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A PROPERTY OF SOME FOURIER-STIELTIJES
TRANSFORMS

HirosHI YAMAGUCHI

Helson and Lowdenslager extended the classical F. and M. Riesz
theorem as follows:

Let G be a compact abelian group with the ordered dual G. Let p be
a bounded regular measure on G which is of analytic type. Then p, and
i, are of analytic type.

Doss extended this theorem for a LCA group with the algebraically
ordered dual. On the other hand, deLeeuw and Glicksberg obtained an
analogous result for a compact abelian group G such that there exists a
nontrivial homomorphism from G into R. In this paper, we prove that the
theorem of Helson and Lowdenslager is satisfied for a LCA group with
partially ordered dual.

1. Introduction. Let G be a LCA group with the dual group G. We
denote by m the Haar measure on G. Let M(G) be the Banach algebra of
bounded regular measures on G under convolution multiplication and the
total variation norm. M (G) and L'(G) denote the closed subspace of
M(G) consisting of measures which are singular with respect to m; and
the closed ideal of M(G) consisting of measures which are absolutely
continuous with respect to m respectively. We denote by Trig(G) the set
of all trigionometric polynomials on G. For a subset E of G, M.(G)
denotes the space of measures in M(G) whose Fourier-Stieltjes transforms
vanish off E. E~ (or E) means the closure of E. Let M (G) be the subset
of M(G) consisting of positive measures. For u € M(G), p, and p, denote
the absolutely continuous part and the singular part of u respectively. For
a subgroup H of G, H* means the annihilator of H.

Helson and Lowdenslager extended the classical F. and M. Riesz
theorem as follows:

THEOREM A (cf. [8], 8.2.3. Theorem). Let G be a compact abelian group
with ordered dual, i.e., there exists a semigroup P in G such that 1)
PU (-P) = G and (1) P N (-P) = {0}. Let p be a measure in M(G) such
that ji(y) = 0 for y < 0. Then

M Aay)=ay)=0fory<0;

(ID) 4,(0) = 0.

In [3] and [4], Doss extended Theorem A for a LCA group.
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THEOREM B ([4], Lemma 1). Let G be a LCA group such that G is
algebraically ordered, i.e., there exists a semigroup P in G such that (i)
P U (-P) = G and (ii) P N (~P) = {0} (we do not assume the closedness of
P). Let p be a measure in M(G) such that j(y) = 0 for y < 0. Then

(D) A,(v) = f,(Y) = 0 fory <0;

(1) 4,(0) = 0.

REMARK 1.1. In Theorem B, when G is noncompact, (II) is obtained
from (I) and the fact that 0 is an accumulation point of P<.

On the other hand, deLeecuw and Glicksberg in [2] obtained an
analogous result of Theorem A for a compact abelian group G such that
there exists a nontrivial homomorphism y from G into R (the reals). That
is, ‘

THEOREM C (cf. [2], Proposition 5.1, p. 189). Let G be a compact
abelian group and { a nontrivial homomorphism from G into R. Put
M4G) = {n € M(G); ji(y) =0 for y € G with y(y) <O0}. Let p be a
measure in M“(G). Then p., and p.; belong to M%(G).

REMARK 1.2. In general, however, the conclusion of Theorem C can
not be strengthened to “fi (0) = 0”.

Our purpose in this paper is to prove that an analogous result of
Theorem C is satisfied for a LCA group with partially ordered dual. We
state the main theorem of this paper.

MAIN THEOREM. Let G be a LCA group and P a closed semigroup in G
such that P U (-P) = G. Let p be a measure in Mp(G). Then p, and p,
belong to M,.(G).

COROLLARY. Let G be a LCA group and P a semigroup in G such that
P U (=P) = G. Then the following are satisfied:
D) for p € M(G), p, and p., belong to M(G);
(X for p € Mp(G), p, and p, belong to Mp(G).

Proof of Corollary. Since (II) is easily obtained from the Main Theo-
rem, we only prove (I). We note the following:
pA=0 on (-P\ P)
esf=0 ony — Pforally € (-P)\ P
s(ye)"=0 on-Pforally € P\(-P)
s(yu) =0 on(=P) forally € P\(-P).
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Hence, by the Main Theorem and the fact that (yu), = yp,, we obtain the
corollary.

In §2, we prove Main Theorem for a o-compact metrizable locally
compact abelian group by using the theory of disintegration. In §3 we
prove the theorem for a general locally compact abelian group by using a
certain lemma which is due to Pigno and Saeki ([7], Lemma 4). The author
would like to thank the referee for his valuable advice.

2. o-compact metrizable case. In this section, we prove Main Theo-
rem for a o-compact metrizable locally compact abelian group. We need
the theory of disintegration. The following lemma can be found in ([1],
Théoreme 1, p. 58).

LemMMA 2.1. Let G be a o-compact metrizable LCA group and H a closed
subgroup of G. Let w be the natural homomorphism from G onto G/H. Let p
be a positive measure in M(G) and put 1 = w(p) (continuous image under
w). Then there exists a family {A};c ¢ y consisting of positive measures in
M(G) with the following properties:

(1) x> Ay (f) is a Borel measurable function for each bounded Borel

measurable function f on G,

(2) supp(A;) C 7~ '({x}),

B) Il =1,

4) w(8) = [o,uA(8)dn(;) for each bounded Borel measurable func-

tion g on G.
Conversely, let {A\};};cq i be a family of positive measures in M(G) which
satisfies (1), (2) and (4). Then we have

(5) A; = A} a.a. x(n).

LemMA 2.2. Let G, H and 7 be as in Lemma 2.1. Let p be a positive
measure in M(G) and put 1 = w(p). By (2) of Lemma 2.1, A, can be
represented as follows:

(1) A; = »*8_ for some v, € M* (H) and x € G with n(x) = x;.

If v, € M(H) a.a. x(n), we have p € M (G).

Proof. 1t is sufficient to prove the lemma when p has compact
support, so we can assume 7 supported by K compact. Suppose { f,} C
Cy(G) is dense. Let € be a positive real number. Then for each n Lusin’s
theorem says X > A ,( f,) is continuous on a compact subset E, of K with
(K\E,) <e/2".Weput E= N)_, E,. Then E is compact, n(K\ E) <&
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and x > Ay f,) is continuous on E for all n. Hence X > A (/) is continu-
ous on E for all h € C(G). By the hypothesis we may assume that
IA;ll =1 and v, € M(H) for all x € E. Hence for X € E we can choose
f=LECG)WithO=f=<1, 1=|IA;l <A f)+eand d*xmy(f) <e
(x € m7/({x)})). Then both inequalities are held on some neighborhood of
x in E, say N,. Since E lies in Nisooos N, with f,,...,f, the correspond-
ing f’s, we set g =f, on 7Y(N,), =f, on 7w (N\N,),..., =f, on
7 (N\ U2/ N;) and =0 on #7'(E°). Then g is a Borel measurable
function on G with 0 < g < 1 satisfying 1 — ¢ <A ,(g) and 0, *xmy(g) <e
for all x € E (x € m({x})). Thus u(g) = [5,x A(g)dn(%) > 1 — 2¢ and
m;(g) < emg,y(K). Since this holds for each €>0, p is necessarily
singular.

LEMMA 2.3. Let G be a LCA group and H a closed subgroup of G. Let «
be the natural homomorphism from G onto G/H. Let u be a measure in
M (G). If n(p) belongs to M(G/H), p is singular with respect to the Haar
measure on G.

Proof. Since m(n) € M,(G/H), there exists a o-compact subset £ of
G/H such that m(p)(E) = 0 and m ,,(E) = 0. Then p is concentrated
on 7~'(E). Therefore it is sufficient to prove that = ~'(E) is a locally null
set. For a compact set K in G, we have

mg(KNa'(E)) :ka(x)xﬂ-l(f)(x)dmc(x)
:/G/H/HXK(x 'f')’))(w-'(i)()e ‘f‘y)de(y)de/H(x)

= [ xEG) [ xx (s + )dmo(y)me ()

=0.
Hence 7 ~( E) is a locally null set and the proof is complete.

LeEMMA 2.4. Let G be a o-compact metrizable LCA group and P a closed
semigroup in G such that P U (~P) = G. Put A = P N (-P) and H = A*.
Let @ be the natural homomorphism from G onto G/H. For a measure
r € M(G), we assume that there exists a family {A;};c;/n in M(G) with
the following properties:

(1) X > A f) is a Borel measurable function for each bounded Borel
function f on G,

(2) supp(A) C 77\ ({%}),



PROPERTY OF SOME FOURIER-STIELTJES TRANSFORMS 247

Al =1,
(4) p(8) = [6/uN(g)dn(x) for each bounded Borel measurable func-
tion g on G,
where 1 = @(| n|). Then the following is satisfied:
(5) If i(y) =0 on P, A (y) = 0 on P a.a. x(7).

Proof. First we note
(6) P+ ACP.
For f € L'(G) with supp( f) C P, we have

(7) 0= fcﬁ(v)f(v)dv
=fo(x)du(x)
= Ax(f)dn(X)

G/H

On the other hand, for y, € A, by (6), we have supp( f ) C P, where
£,(y) = (¥ — v4). Hence, by (7), we have

0 =fG/H>\£(f,*)dn(x)

L o L@ dn(x)dn(2)

fG » jG —x, v4) f(x)dA (x)dn (%)

[ (v [f(x)ary(x)dn(x)  (by(2) andy, € A)
G/H G

fG/H(—X, Ya)A:(f)dn(x).

Since v, is an arbitrary element in A, we have
8 0= f PON(F)dn(x)  forall p(%) & Trig(g/H).

Since Trig(G/H) is dense in L'(n) and % > A f ) is a bounded Borel
measurable function, we have

9) A(f)=0aa.%(n) forfe LY(G) with supp(f) C P.
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Hence, for f € L'(G) with supp( f) C P, we have

(10) 0= /G F(x)an(x)

=fc.5\)e(7)f(7)d7 a.a. x(n).

On the other hand, since G is o-compact and metrizable, there exists a
countable subset @ = {f,} of L\(P) = {f € L'(G); supp(f) C P} such
that it is dense in L'( P). By (10), for each m € N (the natural numbers),
there exists a Borel set Km in G/H such that n(K <) = 0and

(11) o=£§gﬂ&uwyfmxekw

Put K = N*K,,. Then n(K¢) = 0 and

(12) 0= in(y)fm(y)dy forallx € Kandf, € Q.
Hence,

(13) O=/éf\j(y)f(y)dy forall x € Kand f € L'(P),
which yields

Afy) =0 onPaa. x(n).

This completes the proof.

LEMMA 2.5. Let G be a o-compact metrizable LCA group and H a closed
subgroup of G. Let w be the natural homomorphism from G onto G/H. Let
{A ¢}z u be a family in M (G) with the following properties:

(1) X > A f) is a Borel measurable function for each bounded Borel

measurable function f on G,

(2) supp()) C m((1)),

B) I ll=1.

By (2), A; = v,*8, for some v, € M* (H) and x € G with n(x) = x. We
define measures A%, N’; € M (G) as follows:

(4) X = pxd,, Ny = wiad,
where v{ and v} are the absolutely continuous part and the singular part of v,
with respect to my respectively. Then the following is satisfied:

(5) X > N%(f) and x v~ N f) are Borel measurable functions for each

bounded Borel function f on G.
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Proof. For x € G/H, let L'(n~'({x})) be the space of functions on
7 ~'({x}) which are integrable with respect to m, where m is the measure
on the coset 7~!({%}) which is given by translating m, on 7~ '({x}).

Step 1. There exists a countable dense subset @ of L'(G) such that
@|,-1(x), is dense in L'(7~'({x})) for each x € G/H.

Since G is o-compact and metrizable, there exist open sets U, in G
with compact closures such that U, C U,,, and U U, = G. Then, for
each n € N, there exists a countable set €, in C(G) such that

(6) supp(f) C U, for fE R,, @, |, is dense in C(U,) with respect to

the supremum norm.
Now we put @ = U @,. Then, by (6), @ is a countable dense subset of
LX(G). Put S, ; = «”'({x)) N U, and B, ; = (u € C(="'({x})); supp(u)
c Sn.i}'

Claim 1. @, |5 _is dense in B, ;.
In fact, let u be a function in B, ; and ¢ a positive real number. By Tietze’s
extension theorem, there exists a bounded continuous function k, on G
such that k,, |5 = u|g , where §, ; is the closure of S, ; in 77'({%}). We
choose an open set ¥, in G and a nonnegative continuous function p, on G
with the compact support such that

V. CU, and supp(u) CV,

7 {1 forxeV,

@ Pi= V0 forxe U,

and |l p,ll , = 1. Put u,(x) = k,(x)p,(x). Then u, is a continuous func-
tion on G such that supp(u, ) C U,. Moreover, by the construction of u,
we have u,|; = ul; . Since @,|, is dense in C(U,), there exists a
function £, in &, such that |l £, ly, = |y Il <& Hence we have

n 1S, :lloo

U, Upll oo

<e.
Thus Claim is proved.
We return to the proof of Step 1. Let f be a function in L'(7'({x}))

and ¢ a positive real number. Since UP’S, ; = 7#7'({x}), there exists a
positive integer n such that [ | f( y)|dm (y) <e/3. We can also
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choose a function f, € B, ; such that [; |f(y) — f(y)|dm(y) <e/3.
By Claim 1, there exists a function g, € @ such that g, |5 , = £,|s, H

<e/3(myS, ;) + 1). Noting g, |,, .({x))(y) =0ifye w“‘({x})\ .
have

f_, A(Y) = gu(»)ldm ()
()

[ s, VONam) + [ 1) = g,(0)ldme()

<e/3+ [ f(y) = £()ldm ()

n, %

+fS 1(5) = 8. (»)ldm(y)

<e.

Thus Step 1 is proved. In order to prove the lemma, it is sufficient to show
that X > A%(f) is a Borel measurable function for each f € Cy(G).

Step 2. For a nonnegative function f € Cy(G), X > A%( f) is a Borel
measurable function.

Let @ be the countable subset of L'(G) obtained in Step 1 and % a
countable dense subset of C(G). Then we have

®)  N(f) =Xl
= glglé:e ”f}\x — X.,-‘((i})g”

=1nf sup A:(fm) — (x,-n({,;})g)(h)l

gee llhllwél
=inf sup (1)~ [ g(2)h(z)dm,(2)|.
g€l ERs 77 ((x})

We note that [,-1zy, 8(2)h(2)dmy(z) = [yg(x + y)h(X + y)dmy(y).
Hence, % > [,-1(1), 8(2)h(z)dm(z) is a continuous function on G/H.

Therefore, by (1)and (8), Step 2 is proved.
By Step 2, X > N;( f) is a Borel measurable function for each bounded

Borel measurable function f on G. This completes the proof.
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LEMMA 2.6. Let G be a o-compact metrizable LCA group and P a closed
semigroup in G such that P U (-P) = G. Let n be a measure in M,.(G).
Then ., and p.; belong to Mp(G).

Proof. Put A = P N (-P) and H = A*. Let 7 be the natural homo-
morphism from G onto G/H, and put n = «(| p|). Then, by Lemma 2.1,
there exists a family {£,};c ;5 in M (G) with the following properties:

(1) x > £, f) is a Borel measurable function for each bounded Borel

measurable function f on G,

(2) supp(§;) C 77I({x}),

) &N =1,

@) |r|(8) = [6/néi(g)dn(x) for each bounded Borel measurable

function g on G.

Let & be a unimodular Borel measurable function on G such that p =
h|p|. By (2), there exists a measure », € M (H) and x € G such that
m(x) = x and §; = »; = §,. Let »{ and »{ be the absolutely continuous part
and the singular part of », with respect to m respectively. We define
measures £¢ and £ in M"(G) by & =»f+6, and & =+ 4, Put
n =mn, + n,, where 1, € L\G/H) N M (G/H) and 3, € M(G/H) N
M (G/H). Then, by Lemma 2.5, we can define ®,,, @, ®, € M (G) as
follows:

(5) ®,,(f)= [G /Hiﬁ(f)dna(x),
o (f) = fG aDdn(x),
o(f) = fG Ll Ddn(2) forf € G(G).

Claim 1. ® , € M(G) N M™*(G).
We define a measure {$ € M (G) N M™ (G) as follows:

(= (1/I1E0)E  if g0 =0,
o if &1l = 0.

Then we have @,,(f) = [,z S HHI&:11dn, (%) for f € C(G). By Lemma
2.5, we can define a measure v, € L'(G/H) N M*(G/H) by n(E) =
Jill€:lldn,(X) for a Borel set E in G/H. Then we have #(®,,) = 7/,. In
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fact, for g € C(G/H), we get
7(®,,)(g) = [ g 7(x)d®,(x)
G

= fG Silg e mlldn,(x)
_f g(x)|&:lldn (%)
= fG /Hg(x)dn;(x).

Hence, for {{}};c¢/# and 0, we have
(6) (Q,,) =,
(7) x > {3 f) is a Borel measurable function for each bounded Borel
function fon G,
(8) supp({3) C 77({x}),
O gl <1,
(10) @,.(g) = [o/ui(g)dn,(x) for each bounded Borel measurable
function g on G
and
(11) &3 = 6_, € M(H), where x is an element in G such that 7(x) = .
Hence, by (6)—(11) and Lemma 2.2, Claim 1 is proved.

Claim 2. ®, € M(G) N M™ (G).
This is obtained from Lemma 2.3.

Claim 3. ®,, € L(G).
Let E be a Borel measurable set in G such that m (E) = 0. Then, since

0=mo(E) = [ [ xel + y)am(y)amoul),

there exists a Borel set F in G/H with mg /H(F ) =0 such that
m(ENa'({x})=0if x & F, where m is the measure on the coset
7~'({x}) translated mj on 7 ~'({x}). Then we have

PulE)= [ &ilxe)dna(x)

:'/;E‘fg(XE)dTI,,(J'c) +‘[ﬁc§g(xE)dna(x).

=0.
Thus Claim 3 is proved.
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We define a measure A, € M(G) by A (f) = &.(hf) for f € C(G),
where & is the unimodular Borel function on G such that u = 4| | . Then
the following are satisfied:

(12) x> A (f) is a Borel measurable function for each bounded

Borel measurable function fon G,

(13) supp(A ;) = supp(£;) C 77'({x}),

(14) Azl =1,

(15) w(g) = Jo,mA:(g)dn(x) for each bounded Borel measurable

function g on G.
We define measures A%, X; € M(G) by A% = hé% and N, = hé; respec-
tively. Then we have

A, =N+ XN, forx € G/H, and

(16) A% and A’; are absolutely continuous and singular with respect to
m ; respectively.
By (13), there exist an element x in G with #(x) = X and a measure
w; € M(H) such that A; = w; * §,, A% = wf * §, and X’;, = w; * §,, where
wi and w; are the absolutely continuous part and the singular part of w,
with respect to m,, respectively. Since fi(y) = 0 on P, by Lemma 2.4, we
have

(17) Ady)=0 onPaa.x(n),
hence
(18) &.(y) =0 onPa.a.x(n).

Let 8 be the natural homomorphism from G onto G/A. Then B(P) is a
closed semigroup in G/A. We note that B(P) induces a totally order on
G/A, and moreover, B(P) = {B(y) € G/A; B(y) = 0}. Hence, by (18)
and Theorem B, we have

(19) W (y)=wi(y) =0 onPaa. x(n),
hence
(20) Xo(y) =Ni(v) =0 on P aa.x(n).

On the other hand, by Lemma 2.5 and the construction of A% and X,
X Xy(f) and x> N,(f) are Borel measurable functions for each
bounded Borel measurable function f on G. Hence we can define measures
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p, € M(G) (i = 1,2, 3) as follows:
(21) m(f) = [ xa(f)dn,(x),
G/H
pa(f) = [ N f)dmy(%),
G/H

uy(f) = fG Ddn(x) forf € G(G).

Then p = pu, + p, + p;, and, by the construction of A;, A% and X, we
have

p’l<<(paa’ "‘2<<q)sa and “3<<(I)s'

Therefore, by Claims 1-3, we have p, = u, and u, = p, + p5. By (20) and
(21), we can easily verify that p, € M,(G) (i = 1,2, 3). Hence we have
B, My € Mp(G) and the proof is complete.

3. Proof of Main Theorem.

LEMMA 3.1. Let G be a metrizable LCA group and P a proper closed
semigroup in G such that P U (-P) = G. Let p be a measure in M(G). Then
there exists a a-compact open subgroup G, of G such that (1) supp(p) C G,
and (2) Gy C P N (-P).

Proof. Put A = P N (-P), and let B be the natural homomorphism
from G onto G/A. Then B(P) is a closed semigroup in G/A such that (i)
B(P) U (-B(P)) = G/A and (ii) B(P) N (-B(P)) = {0}. Hence, by ([8],
8.1.5. Theorem), we have

(3) G/A=D, or G/A=R®D,

where D is a discrete abelian group which is torsion-free. Put H = A+
Then, by (3), H is a o-compact closed subgroup of G. Since p is regular,
there exists a o-compact open subgroup G, of G such that supp(p) C G,.
We put G, = G, + H. Then G, is a o-compact open subgroup of G which
satisfies (1) and (2). This completes the proof.

LEMMA 3.2. Let G be a metrizable LCA group and P a closed semigroup
in G such that P U (-P) = G. Let p be a measure in Mp,(G). Then p., and
ug belong to Mp(G).
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Proof. We may assume that P C G. Let G, be the o-compact open
subgroup of G obtained in Lemma 3.1. Let 7 be the natural homomor-
phism from G onto G/ Gy . Then, by (2) in Lemma 3.1, #(P) is a closed
semigroup in G /G such that 7(P) U (—m(P)) = G/G1 . We can regard p
as a measure in M, p(G,). Since G, is o-compact and metrizable, by
Lemma 2.6, we have p,, p; € M, p\(G,), which yields p,, p, € Mp(G).
This completes the proof.

Now we prove the main theorem of this paper.

THEOREM 3.3 (Main Theorem). Let G be a LCA group and P a closed
semigroup in G such that P U (-P) = G. Let p be a measure in Mp(G).
Then p, and p., belong to M,(G). :

Proof. 1t is sufficient to show that p, € M,.(G). Let y, be an element
in P. Since p is a singular measure, there exists a o-compact subset E of G
such that m;(E) =0 and |u,|(E€) = 0. Then, by ([7], Lemma 4), there
exists a o-compact open subgroup I' of G containing vy, such that

(1) mg(E +T+) = 0.

Let 7 be the natural homomorphism from G onto G/T*. Then, by (1), we
have

) 7(p)s = 7(n,).

Put P.= P NT. Then P is a closed semigroup in I' such that P U
(-Pr) =T, and #(pn) belongs to M f(G/l”'). Since G/T'* is metrizable,
by (2) and Lemma 3.2, we have 7(p,) = 7(p), € Mp(G/T™), so that
A.(vy) = m(pg) (v,) = 0. Since vy, is an arbitrary element in P, we have
B, € M,(G). This completes the proof.

REMARK 3.4. In the proof of Lemma 2.6, when G/A is not discrete,
we needed Theorem B. However, in this case, we have G/A =R ® D and
B(P)={(x,d) ER®D; d>0, or d=0 and x =0}, where D is a
discrete ordered group (cf. [8], 8.1.5. Theorem). Using Theorem A and our
method, we can prove Theorem B if P is closed. Hence the Main Theorem
can be obtained by employing only Theorem A.
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Appendix. The author has recently extended Theorem A(II) as follows
(cf. [10], Lemma 1.2):

THEOREM 3.5. Let G be a LCA group and P a semigroup in G such that
PU(-P)=G. Put A=P N (-P) and H= A*. If P is open, then we
have

(%) mx{Mp(G) N M(G)} C Mp(G) N M(G).
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