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INTEGRAL INVARIANTS OF FUNCTIONS
AND L7 ISOMETRIES ON GROUPS

CLYDE D. HARDIN, JR. AND LOREN D. PITT

For p € (0,0) and not an even integer it is proved that every
isometric multiplier on an invariant subspace of L”(G) is a translation
operator.

1. Introduction. Let f and g be real-valued measurable functions on
R which satisfy

f;IZa,f(thrx)j”dx Z]l;lzajg(tj—kx)lpdx< 0

for arbitrary finite sets of real numbers {«;} and {z,}. In [3], M. Kanter
showed that if p € (0, o) is not an even integer then for some ¢ = *=1
and some 7, € R, g(x) = ef(¢, + x) a.e. When rephrased in the language
of multipliers, Kanter’s theorem becomes: let F be the closed linear span
in L?(R) of the translates of f. Suppose p € (0, 00) is not an even integer
and that R: F —» L”(R) is an isometry which commutes with translations.
Then for some e = =1 and some 7, € R

Rf(x) = ef(z, + x).

A related theorem was proved by R. S. Strichartz [8] in the case of a
locally compact group. Namely, Strichartz showed that if p € [1, o0) and
p # 2 then each invertible isometric multiplier on L?(G) is a translation
operator. Since the space F in Kanter’s theorem need not equal L?(R) it is
clear that Kanter’s theorem does not follow from that of Strichartz. Also
since Strichartz’s theorem only requires that p # 2 and Strichartz’s group
is arbitrary it is clear that his results do not follow from those of Kanter.

The main result in this paper is an extension of Kanter’s theorem to
an arbitrary locally compact group G. The restriction that p is not an even
integer is still needed but we will see that the proof also contains new
information for p # 2.

Concerning the restriction on p, Strichartz’s result is known to be
false if p = 2. Katznelson [4] showed that Kanter’s theorem fails if p is an
even integer. Precisely what does happen for p = 2n =4 is not yet
understood but is related to the work of R. L. Adler and A. G. Konheim
on higher order autocorrelation functions on abelian groups [1]. In §5 we
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give a modest extension of the Adler-Konheim results to nonabelian
groups.

Our results are also complemented by the work [6, 7] of D. M.
Oberlin on non-isometric multipliers on subspaces of L?(G) when G is
compact and abelian. For E C G, he studies multipliers on the space
Lf C L?(G) of functions whose Fourier transforms vanish off E. He
shows that when G is infinite and 1 < p <2 or p = 2n = 4 that there are
sets E for which not every multiplier on L} extends to a multiplier on
L?(G).

2. Statement of results. Let G be a locally compact Hausdorff
group with left invariant Haar measure dm defined on the Borel o-field B
of G. A(x) will denote the modular function on G which is defined by
A(x)m(Bx) = m(B) for each BE€ ®. For 0 <p < oo, L?(G)=
L?(G, %, m) will denote either the real or the complex L? space with the
norm || f 15 = [;|f(x)[” dm(x). The left and right translation operators
will be denoted as A, f(x) = f(gx) and p, f(x) = f(xg). A linear space F
of functions on G is called left-invariant (resp. right-invariant) if A F = F
(resp. p,F = F) for each g € G. If F is both left-invariant and right-in-
variant, it is bi-invariant. If F C L?(G) is left-invariant (resp. right-in-
variant) and R: F — L?(G) is a bounded operator it is called a right
multiplier (resp. left multiplier) provided R commutes with each left (resp.
right) translation operator. If F is bi-invariant and R commutes with both
left and right translations, R is called a central multiplier.

We now state our main results.

THEOREM 1. Suppose p € (0, 00) is not an even integer.

(a) If F C L?(G) is left-invariant and R: F — L?(G) is an isometric
right multiplier then R has the form

Rf=c[A(h™ )]0, f,  fEF,
for some ¢ with | c|= 1 and some h € G.
(b) If F C L?(G) is right-invariant and R is an isometric left multiplier
then R has the form

Rf=cA,f

for some ¢ with | c|= 1 and some h € G.
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THEOREM 2. If p € (0, 00) is not an even integer, then R: F — L?(G) is
an isometric central multiplier iff R has the form

Rf=cA,f
for some ¢ with | c|= 1 and some k € G satisfying
(2.1) f(gkx) = f(kgx) a.e.

for each f € F and each g € G.

THEOREM 3. (See Kanter [3].) Suppose p € (0, o0) is not an even integer
and that f,, f, € L?(G) are real (resp. complex) valued. If the identity

(2.2) Ilzaj}‘tjfllii :['Eaj}\tjf2]ll;

holds for all finite sets {t,,...,t,} C G and {a,,...,a,} C R (resp. C) then
there is a c with | c|= 1 and an h € G with

A(x) =A™, fi(x) a.e. [m].

In case p = 2k these results fail but something remains. The computa-
tion of the norms |2 a;A, f I13§ is equivalent to computing the functions

k k
(2-3) rk,k(f)(th"'atk; Sl"'-’sk) E/;; I~I f(t:x) I;I f(ij)dx-

(Here f denotes complex conjugation.)

It follows from the examples of Katznelson [4] that 7, ,( f) does not
in general determine f. On the other hand, Adler and Konheim [1] have
shown that if f € L'(G) is real-valued and G is abelian then the sequence
{r(f)}Y of so-called k th order autocorrelation functions

1)t 5t) = [ F) (1) -+ f(1x) dm(x)
determine f up to a translation. Our modest result here is

THEOREM 4. Let f,, f, € L?(G), 1 <p < co. Then for k =p/2 the
integrals defining the functions
Ut st sueaus,), i = 1,2,

converge a.e. Moreover, for each integer N = p /2, if
(2.4) er,jN(fl) = er,jN(fz) a.e.forallj=1,2,...
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then for some ¢ with | c|= 1 and some h € G,
H(x) =cp, filx) a.e.

3. Proofs of Theorems 2 and 3. Theorems 2 and 3 are elementary
corollaries of Theorem 1.

Proof of Theorem 2. By part (b) of Theorem 1 we know that R has the
form cA, for some ¢ with | ¢|= 1 and some k € G. Each such operator is
a left multiplier. The condition that A, commutes with each A, on F'is
condition (2.1).

Incidentally, the set of elements k € G satisfying (2.1) is a closed
normal subgroup of G. Thus if G is simple there are no bi-invariant
subspaces F C L?(G) with dim F = 2 which admit non-trivial isometric
central multipliers.

Proof of Theorem 3. Let F be the linear span of the translates {A, f;:
t € G} of f,. Define the operator R: F — L?(G) by

R( Eajktjfl) Ezaj}\tIfZ'

From (2.2) we see R is an isometry. From the definition of R, R is a right
multiplier and hence by Theorem 1, R = c[A(h~")]'/Pp, and hence

A(x) = [A(h )] o, fi(%).

The same proof and Theorem 2 immediately give a two-sided version
of Theorem 3 which we state as a

COROLLARY 2.1. Suppose p € (0, o) is not an even integer and that f,,
f, € L?(G) satisfy

f| Zajfl(tjxsj)lp dm(x) =/|2ajf2(tjxsj)|p dm(x) <

forall {a,,...,a,} and {1}, 5,,...,t,,5,} C G. Then for some c with | c|= 1
and some k satisfying

fi(gkx) = f(kgx) fora.a.g, x
we have

hHix) = cf](kx)'

4. Proof of Theorem 1. The proof will be given first in the o-finite
case. At the end this condition will be removed. The proof breaks into
several steps which we outline here.
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(a) The general results of Hardin [2] are applied to extend R to an
isometric right multiplier R on a (possibly) larger subspace F D F of
L?(G), which is explicitly described.

(b) Group theoretic arguments are then given to establish the ex-
istence of a compact subgroup K C G and of a fuction j(x) with | j(x)|= 1
a.e. which satisfy

(4.1) F=j(x)-L*(G/K) C L*(G).

(c) Arguments analogous to those of Strichartz in [8] are applied to
characterize isometric multipliers on spaces F of the form (4.1). The
results are then lifted to L?(G).

Part (a) Preliminary results [2].

Let (X, B, m) denote a o-finite measure space and suppose p € (0, )
is not an even integer. If ¥ C % is a sub-o-field we write M (F) =
NM(X,%, m) for the algebra of all (equivalence classes of) ¥-measurable
functions. If F is a space of functions on X we write 9U(%) - F for the
minimal vector space containing F and closed under multiplication by
functions in OM(F). IM(F) - F is an IM(F )-module.

If @: IM(F,) < IM(Y,) is an algebra isomorphism there is a unique
non-singular o-field isomorphism ¢: ¥ — %, with ®@1.(x) = 1,5(x).
Here 1, denotes the indicator function of the set E. The restriction of @ is
an isometry of L*( X, %, m) onto L*( X, %,, m).

We denote by /( y) a measure preserving automorphism of (X, %, m)
and let Lf(x) = f(I(x)) be the associated function transformation.

Let F, be a closed subspace of L?(X,%,m) and let R: F, —
L?(X, %, m) be a linear isometry. The range F, = RF, of R is a closed
subspace of L?( X, B, m). We say that L commutes with R if LF, = F,
and LR = RL. Note that if L and R commute then LF, = F,.

A function f; € F; is said to have full support in F; if m{x: f(x) =0
and g(x) #0} =0 for each g € F,. The “ratio” o-field generated by
ratios g,(x)/f.(x) of functions with full support in F, is written as &,

The following proposition summarizes in a convenient form the
results from [2] which we require.

PROPOSITION 4.1. (Hardin [2].) Let R: F, - F, be an isometry.

(i) Functions with full support are dense in F, and if f(x) € F, has full
support in F, then g(x) = Rf(x) has full supportin F,.

(ii) If m{x: f(x) = 0} = 0 for each function of full support then there
exists an algebra isomorphism

®: 9N(5,) - M(F,)
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such that the operator defined by
(4.2) R(m-f)(x) = ®m(x) Rf(x)

is an L? isometry of

F, =[9(%,)-F] n L?(X, B, m)
onto
E =[9(%,)-F] n LP(X, B, m).

(i) Moreover, if Lf(x) = f(I{(x)) and the operator L commutes with R
then

or equivalently,

and L commutes with both R and ®.

Note. 1t follows from (4.2) that for m € M (%)) and f € M(F,) - F,
we have

(4.3) R(m-f) = ®(m) R(f).

Part (b) Identification of DN(F).

Applying the results above to the case of a group G for which m is
o-finite, a closed left-invariant space F # {0} of L?(G, %, m) and L = A R
we observe that f € F has full support iff f(x) 7 0 a.e. The ratio o-field of
the Borel field and is left-invariant in that

(4.4) E€Y% and g€ G impliesgE € 9.

The next proposition characterizes sub-o-fields of % which satisfy
(4.4). If K C G is a closed subgroup of G we will write G/K for the coset
space with elements [g] = gK. G/K inherits a topology, a Borel field %
and, if K is compact, an invariant measure dmg. The Borel sets of G/K
can be identified with those Borel sets 4 of G for which 4 - K = A and for
such A, m(A) = my(A). The Borel (resp. continuous) functions on G/K
can be identified with the Borel (resp. continuous) functions on G which
are constant on cosets.

PROPOSITION 4.2. For each % C B satisfying (4.4) there is a unique
closed subgroup K C G with

M(F) = M(G/K, By ).
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The proof of Proposition 4.2 rests on two lemmas. If K C G is a
closed subgroup we write C(G/K) for the algebra of continuous functions
on G/K and Cy(G/K) for those vanishing at infinity if G/K is not
compact.

LEMMA 4.3. Let {0} # @ C C(G) be an algebra satisfying A & = @ for
each g, and closed under complex conjugation in the complex case. The set

K={k€G:p,f=fforeachf € @)}

is a closed subgroup of G. & can be identified with a subalgebra of C(G/K),
and in the topology of uniform convergence on compact sets @ is dense in
C(G/K).

If @ C C(G), K is compact and Q is uniformly dense in Co(G/K).

An analogous statement holds if @ is right-invariant, and if @ is
bi-invariant, then K is normal.

Proof. For fE @, K, = {k € G: p, f=f} is a closed subgroup and
thus K = N{K;: f € @} is a closed subgroup. Each f € & is constant on
the cosets of K and thus we can identify & C C(G/K).

Iffe &N C(G)and f(xy) = ¢ #0 then x,K C B = {x: |f(x)|=
| ¢ |}. Since B is compact, K C x; 'B is compact.

The density of @ in C(G/K) (or in C(G/K) if @ C C(G)) follows
from the Stone-Weierstrass theorem.

If @ is bi-invariant then for f€ @, g € G and k EK, py,f =
P (pi(pe-1f)) = p,p,~1f = f which shows K is normal.

LEMMA 4.4. Let § C DB satisfy (4.4) and let @ be the subalgebra of
N(F) consisting of all continuous F-measurable functions. Let 0 < g(x) €
L'(G, B, m) and let dp be the restriction of the finite measure g(x)dm(x) to
the o-field % . Then in the topology of convergence in p-measure, @ is dense in

M(Y).

Proof. Let f € L*(G,%, p) and let h(x) be a continuous function
with compact support in G. We claim & = f(x) = [h(£)f(¢"'x) dm(¢) is
in L*(G, ¥, p). To see this note that the map ¢ — A, f(x) is continuous as
a function from G into L'(G, ¥, p). Riemann sums can thus be found
which approximate 4 * f(x) in L'(G, ¥, ). Thus & * f(x) € 9N(¥). But
h = f is bounded and continuous so 4 * f € @. Letting & vary over an
approximate identity we can find a sequence 4, so that 4, * f— f in
p-measure as n — co. Thus f is in the closure of &. Since L*(G, %, p) is
dense in IM(F ) the result follows.
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Combining the two lemmas with the observation that for any finite
Borel measure fi on G/K the continuous functions C(G/K) are dense (in
the topology of convergence in fi-measure) among the Borel functions on
G /K, Proposition 4.2 follows.

The next lemma uses the fact that F C L?(G, B, m) with 0 < p < o
to deduce that the group K is compact.

LEMMA 4.5. Let {0} # F C L?(G, B, m) be closed and left invariant
and let % be the ratio o-field. Then the group K in Proposition 4.2 is compact
and for each f € F, | f(x) | € ().

Proof. Let f € F have full support and set r(x) =|f(tx)/f(x) .
Then r,(x) is jointly measurable and for ¢ fixed r, € OW(%). Thus for
k € K r(x) = r(xk) for a.a. x. Now

() P [r(x) dm(r) = [|£(tx) P ().
But
[1£7(x) P dm(z) = A(x) [1 (1) P dm(r) = eA(x),

with ¢ = [|f(2) |? dm(¢). Setting #(x) = ([ r,(x) dm(¢))~" gives

(4.5) [f(x) P = cA(x)F(x), fora.a.x.
But #(x) = #(xk) fora.a. x if kK € K so
(4.6) | f(xk) [P = cA(xk)7(xk) = cA(x)A(K)7(x)

=|f(x) PA(k) fora.a. x.

K is now seen to be compact because if this were not the case (4.6)
would contradict the integrability of | f(x) |’. From A(k/) = A(k)A(/) and
the compactness of K it now follows that A(k) = 1 on K and hence

|f(xk) P =|f(x)f fora.a.xifk € K.

By Proposition 4.2, | f(x)|€ 9 (%) whenever f has full support in F.
Since such f are dense in F we see that | f | € ON(F) for all f € F.

The space (%) - F can now be completely described. Let f € F have
full support. Define j(x) = f(x)/|f(x)| . Then ON(F ) - F agrees with the
space of functions of the form j(x) - r(x) with r(x) € 9N(%). Since

fG|j(x)r(x) VP dm(x) ZL/KI r(x) P dmg(x)
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we see that

(4.7) F=[9(F)-F] N L?(G, B, m) ~j(x)-LP(G/K, By, my).

One further note is that for each t € G, j(1x)/j(x) € OM(F) and thus
J(txk)/j(xk) = j(tx)/j(x) for a.a. x if k € K. Thus j(txk)/j(tx) =
J(xk)/j(x) for a.a. x which shows that the function x - j(xk)/j(x) is
essentially equal to some constant w(k). A little algebra shows that
|w(k)|= 1 and w(k,k,) = w(k,)w(k,). Thus w(k) is a measurable char-
acter of K. Further the equation j(xk) = j(x)w(k) shows that

(4.8) F={f€L?(G, D, m): fork €K, f(x) = f(xk)w(k) for a.a. x}.

Thus each space F is indexed by a compact group K C G and a character
w of K.

Part (c) Identification of isometric multipliers on j- L*(G/K).

Parts (a) and (b) show that when p is not an even integer each
isometric left multiplier R: F, = F, in L?(G) extends to an isometric left
multiplier

~ onto |
R:j, 'LP(G/Kl)‘—’Jz'LP(G/Kz),

of the special form

(4.9) R(j-r)(x) = gq(x)- @r(x).

Here j, = f,/|f;| where f; € F, has full support, ® is an algebra isomor-
phism of M (G/K,) onto M(G/K,), and ¢ = Rf,-®(1/|f,]) (¢ = Rj, if
m is finite).

Now we can drop the assumptions on p since for p % 2 the Banach-
Lamperti result [S] on L” isometries implies that each isometry from
J1-L?(G/K,) onto j,- L?(G/K},) has this form and both the function ¢(x)
and the isomorphism @ are unique.

Our result here is

PROPOSITION 4.6. Suppose p # 2 is fixed and that K, and K, are
compact subgroups of G and j,(x) and j,(x) are two measurable functions
with | ji(x) |=|j(x) |= 1 a.e. for which the spaces F, =j,-L?(G/K,) and
F’2 = j,- L?(G/K,) are left-invariant. Then each isometric multiplier

R: F20F,
has the form

R = c[A(h™ )],
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where | c|= 1 and h € G satisfies
(4.10) h~'K,h = K,.

REMARK. Before starting the proof we note that Proposition 4.6 will
complete the proof of Theorem 1, part (a). The proof of part (b) is

completely analogous with the only difference being that the term A(A™ ")
is missing because dm is left-invariant.

Proof of Proposition 4.6. First we need the observation that ® must
commute with each A . This follows from (4.9), for if m € L*(G/K,) and
f € L?(G/K,) has full support, then (4.9) gives

R(jymf) = q®(mf) = q®(f)®(m) = R(j, f)®(m)
and so
A @(m) =N R(jimf ) /N R(jif) = RA(jimf )/RA(ji f) = @A (m).

Thus the isomorphisms A @ and @A, are equal.
The next lemma is basic.

LEMMA 4.7. The map ® when restricted to C)(G/K,) is an algebra
isomorphism of C)(G/K,) onto C)(G/K,).

Proof. Let ¢: By < By be the o-field isomorphism corresponding to
® and let m, denote the G-invariant measure on G/K,. For 4 € %, with
finite measure we set B = ¢ '(A4) and note

[ laG)L(x) dmy(x) = [ ()10 dmy(x)
G/K, G/K,
= m(B) =m(g"'B)

= JJaC Ny (x) dimax)

= [ 1g() 114 (x) dmy(x).
G/K,

This shows that [ & | g(x) ['1,(x) dmy(x) is an invariant measure on
G/K, and by the uniqueness of Haar measure the function |g(x)]| is
constant.

Thus @ defines an invertible bounded transformation of L'(G/K))
onto L'(G/K,). Since A ® = ®A, we have

(4.11) O(fxh)=fx®(h),
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for each f € L'(G) and h € L'(G/K,). If, in addition f, h € Cy(G), (4.11)
shows that ®( f » &) is uniformly continuous. Since it is also in L' it must
be in C(G/K,). Now let { f,} be an approximate identity. Then f, * h — h
uniformly. Since ® is an L* isometry ®( f, * h) - ®(h) uniformly and
®(h) € C(G/K,). Since Cy(G/K,) N L'(G/K,) is dense in Cyi(G/K,)
we see that

®: G(G/K,) = G(G/K,).

Similarly, ®': C,(G/K,) —» C,(G/K,) and the result follows.

Each algebra isomorphism of Cy(G/K,) onto Cy(G/K,) has the form
®f(x) = f(Y(x)) where y: G/K, - G/K, is a homeomorphism onto
G/K,. From A @ = ®A , it follows that

g¥(x) = ¥(gx).
Let k, € K, and consider the coset K,. Then
¥(K,) = hK, forsomeh € G.

But

k,hK, = ky(K,) = ¥(k,K,) = kK,
and
(4.12) h™'K,h CK,.

Now let k; € K. Then
*P(h_]Kz) =K, =kK, = ‘l/(klh—-lKZ)'
Since ¢ is one-to-one,

hK, = k'K,

and
(4.13) hK,h™' C K,.
Together (4.12) and (4.13) give the desired
h~'K,h = K,.
Hence

Of(x-K,) = f(x-h-K\) = f(x-K,-h)

and @ is the restriction of p, to M(G/K,) C M(G).
It follows that

S =[A(h)]7p,- R
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is an isometric multiplier of F] =Jj,-L?(G/K,) ontoj{- L?(G/K,) where

Jilx) =[A(m)]7q(xh™").

But Sj,(x)f(x) =ji(x)f(x), f € L?(G/K,). Since j, and j| are both Borel
measurable on G/K, and |j(x)|=1 it follows from the fact that S is an
isometry that |ji(x) |= 1. S commutes with A, so ji(x)/j(x) is equal to
a.e. to a constant ¢ with | ¢|= 1 and

R(jy-£)(x) = AR (i) (xh).
The proof is complete.

Part (d) The non o-finite case.

We observe that if E = {f,,...,f,} C F is a finite subset of F which
contains a non-zero element then the set 4, consisting of all pairs (c, g)
with |c|= 1 and g € G for which

(4.14) Ri(x) = [A(g)] 7o, f(x), [ EE,

is compact. As in the proof that K is compact in Lemma 4.5, this follows
from the integrability of | f(x) |P.

Now for E fixed there is a o-finite closed subgroup G, C G such that
the function X |f(x)|+|Rf(x)| vanishes a.e. on G — G,. Letting F, be
the closed linear span in L?(G,, ®,, m,) of the functions A £, with f, € E
and g € G, we see that the restriction of R to F, defines an isometric
multiplier on F, to L?(G,, B®,, m,). Applying the result for o-finite groups
gives the existence of a pair (¢, g) satisfying (4.14) Thus A4, is non-empty.
Since A is also compact A = N{Ag: E C F} is non-empty. If (¢, g) € 4
we have

R=c[A(g)]"pg

and the proof of Theorem 1 is complete.

5. Proof of Theorem 4. The machinery used in proving Theorem 1
applies here also.

We first show that r, ,(f) is defined a.e. for 2k = p. Let ¢, and ¢, be
continuous functions with compact support. Then for f € L” with 1 <p
< oo the functions ¢, * f(x) = [¢,(1)f(¢"'x) dm(t) and §, » f(x) are in
L"if p <r < o0 and Cy(G).
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If the ¢’s and y,’s are non-negative and if 2k =p we have by
Holder’s inequality that

oo > [ Ty 0TI » () dm)

=z [ [T,(e)w () T At x)|If(s™ ) dm>* (x, 5, 1).

Thus the integrals defining the functions 7, ,( f) converge absolutely a.e.
Now let f€ L? and N =p/2 be fixed and bring in the space
OM(N, f) spanned by all functions of the form

nN
(5.1) ITo*f(x)d*f(x), n=12,...
j=1

For f = 0, IN(N, f) is a left-invariant non-trivial subalgebra of C,(G). By
Lemma 4.3, 9(N, f) is uniformly dense in C,(G/K) for some compact
subgroup K.

Suppose that (2.4) holds and consider the map ®: J(N, f,) —
IMU(N, f,) which is given on the generators (5.1) by

®H¢ *fl(x ‘P fl x) = H¢ fz(x) ‘P fz(x)

and then extended by linearity.

Observe that ® is well-defined since by (2.4) it is an L>-isometry.
Moreover, @ is an algebra isomorphism of OM(N, f;) onto IJN(N, f,)
commuting with left translations. As such it is continuous in the sup norm
and extends to an isometric isomorphism of Cy(G/K,) onto Cy(G/K,)
which commutes with left translations. As in the proof of Proposition 4.6
this implies ® is the restriction of p, to Cy(G/K,) for some 4 with

h 'K h = K,.

In particular

H‘P fzx)‘l’ f2 H¢ fllp f1 (x)

EH¢,*f1(xh)-tl7,*ﬂ(xh)-
1
Choosing ¢, = ¢, = ¢ gives

| [ S0ty dm()|
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for all x and ¢. Thus

Jo0500) am()| =| [o(0)iah) am)

holds for any ¢ in L4, (1/p + 1/q = 1). The annihilators in L7 of the two
functions £, and p, f; thus agree and hence f, = cp, f; for some c¢. That
|c|=1 follows from the fact that (5.2) implies | 41l , = llp, fill .

(5.2)
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