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ON THE UNIFORMIZATION OF CERTAIN CURVES

PETER F. STILLER

The uniformization theorem of Poincare and Koebe tells us that
every smooth connected algebraic curve X over the complex numbers (or
any Riemann surface) has as its universal covering space either the
complex projective line P^, the complex numbers C, or the complex
upper half plane φ = {z E C s.t. Im z > 0}. When the universal cover-
ing space is the upper half plane φ, we can regard the fundamental group
πx(X) as a subgroup of SL2(R) acting as covering transformations via
linear fractional transformation. We shall focus on the case πλ(X) C
SL2(Z).

Introduction. Uniformization can be described by a class of differen-
tial equations on algebraic curves called Fuchsian equations (Poincare [6]
or Griffiths [3]). In this setting the monodromy representation of the
differential equation gives us the inclusion of irx( X) into SL2(R) and the
solutions can be used to explicitly construct the covering map π: ίρ -» X
much in the spirit of the Weierstrass ^-function and the most classical
case of uniformization, namely the inversion of the elliptic integral.
Another classical case occurs when X— P^ — {0,1, oc}; which leads to
the theory of the hypergeometric differential equation.

In this paper we will examine the specific case where X can be
uniformized by a subgroup Γ of SL2(Z), that is to say, the case where the
map

is the universal covering map. X will thus be a non-compact (because of
the presence of cusps) modular curve. We will be particularly interested in
giving an explicit description of which curves X arise this way. For
example in the case of Pc-{« points} n > 3 we will give polynomial
equations whose solutions represent those configurations of ^-points
whose complement can be uniformized by SL2(Z), and the parameters
necessary to construct the differential equation. The solutions to the
equations will also be explicitly given.

The differential equations involved arise naturally in the theory of
elliptic surfaces (Stiller [7]), but for the most part no use will be made of
that fact.
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We begin the paper with a discussion of differential equations and
how they give rise to uniformazations. We then go on to discuss a specific
class of differential equations, called ^-equations, that arises when the
uniformization is given by a subgroup of finite index Γ in SL2(Z). By
examining the local behaviour of the solutions of a ^-equation we are able
to determine when it uniformizes. More precisely: Let X be a complete
smooth connected curve over C and S C X a finite set of points, then
X — S can be uniformized by a ^-equation Λ(^ λ ) in the sense that the
inverse of the multi-valued map

ω,/ω2

x-s -* £

given by a quotient of solutions ω,, ω2 of Λ(j, λ) is the universal cover if
and only if the rational function $- has poles at each point of S and
nowhere else, only triple zeros, and % — 1 has only double zeros. It then
follows, because of the properties of ^-equations, that we can find a
subgroup Γ of finite index in SL2(Z) with πλ(X— S)^T such that
X — S = φ/Γ, this last isomorphism being specifically given by the
differential equation.

PART I. THE DIFFERENTIAL EQUATIONS

1. Differential equations. By an algebraic differential equation of
second order on a complete smooth connected curve X over C we shall
mean an expression

where P, Q, x are in the function field of X and x (£ C. The function x
will be called a parameter; it will furnish us with a local coordinate at all
but a finite set of points. Disregarding these points as well as any where
P9 Q fail to be regular leaves us with a Zariski-open subset Xo of X. For
every x G Xo the equation has two independent holomorphic solutions
/j, f2 which form a basis for the space of solutions in a neighborhood of
x. If we pick x0 G Xo as a base point and a basis fl9 f2 for the space of
solutions at x0, we can obtain a representation

^(X0,x0) -> GL2(C)
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by analytic continuation. We will denote by

PΛ(Y)

the analytic continuation of the basis fl9 f2 around γ E TΓX(XQ, X0). Note
that another choice of basis at x0 leads to an equivalent representation.
This representation is called the monodromy representation of Λ.

Observe that on Xo the functions fl9 f2 cannot vanish simultaneously.
This can be seen by considering the Wronskian W of the equation (1.1):

or simply by solving (1.1) using the method of undetermined coefficients.
Now let Xo be the universal cover of X09 then each choice of basis/,, f2 for
the space of solutions at x0 E XQ gives rise to the map ω:

which is well defined (since/,, f2 do not vanish simultaneously on Xo).
For different choices of /1? f2 the maps differ by a linear fractional
transformation of P^.

We will be interested in the case where ω = fx/f2 is an analytic
isomorphism of Xo with φ, the complex upper half plane, and where the
monodromy representation pΛ determined by the analytic continuation of
/,, f2 consists of matrices in SL2(Z). First however, we will consider a
more general situation by relaxing the assumption that ω be an isomor-
phism.

2. A-equations. Let X be a complete smooth connected algebraic
curve over C with function field denoted by K(X). After fixing a
parameter x E: K( X), consider an algebraic differential equation on X.

with P and Q in K( X) and / are unknown function.

DEFINITION 1.2.1. Λ / = 0 is called a X-equation if it possesses two
solutions, ω, and ω2, which are holomorphic non-vanishing multivalued
functions on some Zariski open subset Xo of X, satisfying:

(i) ω1 and ω2 form a basis of solutions,
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(ii) for every closed path γ E πγ(X0) the analytic continuation of (£•)

around γ is Afγ(^) with My E SL2(Z) (the monodromy representation),

(iii) Im(ω 1 /ω 2 ) > 0 on XQ (positivity).

Such a pair of solutions is called a ΛΓ-basis. In addition, since the

monodromy is in SL2(Z), the Wronskian W — e~lpdx is single-valued. We

assume as part of our definition:

(iv) W E K(X) (This assumption can sometimes be discarded; see

remarks following Theorem 1.2.6.) D

Let Λ / = 0 be a ΛΓ-equation with ΛΓ-basis ωx and ω2. Consider the

function % — J ° ωλ/ω2,

ω l / ω 2 /

Xo -> « - > C

where J is the elliptic modular function on the upper half plane φ . This f

is a single-valued holomorphic function on Xo C X.

PROPOSITION 1.2.2. fy e ίΓ(^) .

Proof. This is an application of a result which appears in Kodaira [5]

as Theorem 7.3. D

Thus to every Adequation A / = 0 and i£-basis co1? ω2 we associate a

rational function f- in Â ( X), which is necessarily non-constant.

Let X be any base curve and $G K(X) any non-constant rational

function on X. The problem is to produce a Adequation Λ/ = 0 with a

AΓ-basis ω, and ω2 having ^ = /(ωj/c^).

Consider first the z-sphere P^ and the hypergeometric differential

equation

( 2. 2 ) 4 + lf+31/144zl/36

The solution in terms of Riemann's P-function is

0 oo 1
- 1)

1/4
P| 0 1/12 0
1/3 1/12 1/2 j



UNIFORMIZATION OF CERTAIN CURVES 233

which is seen to be a hypergeometric function. Thus at z — 0 we have two
solutions

which form a basis. We now let

ΓQl/12)

Γ(7/12)

[Γ(2/3)

Γ(4/3)

(Γ the gamma function), and consider another basis of solutions at z = 0

(2.3) Φ, =e 2 f f / / 3 ih

The quotient of these solutions Φ(z) — Φ1(z)/Φ2(z) can be regarded as a
multivalued function

P<1- {0?l?oo} * P £ .

However, Φ is an inverse of the elliptic modular function / (Bateman [1]),
that is, T = Φ( J(τ)) for τ E $ the upper half plane. Hence Φ maps
P<1 — (0,1, oo} to § and Φ,, Φ2 form a j£-basis of solutions for (2.2) which
is then a ΛΓ-equation.

We return to the problem posed at the beginning of this section. X
will be our base curve, ^ E K( X) a non-constant rational function, and
x E K( X) a fixed parameter. We regard £ as a map £: Jf -> P^ onto the
sphere. Consider the compositions Φx(^)9 Φ2(^) as multivalued holomor-
phic non-vanishing functions on some appropriate Zariski open subset Xo

of X. They satisfy a differential equation easily computed to be:

(df/dx) Ud^/dx) df
dx2

Clearly
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and

Φ2(£)
My E SL2(Z) under analytic continuation around γ G ΊTX{X0). Note also

that

{d$/dxf - Hd2f/dx2) _d_ d%/dx

* dx

so the Wronskian

Therefore (2.4) is a X-equation, and:

THEOREM 1.2.3. Let X be any base curve and $ G K{X) non-constant.

Then there exists a K-equation Λ/ = 0 and a K-basis ωu ω2 of its solutions

such that J(ωι/ω2) = %. Those constructed above will be referred to as

SK-equations, and denoted by Λ = Λ ( j λy D

COROLLARY 1.2.4. The monodromy representation of any K-equation

with respect to a fixed K-basis of solutions is projectively equivalent {in

PSL2(Z)) to that of the differential equation (2.4) above with appropriate fy.

Proof. It is obvious that £ determines the projective monodromy in

PSL2(Z) up to conjugation in PSL2(Z). D

COROLLARY 1.2.5. The monodromy group Γ C SL2(Z) of a K-equation

with respect to a fixed K-basis of solutions has finite index in SL2(Z).

Proof. Obvious. D

We will now determine all ^-equations. Fix a ^-equation Λ/ = 0 on

X with X-basis ω l 9 ω2 such that % = J{ωx/ω2). Say

(2.5) Λ / = 0 + Jpf + ίy=o.

We also consider the 5ΆΓ-equation Λ = A ( j λ)

(2.6)
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with solutions Φ ^ ) , Φ2(^) Let Xo C X be a Zariski open set on which

both bases Φλ(%\ Φ 2 (^) a n ^ ω1? ω2

 a r e holomoφhic non-vanishing multi-

valued functions. Select a base point x0 E: Xo. By Corollary 1.2.4 the

monodromy representations in SL2(Z) of Λ, A with respect to the chosen

ϋΓ-bases are projectively equivalent, that is, conjugate in PSL2(Z). Altering

ω 1 ? ω 2 to another K-basis if necessary, we can assume the projective

representations ^Y(XQ9 x0) -» PSL2(Z) are equal.

THEOREM 1.2.6. There exists an algebraic function λ on X with λ2 E

K{X) such that \Φλ(%) - ωx and λΦ 2(£) = ω2, and therefore A / = 0 is

determined:

(2.7) P = P - ^

Proof. For every point x near x 0, the lattices Lx — ZΦj(

Z Φ 2 ( £ ( J C ) ) and L x = Zωλ(x) + Zω 2(x) in C are homothetic. So locally

there is a function λ(x) holomoφhic non-vanishing such that λ(x)Lx —

Lx. Suppose near xQ

(2.8) λΦι($) = aωι+bω29

ccoj + dω2
2

(ah)with (a

c

h

d) E SL2(Z). Now analytically continue around γ E πλ(XQ, x0). If

λ denotes the continuation of λ, we have:

Π'
where ± M γ is the mondromy of Λ, A (assumed projectively equal).

Therefore

or by (2.8)

* (

This implies, as
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that λ/λ is a complex multiplication of Lx for all x near x0. But since $- is

necessarily non-constant, the general point does not admit non-trivial

complex multiplication. So λ/λ is identically ± 1, and in fact this requires

(a

c%)= ± 1. Therefore λ2 is single-valued on Xo.

One can compute that ωλ = λΦx(fy) and ω2 = λΦ 2 (^) then satisfy a

differential equation with P and β as in (2.7). Computing the Wronskian

gives e~^Pdx = e~ίPdx λ2 up to a constant multiple. However, e~^Pdx is the

Wronskian W of Λ and e~/j!?i/jc = {d$/dx)/$. Since we assumed W E

), we have λ2 G # ( X). •

REMARK. If we drop the assumption that W is rational, we have then

classified all differential equations with the properties of SL2(Z) mono-

dromy and positivity, Im(ω,/ω 2) > 0. (The first part of the above proof

doesn't depend o n f f G K(X)).

THEOREM 1.2.7. Let Λ / = 0 be a K-equation. Then Λ has regular

singular points and essentially unipotent local monodromy.

Proof. This may be checked directly from the expression (2.7) for

Λ. D

PART II. UNIFORMIZATION

1. Local properties of AΓ-equations and uniformization. Let X be a

proper smooth connected curve over C and let Λ ( j ? λ ) be a ^-equation on

X. On a suitable Zariski open subset Xo C X the equation Λ ( j λ) will be

holomoφhic and will possess two solutions ωl9ω2 which give a basis for

the space of solutions, have SL2(Z) monodromy, and positivity i.e.

Im(ω 1/ω 2) > 0. As in I.§1 this gives rise to a map

(1.1)

where Xo is the universal cover of Xo and ω is induced by ω,/ω 2. We shall

see in a moment that Λ(^ λ ) has enough singularities so that Xo is

analytically equivalent to ίρ. The question we wish to ask is: when is ω an

isomorphism so that Λ ( j ? λ ) is Fuchsian (Griffiths [3] or Poincare [6]) and

uniformizes Xo. We will then have
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an explicit description of the uniformization of Xo where Γ C SL2(Z) is

the mondromy group for ω,, ω2.

At this point, we need to calculate the local behavior of Λ ( j ? λ ) at a

point in X — Xo in order to determine when an equation of this type could

uniformize. By Theorem 1.2.6

where

P =

Q =

d2λ/dx2 , Jdλ/dx\2

Now the "parameter" x does not provide a good local parameter every-

where and could therefore introduce singularities. This however is not the

case; if t is a local parameter at any point in X then when we express

Λ(Λ λ ) locally it retains the above form with t in place of x9 i.e.

Q = etc.

We see that the global "parameter" x plays no role in determining the

singularities. Thus the above form can be used in local calculations.

We will begin by calculating the local behaviour of an &£-equation

A ( j j) (i.e. assume λ = 1):

Case 1. f- has a pole of order n > 1. In terms of a local coordinate /,

% — c_n/tn + . An easy calculation gives

P = — h holomorphic,

0 α_i
<2 = — H L + holomoφhic.
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Since our equation has regular singular points (as we shall see in the
course of these calculations) we can apply well known techniques to
determine solutions (see Ince [4], Griffiths [3], or Deligne [2]). The indicial
equation is

where P = p_x/t + • and Q — q-2/t2 + • • . I n this case

I(v) = v2

and the exponents are 0,0. Thus the equation has a basis of solutions of
the form

u2 = 1 + ,

u\ = U2 \ o—: 1°§ t + holomoφhic
\ Z777 /

so that the local monodromy is (ι

Q {). To reintroduce λ is simple. Λ(ί. λ) will
have solutions λul9 λu2. So as λ2 G K(X), if λ2 = f (holomoφhic non-
vanishing) then the new exponents are r/2, r/2 and the local monodromy
is ±(o{). Note that ul9u2 need not be a .fif-basis. Using Kodaira's
classification for the monodromy at the singular fibers of an elliptic
surface one can show that if ωv ω2 are a K-basis then after "shifting the
cusp to oo" we have that the continuation of ωl9 ω2 around the singularity
gives ±(o D where n > 0 is the order of the pole of f-.

Case 2. ^ has a zero of order n > 1. Then

P — —(- holomoφhic,

The indicial equation is

so the exponents are ±n/6. If n s 0 mod 3 then the exponents differ by
n/3 £ Z, so there exist two solutions

ux - t~n/6(\ + higher order in /),

u2 = tn/6(l + higher order in /)•

If n = 0 mod 3 one must check certain higher order conditions to insure
that no logarithmic behaviour occurs. One may also appeal again to the
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theory of elliptic surfaces where, since £ = 0, the monodromy must be of

finite order. Thus

uλ = t~n/6(\ + higher order in t),

u2 = ίn/6(l + higher order in /)

still gives a basis for the space of solutions and the monodromy is ±(ι

0 °).

Case 3. % = 1 to order n > 0. Then

P = h holomorphic,

The indicial equation is

3
I(v) = υ2 — nυ + ττn2

so the exponents are n/A and 3«/4. If n is odd then the exponents differ

by n/2 £ Z so there is a basis of solutions of the form

ux — tn/2{\ + higher order terms in t),

u2 = t3n/2(\ + higher order terms in t).

As before when n is even we must check certain higher order conditions in

order to show that there is no logarithmic behaviour and this can be done.

Thus the above form is valid even when n is even.

Case4. %ψ 0, 1, oo but ord d% = n > 0. Then

Q = holomorphic.

So the indicial equation I(v) — v2 + (-n — l)v and the exponents are

(0, n + 1). Since these differ by an integer, higher order conditions must

again be checked. However all is well, and there is a basis of solutions of

the form

uλ = 1 + higher order terms in /,

u2 — ί " + 1 ( l + higher order terms in t).

Note that at such points any X-basis ω l 9 co2 of Λ must extend with ω l 9 ω2

holomorphic non-vanishing. This follows because ω 1 /ω 2 (or ω2/ωx) is
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holomorphic at t = 0 with positive (or negative) imaginary part at all

nearby points. However

d,
(/(«,/«,) is

where W is the Wronskian of Λ which is (d$>/dt)/fy or more generally

λ2((dfy/dt)/$). Thus d/dt(ωι/ω2) vanishes at these points and the map

from a neighborhood of t — 0 to ίp given by ω\/ω2 is ramified.

Case 5: At all remaining points Λ ( j ? 1 ) is holomorphic.

Finally, to pass from Λ ( j s l ) to a description of the singularities of

Λ(Λ λ) is very simple and is carried out as outlined in Case 1.

THEOREM II. 1.1. A K-equation Λ ^ λ ) on a complete smooth connected

curve over C will uniformize a Zariski open subset Xo C X if and only if the

function fy has a pole at each point in X — Xo with only third order zeros,

second order ones, and ord dfy Φ 0 elsewhere.

Proof. We can reduce immediately to the case λ = 1 and consider the

SAT-equation Λ ( j λy This is because the multivalued inverse of the univer-

sal covering map is given by a quotient of solutions ω 1 /ω 2 and λω]/λω2

= ω,/ω 2.

Now if Xo C X is to be uniformized by A^Λ) we must have the

universal covering map represented as

where ω = ωλ/ω2 and Γ is the mondromy group of Λ(^ 1} which is of finite

index in SL2(Z). This means that the missing points in X — Xo must

correspond to the cusps of Γ C SL2(Z). The inverse to the covering map

at such a missing point (which is the map given by ω = ω 1/ω 2) must

therefore exhibit logarithmic behaviour. Our calculations above show that

this occurs only in Case 1, i.e. when fy has a pole. So the support of the

poles of £ must be the set of missing points X — Xo.

Since there can be no algebraic singularity present in Xo the equation

A(^,) must have exponents differing by an integer at every other singular-

ity of A ( j f l ) . Thus ^ must have zeros each of order = 0 m o d 3 and ones

each of order = 0 mod 2.

Now ωx/ω2 must extend to a multivalued holomorphic function on

XQ. (This was discussed in Case 4 and the same argument holds in Cases 2
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and 3; namely ωx/ω2 will be single-valued since the exponents differ by
an integer and Im ωx/ω2 > 0 at all nearby values.)

Thus we have a well-defined map ω = coλ/ω2,

Xo ^ φ the upper-half-plane

(1-2) w i

where Xo is the universal cover. The map is clearly onto by the construc-
tion of the equation Λ(j. 1}, see I.§2. Moreover it will be unramified if and
only if on Xo, all zeros are third order, all ones are second order, and
ord dfy — 0 elsewhere.

Thus if Λ(j X) uniformizes Xo C X it must have the properties listed.
The converse holds because given any A(j,Λ) with the listed properties

we can let Xo be the complement of the poles of % and produce a map ω
from Xo — $ to & which is unramified. It must therefore be an isomor-
phism.

Note. To see that Xo ss φ we need only see that when X — P^ and ^
has the above properties that ^ has more than 2 distinct poles. Consider
the map

and apply the Hurwitz Theorem, f must have 6A: poles k>\ (possibly
multiple), 2 k zeros each of order 3 and 3k ones of order 2 and no other
ramification. Thus

2(genusP<ί) - 2 = (deg£)(2(genusP<l) - 2) + 2 ramification

gives

-2 = 6k(-2) + lk+ {6k - #poles)

or

k + 2 — # poles.

Thus # poles is > 3. D

2. Uniformization of P^-{points} and remarks on the general case.
Consider the complex projective line P^ and a finite set of n points
S = {$„...,.*„} CP^ with/i > 3 .
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Question Π.2.1. Is there a subgroup Γ C SL2(Z) of finite index so that

φ / Γ = P<1 - S and

exhibits φ as the universal cover.

PROPOSITION. II.2.2. Γ has no elliptic points.

PROPOSITION. Π.2.3. Γ/Γ n ±({,{») = Γ Λαί mίfex μ = 6(« - 2)
PSL2(Z).

Proo/. The genus formula for φ / Γ is

where g is the genus, μ is the index of Γ in PSL2(Z) as above, v2, v3 are the

number of elliptic points of order 2 and 3 respectively, and v^ is the

number of cusps. We get

0 - 1 +JL-1
°~1 + 12 2

or

μ = 6 ( / ! - 2 ) . •

We now choose a coordinate z on P<1 so that oo S 5. If Γ exists then

there exists a Fuchsian differential equation giving the uniformization. It

must be a second order algebraic differential equation, with regular

singular points, SL2(Z)-monodromy, and positivity. But we have classified

these — namely the AΓ-equations. Thus

THEOREM II.2.4. Γ exists if and only ifP^ — S can be uniformized by a

K-equation.

We can actually find an £7£-equation Λ ( j λ) which works as we only

care about the quotient of solutions, fy must be a rational function on P^

with a pole (possibly multiple) at each point of S with third order zeros,

second order ones, and ord dfy = 0 elsewhere (including oo).

Write valence £ = 6k, k > 1 (valence = # poles = # zeros = #ones

so must be = 0 mod 6). Let al9... ,a2k be its zeros and bv... ,b3k its ones.

PROPOSITION II.2.5. n = k + 2.
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Proof. The zeros and ones of f account for Ίk zeros of df. Thus d$

must have Ίk + 2 poles at the points sl9... ,sn counted with multiplicity.

Say the order is et > 1 at si9 i = 1,...,n. Then
n

2 et — valence §>= 6k

and
n

2 (ei + 1) = Ίk + 2.

Thus n = A: + 2. D

EXAMPLE. A: = 1, « = 3. This is the classical hypergeometric case

Pc ~~ 3 points.

Now

(if c = 1, ^ has a pole at oo but oo $ S ) . This function takes value one at

each missing point sl9...9sn with multiplicity eλ en as above. Thus we

get the relation:

(2-1) fi (*-*,)''
1 = 1

(z - a2kf]

which must hold as polynomials in z.

This gives 6k equations in the 5 A: + 1 unknowns c,

al9...9a2k9bl9...9b3k which if solvable provides £ and allows us to answer

our original question II.2.1. in the affirmative, i.e. there will exists Γ C

SL2(Z) of finite index such that φ / Γ = P^ — S and exhibits § as the

universal cover.

Of course we get a set of equations for each choice in assigning the

exponents ei9 but there are only finitely many choices. Note that freeing

up the st leads to a system of 6k equations in 6k + 3 unknowns but as

three points may always be prespecified in P^ this is really 6k equations in

6k unknowns.

In the general case, we still have valence $ — 6k. Using the same

notation, i.e., sλ sn E X the poles of $-, el9...9en their respective orders,
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etc. we have

PROPOSITION II.2.6. n = k — 2g + 2.

Proof. A s b e f o r e aχy...ya2k, blf...,b3k c o n t r i b u t e Ίk z e r o s t o d%.
Thus we must account for Ίk — 2g + 2 poles. That means

but
n

Σ e> = 6k

and the result follows. D

Since n > 1 we must have valence % >: 12g - 6, i.e. k>2g- 1.
The difficulty in higher genus comes in trying to construct $-.
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