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AN ORDERING FOR THE BANACH SPACES

G. A. EDGAR

A binary relation will be defined on the class of all Banach spaces.
The relation is transitive and symmetric, so it is natural to call it an
"ordering". (The definition also makes sense for locally convex spaces
with good duality properties, but this will not be pursued here.) Many of
the elementary properties of the ordering are spelled out. Although some
connections with Pettis integration and unique preduals have been found,
the usefulness of this ordering in Banach space theory remains to be
determined.

Notation and terminology used in this paper generally matches Dun-
ford and Schwartz [4], Chapters IV and VI. More recent results in Banach
space theory will usually be quoted from Lindenstraus and Tzafriri [11] or
from Diestel and Uhl [3]. If 36 is a Banach space, its dual will be denoted
36*, its bidual 36**. The subset of 36** canonically identified with 36 will
simply be written 36.

DEFINITION. Let 36 and 2) be Banach spaces. Then 36 -< g) means

3 6 -

where the intersection is over all bounded linear operators T: 36 -» g).

The definition can be rephrased as follows: 36 < 2) if and only if any
a G 36**, such that T**(a) G g) for all bounded linear operators T:
36 -* ?), must be in 36.

A single operator T with 36 = J T * * " 1 ^ ] has been called a Tauberian
operator (see [10]). If there exists a Tauberian operator £->§) , then
36 -< g), but not conversely.

Following [9], where the case g) = /, is considered, we define the
$)-frame (cadre) of 36 by

with intersection over all operators T: 36 -» $). Then g(36, g)) is a Banach
space, 36 C g(36, g)) C 36**. One extreme possibility is g(36, g)) = 36**,
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which means that every operator from 36 to 3} is weakly compact. The
other extreme is $(36, g)) = 36, which is the relation 36 -< 3) considered
here.

Many properties of the relation < are stated below. When they are
stated without proof, they can be verified by straightforward diagram
chasing from the definition.

The relation is transitive (if 36j < 36 2 and 36 2 < 36 3, then 36x <dc3) and
reflexive (36 < 36 for any Banach space 36). So it defines a partial order on
the equivalence classes defined by the equivalence relation 36 ~ D iff
36 < 3) and g) -< 36. This partial order is not a total order (see remarks
following Proposition 11).

If 36 is isomorphic to a closed subspace of g) (below I will say "36
embeds in D"), then 36-<3). This can be seen using the isomorphic
embedding 36 ̂  3) in place of T in the definition. The converse is false,
however. We have /3 -< l2 (Proposition 1) and lx < c0 (Proposition 2), but
/3 does not embed in l2 and lx does not embed in c0.

The relation < has no relation with "semi-embedding", defined by
Rosen thai [12]. The space lx semi-embeds in /2, but lx •< l2 (Proposition 1);
conversely, Lx<lx (Proposition 10), but Lx does not semi-embed in /,.

There is a least equivalence class, namely the class consisting of all
reflexive spaces. That is:

1. PROPOSITION. 7/36 is reflexive, then 36 -< g) for all Banach spaces 2).
If 3} is reflexive, then dc <$) if and only if 36 is reflexive.

Proof. Suppose 36 is reflexive. Since

36 c nr**-l[g)] c36**,

we have equality. Now suppose g) is reflexive. Then

so 36 < 3) implies 36 = 36**. •

There is a second-to-least equivalence class, namely the class contain-
ing lx. That is:

2. PROPOSITION. Let 3) be a Banach space. Then lx<ty if and only i
is not reflexive.
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Proof. If /, < §9, then 9) is not reflexive by Proposition 1.

Conversely, suppose g) is not reflexive. I must show lx < g). If lx

embeds in g), then clearly lx < g). So we may assume lx does not embed in
g). Now since g) is not reflexive, there is a bounded sequence, no
subsequence of which converges in the weak topology [4, Theorems V.4.7
and V.6.1]. Then by a theorem of Rosenthal [11, Theorem 2.e.5] there is a
subsequence (yn) which is either equivalent to the unit vector basis of /, or
a weak Cauchy sequence. But lx does not embed in Y, so (yn) is a weak
Cauchy sequence. Then a(f) = limn f(yn)9 f G §)*, defines a G g)** and

Now consider / iG/f* such that r**(ju) G g) for all operators T:
lx -» g). We must show that / i G / , . Now /** is canonically identified with
the space 6a(N, ̂ P(N)) of bounded, finitely additive set functions on N [4,
Theorem IV.8.16]. Any such set function fx can be written as a sum of a
purely finitely additive set function (vanishing on all finite sets) and an
element of lx itself [3, p. 30]. So to show /i G ll9 we may assume ju is purely
finitely additive and show /x = 0.

So assume ju, G If * is a purely finitely additive set function on N, and
r**(ju) G g) for all r . Consider an infinite set A QN. Define T: lx -> g)
by: r(£?w) =^w if « e A, T{en) = 0 ii n <£ A. (Here ew is the vector
(0 ,0 , . . . ,0 ,1 ,0 ,0 , . . . ) with 1 in the nth place.) To compute r**(jit), let
/ G g)* and e > 0. Choose iV large enough that |/(>>J - « ( / ) | < e for all
n>N. Then | / ( r (e n ) ) — «(/)X/i(w) I— £ except for finitely many n. But
/x vanishes on finite sets, so | T**([i)(f) - a(f)[i(A) | < e. Thus JT**(JIA)

= ju(^)a. But T**(ju) G i) and a & g), so fi(A) = 0. The set ^ was
arbitrary so ju — 0. This shows lx < g). D

More information on the class of lx is given below (Propositions 10
and 13).

A Banach space X satisfies the condition of Mazur iff any a G 96**
which is sequentially continuous on (3£*,weak*) is actually continuous
there (and hence is an element of 36).

3. PROPOSITION. A Banach space X satisfies the condition of Mazur if
and only if£<c0.
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Proof. Suppose 36 < c0. Let a G 36**, and suppose a is sequentially
continuous on (36*, weak*). Let T: 36 -» c0 be any operator. Define fn G 36*
by fn(x) = T(*)(n)- Now limw /„(*) = 0 for all JC, so /„ -> 0 (weak*). By
hypothesis, a(fn) -> 0. But T**(a) G /„ is given by T**(a)(n) = a{fn).
Thus T**(a) G c0. This holds for all T: 36 -> c0. Therefore a G 36. So 36
satisfies the condition of Mazur.

Conversely, suppose 36 satisfies the condition of Mazur. Let a G
15(36, c0). I claim a is sequentially continuous on (36*, weak*). Indeed, let
fn ->/(weak*) in 36*. Then the operator T: 36 -» c0 defined by T(x)(n) =
(/„ - / ) ( * ) has T**(a) G /„ given by T**(a)(«) - a(/n - / ) . But a G
T**~l[c0], so a(/n) -* «( / ) . Thus a is weak* sequentially continuous.
Thus a G X. This proves 36 < c0. •

There is a largest class containing separable Banach spaces. Namely:

4. COROLLARY. //36 is separable, then 36 -< c0.

Proof. Suppose 36 is separable, and a G 36** is sequentially continuous
on (36*, weak*). Then the unit hall B^* of 36* has metrizable weak*
topology [4, Theorem V.5.1], so a is continuous on (2?£*,weak*), and
therefore [4, Theorem V.5.6] a G 36. So 36 -< c0 by Proposition 3. •

5. PROPOSITION. Let ty be a Banach space. Then co<$) if and only ifc0

embeds in $).

Proof. If c0 embeds in g, then clearly co<$). Conversely, suppose
co<$). Then there is an operator T: co^>$) that is not weakly compact.
But then T is an isomorphism on some subspace of c0 isomorphic to c0 [3,
Theorem 15, p. 159]. Thus c0 embeds in §). •

If S is an infinite compact metric space, then C(S) ~ c0. The reader
may find it interesting to write down exactly what 36 -< C(S) means, using
[4, Theorem VI.7.1]. Then observe that the result is equivalent to the
condition of Mazur (by Proposition 3).

The condition (b) described in the next result appeared first in [6,
Proposition 4.4] in connection with the Pettis integral.



AN ORDERING FOR THE BANACH SPACES 87

6. PROPOSITION. Let H be a Banach space. Then the following are
equivalent.

(a)3E-c/00.
(b) If a E 36** is weak* continuous on all bounded weak*-separable

subsets ofdc*, then a E dc.

Proof. Suppose 3L<lO0. Let a E 3E**, and suppose a is continuous on
all bounded separable subsets A of (3E*,weak*). Let T: 3E -> /^ be any
operator. Then (since the ball of /£ is separable), 4̂ = T*(Bt*) is a
bounded weak*-separable set. By hypothesis, a is weak*-continuous on A.
Then T**(a) = a •<> T* is weak* continuous on £,*, so T**(a) E l^. Thus
a E r**-^ /^] . But T was any operator, so a E g(3E, Z^). Since £ -< /„,
we have a E 36.

Conversely, assume (b). Let a G g(X, Z^). Let i be a bounded,
weak*-separable set in £*, say {/„ /2 , . . .} is weak*-dense in A. Define an
operator T: dc -> /^ by r(x)(w) — fn(x). Then by hypothesis a E
^**~1[U> i-e-' ^**(«) ^ /oo' or a o r* is weak*-continuous on 5^ . But
then I claim that a is weak*-continuous on T*(B^). Indeed, suppose (g^)
is a net in T*{Bl%) and ĝ  -> g. Choose ĝ  E £7* with r*(g|) = g .̂ There
is a subnet g^ such that g^ converges, say to g' E 57*. Then T*(g') =
lim T*(g^) - lim g r = g. Thus, a(g r) - a(T*(gf)) ^ «(r*(g')) = a(g).
So a is weak*-continuous on T*(Bf*) D A So a E 36. •

If the word "bounded" is omitted in condition (b), the resulting
condition characterizes Banach spaces whose weak topology is real com-
pact [2, Lemma 9]. Talagrand [13] has shown that the two conditions (with
and without the word "bounded") are not equivalent.

7. PROPOSITION. Let $) be a Banach space. Then lO0<$) if and only if
ôo embeds in g.

Proof. If l^ embeds in ?), then clearly lO0<ty. Conversely, suppose
l^ <d- Then there is an operator T: l^ -» g) that is not weakly compact.
But then T is an isomorphism on a subspace of /^ isomorphic to l^ [3,
Theorem 10, p. 156]. Thus /^ embeds in g). •

My original interest in this relation can be traced to the following
proposition. Background for this result can be found in [5], [6].
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8. PROPOSITION. Let 36, g) be Banach spaces and let (£2, 3% ju) be a finite
measure space. If 3) has the (i-Pettis integral property and X <$), then 36
also has the [i-PIP.

Proof. Let cp: £2 -» 36 be a bounded scalarly measurable function, and
let i 4 G f . Define a E X** by a(f) = /^ / o (p J/x, / E X*. I must show
that a E 36. This will be done by showing that a E g(36, g)). Let T:
36 -» 2) be an operator. Then r ° <p is bounded and scalarly measurable
£2 -> g). By hypothesis, the Pettis integral y = jAT° <pdp exists in g). Now
forg E 3)*, we have

= a(T*(g)) = f

So T**(a) = j / E f ) , Thus a E g ( £ , g)) = X. This shows that the Pettis
integral fA <p d[i exists in 36. Thus 3£ has the JU-PIP. D

Corollaries of this result include: If H satisfies the condition of Mazur,
then 36 has the PIP [6]. If 36 -< l^ then 36 has the ju-PIP for all /x such that
l^ has the JU-PIP [6, Proposition 4.4].

9. PROPOSITION. 7/*?) is weakly sequentially complete and 36 -< ?), then
36 w wea/c/y sequentially complete.

Proof. Let ( x j C 36 be a weakly Cauchy sequence. Define a E 36**
by «( / ) = lim /(*„). In order to show a E X, we will show a E g(36, ?)).
Let T: 36 -» g) be an operator. Then (r(jcj) is a weakly Cauchy sequence
in ?), so it converges weakly, say toy E ^). Then for g E §)*,

r**(a)(g) = a(T*(g)) = Hm

So r**(a) = ^ E g). This shows a E g(36, g)) = 36. So ( JCJ converges
weakly to a E 36. D

A condition on a separable Banach space 36 stronger than weak
sequential completeness is the following: if a E 36** is Borel measurable
on (36*, weak*), then a E 36. An argument like the preceding one shows
that if 36 < 3) and g) satisfies this condition, then so does 36. It seems to be
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unknown whether this condition is equivalent to weak sequential com-
pleteness (in a Banach space). Any counterexample would have to be a
space that fails H<lv (See note added in proof.)

Godefroy and Talagrand [9] say that a Banach space 36 has property
(X) iff any a EX** such that oc(2fn) — 2a(/n) , for every sequence
(fn) C 36* with 2 \fn(x) |< oo for all x G l , must be in 36. (The sum 2 fn

is taken in the weak* topology of 36*.)

10. PROPOSITION. Let Xbea Banach space. Then %<lx if and only z/36
has property (X).

Proof. Suppose 36 < lx. Let a G 36**, and suppose a(2 fn) — 2a{fn)
for every sequence (fn) C 36* with 2 |/,,(.x) |< oo for all x G J . (This is a
"weakly unconditionally Cauchy" series.) To show that a G 36, we show
that a G g ( J , / , ) . Let Tide -* lx be an operator. Write ert for the canonical
unit vectors in If = Z .̂ Let/W = r*(en). Then for any x G 36, we have

Thus a(2 fn) = 2 «(/„). If (#„) is a bounded sequence of scalars, the same
argument shows a(2 anfn) = 2 ana(fn). Define w: N -» R by w(/i) = «(/„).
Then for any g = 2 anen G Z ,̂ we have

r**(a)(g) - a

So 7**(a) = uGlx. Thus a G g(36, Z,) = 36. This shows that property
(X) holds.

Conversely, suppose property (X) holds. Let a G 36**, and suppose
T**(a) G Z, for all operators T: 36 -* Z,. Let (/„) C 36* with 2 \fn(x) |< oo
for all x G 36. Then an operator r : X-» lx is defined by T(x)(n) =fn(x).
Since 7T**(a) G ll9 we have

or

So by property (X), we have a G 36. This shows 36 -< Zj. •
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Recall that 36 < lx implies that either 36 is reflexive or 36 ~ lv Godefroy
and Talagrand [9] show that the following Banach spaces have property
(X) [assuming that there are no measurable cardinals, or that the spaces
are small enough (e.g., separable) that measurable cardinals do not
matter].

(i) A subspace of L^JU,), where ju is any measure.
(ii) Lx/Hv

(iii) A weakly sequentially complete direct summand of a Banach
lattice.

(iv) Sequentially complete subspace of an order continuous Banach
lattice.

(v) Predual of a W*-algebra.
(vi) A space with local unconditional structure not containing /£

uniformly.

Godefroy and Talagrand studied property (X) in connection with
uniqueness of preduals. The ordering -< can be used in the same way. The
following proof can be imitated with many other spaces in place of the
James space J.

11. THEOREM. Let J be the James quasireflexive space, and let 36 < J.
Then 36 is the unique isometric predual ofdc*.

Proof. First note that any predual of 36* is canonically identified with
a subspace of 36**.

(A) We first prove the following: Let 36j C 36** be a predual of 36*,
and let S: J* -> 36* be an operator. Then S is a ( / * , / ) — a(36*, 36)
continuous if and only if S is a(/*, / ) — a(36*, 36,) continuous.

The James space / will be considered to be (as in [7]) the set of all
functions/on the ordinal space [0, co] satisfying

(i)/(0) = 0,
(ii) Kmk<af(k) = / (« ) ,

the sup is over all finite sequences k0 < kx < • • • < kn in [0, co]. The
evaluation functional are defined by ea(f) = f(a)9 a E (0, co].

So suppose S is a(/*, / ) — a( X*, X) continuous. Then S(ek) -» S(eu)
in a(36*, 36). To show that S is o(J*9 J) — a(36*, 36j) continuous, it
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suffices to show S(ek) -> Sie^) in a(36*, dtx). Now since /** can be
identified with the set of all / on [0, to] satisfying (i) and (iii), above, we
know S(ek) converges in a(96*, dcx). Write h for the limit of S(ek) — S(eu)
in a(3E*, dtx). I must show h — 0.

Fix n, and let k0 < kx < - - - <kn be positive integers. In /*, consider

T h e n IIM|| < l , s o | | S ( « ) H < IISII. T h u s :

2 (-l)"-'±(s(eki - eu) - S(eki_t ~ ej)

or
n~\

2 2 (-lY~'S(eki - ej

Now let kn increase; we have S(ek — eu) -> 0 in a(36*, 3£) as kn

ko,...9kn-x remain fixed, so

n-\

and

Then let kn_x increase; we have S(ekni — e^) -> h in a(£*, £x), so

Then let fcn_2 increase; we have S(ekn2 - ej -» 0 in a(36*, X). Then let
fcw_3 increase; we have 5(eik||_3 — ew) -> A in a(36*, X^. We get in the end

-T=\\nh\\<\\S\\.
in

But this holds for all n,soh = 0. This shows that S is (T(/*, / ) - a(36*? dc{)
continuous.

(B) We next prove the following: if X and 3£j have isometric dual
spaces, then g(3E, / ) = g(^1? / ) .



92 G. A. EDGAR

We may assume 36, C 36**. Now

S(36,/) = PI {T**-1(J)\T:X^J}

= n {£*-V) | 5: /* -> 36*, 5 is weak* continuous}

depends only on which operators S: J* -» 36* are weak* continuous, and
by the above observation this is the same for 36! and 36.

(C) Finally, suppose dc<J and 36* is isometric to 36*. If 36, is
identified with the appropriate subspace of 36**, we have 36, C g(361? / )
= 3(36, / ) = 36. Similarly 36 C 36̂  So 36 is the unique predual of 36*. •

The relation -< is not a total order on the equivalence classes. The
spaces c0 and /(<o,) of [7] are not comparable. An example using only
separable spaces can be obtained using the James quasireflexive space /
and Bourgain's t^ space with the Schur property 36 [1]. Then J <H fails
by Proposition 9, since 36 is weakly sequentially complete, but / is not.
And 36 -< / fails since /** contains no copy of c0, and 36** is isomorphic
to an LJ^fi) space, so all operators 36** -»/** are weakly compact [3,
VI. 1.2], and hence all operators 36 -> / are weakly compact.

According to Propositions 2, 9, 10, the second-least equivalence class,
the class of /,, contains all nonreflexive spaces in the list after Proposition
10, and is contained in the class of all weakly sequentially complete
spaces. However the class of lx does not contain all weakly sequentially
complete spaces. We next give two illustrations of this.

12. PROPOSITION. Let T be a set. Then /,(F) <lx if and only //card T is
not a (real-valued) measurable cardinal.

Proof. Recall that /,(r)* = / J T ) [4, Theorem IV.8.5 and following
Remark] and IJ.T)* = ba(T,<$(T)), the space of all finitely additive,
bounded, signed measures on the power set ^(F) of F [4, Theorem
IV.8.16]. We claim that the frame g(/,(r), /,) is the subspace ca(T, 9(T))
of all countably additive signed measures on ^(F). Since lx(T) —
ca(T, ^(F)) if and only if card F is not measurable, this will prove the
result. Note that /, = ca(N, <3>(N)). If /A e ba(T, <3>(F)) and T: /,(T) -> /„
then r**(/i) G ba(N, ^P(N)). If ju is countably additive, so is r**(jn): If
An C N , 4 | 0 , then xAn "* ° (weak*) in Z ,̂ so T*{xAn) -* ° (weak*) in

and thus T*(xA ) -> 0 pointwise, so by the Lebesgue dominated
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convergence theorem, T**(H)(XAH) -» 0. This shows that %(lx(T), lx) D
ca(T, 9(T)). Conversely, suppose p E S(/,(r), lx)9 and let B B c T , £„
disjoint. Define T: /,(r) - /, by: T(f)(n) = 2y e z ? w /(y), /E ^(D, * e N.
If en E /^ are the usual unit vectors and u E /^ is «(«) = 1, then 2 en — u
(weak*) in /„. But T**(/i) E /, = ca(N, #(N)), so ju(U ^w) = T**([i)(u)
= 2T**([i)(en) = 2ix(An). Thus ju E az(r, #(r)) . This shows that

n

Bourgain and Delbaen [1] give an example of a space £ which is a
separable t^-space but has the property of Schur (so it is weakly sequen-
tially complete). As noted above, 36 ̂  lx. Another reason for this is the
following. Since 36 is a t^-space, so is any complemented subspace, hence
no complemented subspace is isomorphic to lx. By the next result, 36 is not
in the equivalence class of lv

13. THEOREM. Let H be a Banach space, and suppose X < lx. Then every
bounded sequence in H that is not relatively weakly compact has a subse-
quence equivalent to the unit vector basis of lx with closed span comple-
mented in 36.

Proof. Write (en)™=x for the unit vector basis in /,, and (e*)^=x for the
biorthogonal sequence in l^.

First recall that if S: X -> lx is an operator, and (yj)JLi is a bounded
sequence in £ with S(yj) — ey for ally, then the span of {y^ is isomorphic
to /„ since S is an isomorphism there with inverse R: lx~*% defined by
R(2ajej) = H,ajyj, and the span of {j>y} is complemented in 36 with
projection P — RS.

Next recall that if (Aj)JLx are disjoint finite sets in N, then the span
of (XA )f=\ i n h is a complemented subspace isomorphic to lX9 since S:
/, -* //defined by S(2%=xanen) = 2ajLx(2neAjan)eJ is a map as required
above, withy. = X/4/llXAjII-

So suppose di<lv Let (xn) be a bounded sequence in 36. Let a E 36**
be a fixed cluster point of (xn). Assume a £ 36.

Since 36 -< lX9 there exists an operator T: 36 -»lx with T**(a) $. lx.
That is, under the identification /** = ba(N, ^P(N)), the measure A H»
OL(T*(XA)) is n o t countably additive on ^P(N). So there exist disjoint sets
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AkQN with 2%=xa(T*(XAk)) * «(T*(xUAk)). Composing T with a pro-
jection on /„ we may assume without loss of generality that Ak = {k}, so
that

k=\

In fact (using another projection to suppress a finite number of coordi-
nates) we may assume, for some e > 0, that

2 \a(T*(et))\<^r and |a(7*(xN)) |>* .

We now construct "blocks" Aj = {cij + 1, fly + 2,...,ay+1} recur-
sively. Let ax = 0. Choose m, so that

(This is possible since a is a cluster point of the sequence (xn).) Then
choose a2 > ax so that Ax = {1,2,... ,a2} satisfies

)(xmi)\>e and

This specifies a2, m,. Next note that

Choose m2 > m, so that

_9_
10 £ '

.})(**,)|>4« and 2 \T*(el)(xmi)\<±

Then choose a3 > a2 so that A2 — {a2 + 1,... ,tf3} satisfies

I^*(X,2)(^2)I>4^ and 1

Continuing in this manner, we get m, < w2 < m3 < • • • and 0 = ax < a2

< a3 < - - • so that if Aj = {#, + 1,... ,ay+ J , then

(1) \T*UAJ)(Xm,)l>Tne fora11^'

(2) 2 \T*(eZ)(xm)\<^e for ally,

00

0) 2 I«(
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Then (1) and (2) show that (T(xm ))JL} spans a complemented subspace of
ll9 and (T(xm )) is equivalent to the unit vector basis of lx. Again
composing T with a projection on lu we may assume that T(xm ) = e^
[By (3) we still have r**(a) £ /,.] Thus we finally have that (x j . )^ , is
equivalent to the unit vector basis of /, and spans a complemented
subspace of 36. •

I do not know whether the converse of this theorem holds. If it does,
this is a non-trivial characterization of the equivalence class of lx. It can be
shown that 36 < lx is equivalent to the following more complicated condi-
tion: For any bounded sequence (xn)™=l in 36 that is not relatively weakly
compact, and any cluster point a of (xn) in 36** but not in 36, there exist a
subsequence (xm)JLx equivalent to the unit vector basis of lx and a
projection T onto the closed span of {xm ) such that T**(a) £ 36.

Since there is a least equivalence class (Proposition 1), is there a
greatest equivalence class? There is a greatest class containing separable
spaces, namely the class of c0 (Proposition 3). But there is no greatest
class:

14. PROPOSITION. / / 36 is any Banach space, then there is a set T so
large that 36 -< / J F ) but 36 <* / J F ) .

Proof. Let the cofinality of the cardinal of F exceed the cardinal of
36*. Let y be the least ordinal with the same cardinal as F. We will show
that C([0, y]) < 36 fails. Since C([0, y]) embeds in / J F ) , this shows that

<36 also fails.

To show that C([0, y]) < 36 fails, we will exhibit a G g(C([0, y]), 36)
with a £ C([0, y]). The dual C([0, y])* can be identified with (̂[O, y]). Let
a G/,([(), y])* be defined by a(h) = h(y)9 A G ^ O j ] ) . Then <x&

Let T: C([0, y]) -> 36 be any operator. If / G 36*, then the function
T*(f) G l\[0, y]) vanishes outside some countable subset of [0, y]. Since
y has cofinality greater than card(36*), there exists y0 < y such that all
T*(f) vanish on the interval (y0, y). Then we have
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so that T**(a) = r(^Yo,y]) E £. This shows that a E g(C([0, y]), 36),
which completes the proof. •

Here is a permanence property of the class of lx. Recall that lx(T) < lx

is and only if card T is not measurable.

15. PROPOSITION. Let T be a set with lx(T) < /,. For each y G F , let Xy

be a Banach space with diy<lv Then the Indirect sum

satisfies 36 -< lv

Proof. For each y E F, let Jy: 36y ^ 36 be the coordinate embedding,
and Py: 36 -> 36y the coordinate projection. Let a E $(36, lx). For fixed y,
consider Py**(a) E 36**. If S: 36y -» ^ is any operator, then SPy maps 36 to
/„ so (&Py)**(a) E /,. This holds for all 5, so Pf*(a) E g(3£y, / ^ = 36y.
Writewy = Py**(a).

Now if Fo c F is finite, then

i u T n = < Hall,

so M = 2 y e r /Y (w v ) converges in the norm of X, and Py(u) — uy. I claim
u = a. Let / E £*. For each y e T, let /7 = / * ( / ) e dc*. Define the map
S: 3E-»/,(r) by 5(x)(y) =/y(Py(x)) . Since £ -< /, •< / , ( r ) , we have
S**(a) e / , ( r ) . Now if To C r is finite, we have

2 Py*(fy))(u) = 2 fy(uy) = 2 «(/Y)
Ter0 Yer0

Take the limit as Fo increases:

f(u) = 5**(a

Thus « = M E | . This shows

- «(S*(xr)) =

•
The referee suggested that I close the paper with some questions. I do

not know the answers to the following, although I have not worked on all
of them.
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a. Is the converse of Theorem 13 true? I think this is the most
interesting question listed here.

b. If dc < /„ does it follows that Lx([0,1], dc) -< l{! This is suggested by
Proposition 15, which shows that if lx(T) < lx and dc <lx then /,(r, X) < /,.
More generally, one could ask: If X -< /, and $) < ll9 does it follows that
dc ® 9} < I {I (Note that some related conjectures are refuted by the
observation that l2 ® l2 is not reflextive.) This is similar to the old
problem: If dc and g) are weakly sequentially complete, does it follows that
dc ® g) is weakly sequentially complete? (Recently refuted by Pisier.)

c. Is there a largest PIP. space? (Refer to Proposition 8.) Is there a
space 3c0 such that a Banach space dc has the PIP. if and only if dc < Xo? If
fi is a fixed measure, is there a space dc M such that 3£ has the /x-PIP. if and
only HdKdL^

d. Similarly, is there a largest weakly sequentially complete space?
(Refer to Proposition 9.) Is there a largest separable weakly sequentially
complete space?

e. Is there a third-smallest equivalence class? (Compare with Proposi-
tion 2.) Does the collection of all equivalence classes greater than lx have a
least element? a minimal element?

f. Describe the poset of equivalence classes of separable Banach
spaces. How many classes are there? What is the largest cardinality of a
chain? of an antichain? Is there an infinite decreasing sequence?

Note added in proof. M. Talagrand has told me that he has con-
structed a weakly sequentially complete space that fails the condition on
Borel measurable functional mentioned after Proposition 9.
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