of repre-

sentatives for the isomorphism classes of irreducible restricted representa-

tions of g. Each Wt induces a rational projective representation of G and

hence, by Lemma 4.3, yields a separable isogeny G(Wζ) -> G. This isogeny

is an isomorphism if and only if Wt is a linear G-module. The differential

of the representation G(Wι) -» SL(Wj) agrees with the original representa-

tion of g on ^ , We define G\ the Schur representation group of G

relative to g, as the connected component of the identity in the fibred

product of the G{Wt) -> G (i E / ) . The definition of Gs shows that every

irreducible representation of g is the differential of a uniquely determined

rational representation of Gs. In fact, Theorem 3.1 and Lemma 4.3 insure

that every rational projective representation of Gs is equivalent to a

rational linear representation. Define the relative Schur multiplier M(G)

as the character group for the kernel of the map Gs -> G.
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(4.4) THEOREM. Assume that Hom(g, g w ) = 0. The irreducible rational

projective representations of G are, modulo projective equivalence, given by

(4.5) Wo

e Wi are irreducible restricted representations of g.

Since equivalent linear representations of Gs yield equivalent

projective representations of G and L(GS) = L(G), we may assume that

G5 = G.

Let F be an irreducible rational G-module. We proceed by induction

on the dimension of F. If V\ g is trivial, then there is an integer n and an

irreducible G-module Vx such that V — F/ n ) and Vx | g is non-trivial.

Replacing F by Vx shows that we may assume F has a non-trivial

g-submodule Wo. Now Ŵ  is a linear G-module and so by Theorem 3.1

there is an irreducible rational G-module Ux with F = Wo ® t//^. Then

dim £/, < dim F and so our induction hypothesis shows that

ux = wx ® wκ2

(1) ® ® wς ( n ~ 1 }

for certain irreducible representations M̂  of g. Since F = WQ ® U{λ\ we

have the desired factorization.

We now show that any projective representation of the form given by

4.5 is irreducible. Since we are assuming that G = Gs, the representations

in question are actually linear. We proceed by induction on n. Let

n n

V= <g) W™ and U= (g) W^~λ\
i=0 i=\

Then V ^Wo® U{1) and our induction hypothesis shows C/is irreducible.

Suppose that Vx is an irreducible G-submodule of F. Then Ŵ  is a

g-submodule of Vx and hence by Theorem 3.1, Vx = Wo ® ί//1^ But

^ ) and

with the former a G-submodule of the latter. So Ux is a G-submodule of £/,

contradicting the irreducibility of £/.

We now show that the irreducible linear representations of the

infinitesimal hyperalgebras are determined by the representations of the

Lie algebra. In case G is simply connected and semisimple, this result is

due to Humphreys [10].

(4.6) COROLLARY. //Hom(g, g m ) = 0, then the irreducible linear rep-

resentations of um are given by equation (4.5) with n — m— 1.
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Proof. The differential of the quotient morphism Gs -» G is an iso-
morphism of Lie algebras and hence yields an isomorphism of the
respective infinitesimal hyperalgebras. So we may assume that G = Gs.
We prove the result for m~1 and note that the general case is similar.

Let Wbe an irreducible linear representation of u2. Then Winduces a
projective representation of G which, since G = G\ is actually a linear
representation. By Theorem 4.4,

W = Wo ® W}1) ® ® fFn

(Λ)

and since fΓ| u2 is irreducible, the Hζ for i > 2 are trivial.

Now suppose that Wo and Wλ are irreducible representations of g and
hence of G. Let Wbe an irreducible w2-submodule of Wo ® HP/1*. By the
first part of the proof, MK= Ŵ  ® W^λ) for some irreducible representa-
tion W2 of g. Arguing as in the proof of Theorem 4.4 shows that W2 is
isomorphic to a g-submodule of Wλ and hence completes the proof of the
corollary.

EXAMPLE. Let p = 2 and let W be a two dimensional vector space
over K.UG = PGL(W\ then F = W(1) is an irreducible linear G-mod-
ule. For χ the non-trivial linear character of g, S(χ) is a g-submodule of
F. Since g has no irreducible two dimensional representations, it is not
possible to factor V as in Theorem 4.4. We note that V is an irreducible
t/2-module and so (4.4) and (4.6) may both fail if Hom(g, gm) φ 0.

5. Identifications. We begin the identification of Gs and M{G) by
summarizing the connection between the projective representations of G
and its Picard group, referring the reader to [8] for details. Let B be a
Borel subgroup of G and let D be a positive divisor on G/B. Since G/B is
a projective variety, the linear system corresponding to D is finite dimen-
sional and hence of the form P(F), for some vector space V. By [11], G
acts rationally on P(F) and consequently yields a rational projective
representation of G. This representation is equivalent to a linear one if
and only if the image of D in the group of divisors on G is linearly
equivalent to 0. Since the morphism G -> G/B induces a surjection of
Picard groups Yιc{G/B) -> Pic(G), we see that M{G) = 0 implies Pic(G)
= 0. The converse is contained in the following corollary.

(5.1) COROLLARY. Assume that Hom(g, gm) = 0. Then the relative
Schur covering group Gs is the simply connected covering group of G and

Pic(G) =M{G).
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Proof. Our construction of Gs shows that every rational projective
representation is linearizable. So Gs is simply connected in the sense of
representation groups. To see that Gs is simply connected as an algebraic
variety, we note that M(GS) = 0 and hence Pic(G5) = 0.

Let N be the kernel of the covering morphism Gs -> G. Set A = K[GS]
and let Cl denote the divisor class group. Then K[G] = AN and so
Pic(G) = C\(AN) which we identify by Galois descent [9, p. 82] from A to
ΛN.

Let P be a prime ideal of AN. Since C\(A) = Pic(G5) = 0, A4 = Λα
for some a E A. Let ζ? be the quotient field of A and let P(A) denote the
group of principal divisors Ax for x E ζλ If Div denotes the group of
divisors, then the map P -> PA yields an injection Όi\(AN) -» P(^4)^.
Realizing 4̂ as the quotient of a polynomial ring shows that A is
unramified over AN and it follows that this map is surjective. Passing to
the class group yields an isomorphism Cl(AN) s P(A)N/P(AN), where
P(AN) denotes the subgroup of principal divisors Ax for x E QN.

Write (? — θ β ( μ ) , where β(μ) is the space of semi-invariants of
weight μ, for μ E Hom(N, JSΓX). Our assumption that Q is character free
insures that Gs is also and hence Kx is the group of units of A [12].
Consequently, P ^ ) ^ consists of the principal divisors Ax for x E Q(μ)
with yJ c ΞΞ Ay, modulo P(AN), if and only if xy~x 6 β(l) = β*.

Now let R(GS) be the Grothendieck group, or formal character group,
for the irreducible rational representations of Gs and view R{G) as a
subgroup. Let Fbe an irreducible rational representation space for Gs and
let a E A denote any coordinate function for the representation. Since TV
is central in G5, a E A(μ) for some μ which is independent of the choice
of the coordinate function. Let [V] E P(A)N/P(AN) = Pic(G) be the
principal divisor Aa. Then [V] — A if and only if V is a linear representa-
tion of G and so we obtain an injection

R(GS)/R(G) -* Pic(G)

which it is easy to see is surjective.
By Theorem 4.4

V= (8) »f>, and hence
i=0 i=0

So the \W\ for W an irreducible representation of g which is not the
differential of a rational representation for G, generate Pic(G). Noting
that V\ N affords some μ E Hom(N, Kx) = M{G) completes the identifi-
cation.
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