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g-KONHAUSER POLYNOMIALS

W. A. AL-SALAM AND A. VERMA

A pair of biorthogonal sets of polynomials suggested by the g-
Laguerre polynomials are constructed. These are biorthogonal on (0, o)
with respect to a continuous or discrete distribution function. Several
properties are also given.

1. Introduction. Let a(x) be a distribution function on the interval
(finite or infinite) [a, b] with infinitely many points of increase and such
that [? x"da(x) < oo foralln =0,1,2,....

The set of polynomials in x, {#,(x)}, and the set of polynomials
{Q,(x)}, deg Q,(x) =n for n=0,1,2,... are said to be biorthogonal
with respect to da(x) on (a, b) if

b =0 (n#m)

(1) [ rmemae | g 7

Didon [4] and Deruyts [3] considered this concept in some detail. For
example for a given {P,(x)} the set {Q,(x)} is uniquely determined and
conversely.

Both Didon and Deruyts paid special attention to the situation in
which P (x) is a polynomial of degree n in x* (k fixed). In this case (1.1)
is equivalent to

(12)  ['x'P(x)da(x) =0 and fabx”‘Qn(x)da(x)ZO

a

(0=i<n).

and both integrals are # 0 for i = n.

Thus if £ = 1, {P,(x)} and {Q,(x)} collapse to the set of orthogonal
polynomials associated with a(x) on (a, b).

Both Didon and Deruyts gave as examples the case in which da(x) =
x*~Y(1 = x)P~dx, the distribution for the Jacobi polynomials on (0, 1).
Deruyts also gave the case in which da(x) = x% *dx on (0, o), the
distribution for the Laguerre polynomials.

More recently these polynomials gained a sudden popularity with the
interesting work of Konhauser [7, 8] and Preiser [10] (see also [2]). In
particular the biorthogonal system related to the Laguerre distribution is
now known as the Konhauser polynomials.
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With the recent interest in orthogonal g-polynomials it has become of
interest to look for a g-generalization of the Konhauser polynomials.

Our starting point would naturally be the g-Laguerre polynomials
which were introduced by Hahn [5]. The polynomials belong to an
indeterminate moment problem and thus there is more than one distribu-
tion function with respect to which the g-Laguerre polynomials are
orthogonal. In particular there is a discrete distribution and a continuous
one [9]. This is not a problem in our case since, as one might expect, it is
the moments that really determine the orthogonal as well as the biorthog-
onal sets of polynomials.

2. Preliminaries. In this paper we shall use the following notation.
For|q|<1,

(a; @) = T1 (1 — ag)
j=0
and, for arbitrary complex n,
(a5 9)n = (a5 9)/ (a9"; 4) oo
so that in particular if n = 1,2,... we have

(a39),= (0 —a)(l —ag)--- (1 —ag"™")

in which case the restriction | g|< 1 is not necessary.

For writing economy we shall write [a], to mean (a; q),. If the base
is not g but, say p, then we shall mention it explicitly as (a; p),,.
The g-derivative (base q) is D, f(x) = {(x) — f(gx)} /x. Its nth iterate

is [5]

(2.1) DIf(x 2 [ 1

!

Lgif(xq7).

The g-gamma function may be defined (see Askey [1] for an interest-
ing treatment) by

(4]
(4]

The g-Laguerre polynomials

T,(x)= (1-¢)7" o0<g<l.

[ql-hx]n n [q ]qij J+D+j(atn)
2

x/
[q]n j:O

LP(x|q) =
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are orthogonal on (0, co) with respect to the continuous distribution

Ax“
[~x]oo
where 4 = T (~a) /T(~a)T(1 + a)(1 — ¢)' "= or the discrete distribution

dB(a, x) which has jumps Bx*"'/[-x], at x =g¢*, k=0, *1,*2,....
Where

(2.2) dQ(a, x) = dx, (a>-1)

2o Llldl)
[-¢' )[4 T [a) s

The moments in either case are (see Moak [9])

B =

(2.3) p, =[q'*e], g7 p=0,1,2,....

The g-binomial theorem is

3. The g-Konhauser polynomials. We define forn =0,1,2,...
(3.1)  Z(x, klq)

_ [ql_Hx]nk é (q-nk;qk)quk,(k,—l)Jrk;(an)xkj
(4% %), o (g% ¢"),Lq" ]
and
1 n xrq%r(r~l)
3.2 Yn("‘) x, k =
( ) ( ‘q) [q]n rg() [q]r
r -r l+aty. ,k
5 e,
J':O [q]/
and prove that
(33) [ Zix k| Q)Y (x k| 9)dR e, x) = k,,,,,
0
where
1+a
q n -n
P Ui P

" (4],
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Formula (3.1), (3.2) and (3.3) reduce for £k =1 to the g-Laguerre
polynomials L{®(x | ¢) and its orthogonality relation (2.2). To prove (3.3)
it is necessary and sufficient to show

= [T mp@ =0, 0=m<n,
(3) 1, =[ "2 x. k| )d2(a %) { 2

m=n,
and
— 0 kmy/(a) :0’ 0"<—m<n’
(3.3(b)) J,,,,,,—fo Xy (x,qu)dﬂ(a,X){#O, m=n.

Proof of (3.3(a)). in the left hand side of (3.3(a)) substituting for
Z{(x, k| q) from (3.1) and integrating term by term and using (2.3), we
get

[ql+a] kq—%m(m+2a+l)
n

(g*5 4%),

-nk.

oo (g7 q%) lq
XEO (g% q%),

(3.4) L=

l+a+kq

m qk/("_m)

D e i
(o a5, [y (xp" 5 p),) -,

where p = ¢~'. The last equality is obtained by replacing p = 1/q in the
summation that appears in (3.4), simplifying and then comparing with
(2.1).

Now (xp'*%p), is a polynomial in x of degree m. Hence for

m = 0,1,...,n — 1 its g-difference is zero, whereas for m = n we get

(3.5) 1, = (-1)"[q' o], g ik D in@atns )

This completes the proof of (3.3(a)).

To prove (3.3(b)) we require the following formula which is a g-analog
of a result of Carlitz [2].

(ql+a+ki)

36 —kl; k N — r q—r(1+a+k1)
(3.6) (q q ) rgo [q]r

I1+ats.

y ; qS[q"]x(q 24")

(4],
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Formula (3.6) can be proved by using Jackson’s g-analog of Taylor’s
theorem [6] for polynomials of degree < m,

(3.7) | flx)= EODq’f(X) ,x=1"W

Put f(x) = (x¢'*%; ¢*),, in (3.7) to get

(3.8) (qu+a ) _ § r[[quc]r éo [?;]rlsqs(quaﬂ; qk)m

which for x = g~!7** reduces to (3.6).

Proof of (3.3(b)). Substitute for Y*(x, k|g) from (3.2) in the left
hand side of (3.3(b)), integrating term by term, then using (3.6) we get

(3 9) J = _[_‘lij‘]ﬂ —gkm(2a+]+km)( —km. k)
| = g, 544,
Since (g7*™; g*), = 0 form = 0,1,2,...,n — 1 and
l1+a
(3.10) J, .= (__)”ﬁ[_jh(q—km; qk)nq-%nk(nk+2a+n+2)’
’ ql,

hence the proof of (3.3(b)) is complete.
Furthermore (3.10), put together with the fact that the leading coeffi-
cient of Z{(x; k| q) is (=)"g*"*n+2a+m yields (3.3).

4. Properties of Z{*(x, k|q) and Y,((x, k|q). We devote this
section to some of the interesting properties of the polynomials Z{*(x, k |
q) and Y{¥(x, k| q) introduced in §3. We mention below first some of the
properties of Z{*(x, k | q)

< (x, kla) , _ fx*)
@) § [q”"]nk T (549,
where
0 2k_](k/+_]+2a .
fwy=3 4 ().

2o (a5 ¢*) 14" 1%,
42)  ZCxp,k|q)

Lykiz® (x, k| q).

g [[q”"‘]kn (1/v%; ¢%),

Ha] kn—kj (qk; qk)
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If Z{9(x, k| q) = 2r—y c(n, m)ZP(x, k| q) then
(¢ ] ug*m®
41 (4" 4%)
o nim (q-nk+mk; qk)j[ql+ﬁ+km] P ,qkj(n—m+a—p)

=0 (g% q*)lq" o]y,

for k =1 this reduces to the connection coefficient for the g-Laguerre
polynomials.

(4.3) c(n,m)= [

(4.4) {Dfx**'D,} Z{M(x, k| q)

l+(x]

— k[q
_(“)[

1+a e xZE (%, k| q),
]nk—k

(4.5) q%k(k+2a+l)ka’('a+k)(x, k I q)
~lq 20w, Kl a) = 283 k| )1~ g0
If xk* = 37 _o D(n, m)Z{?(x, k| q) then

[ql +a] (475 4%).. gHkntkn+2at ),

[ql+a] km

Proof of (4.1). Substituting from (3.1) in the left hand side of (4.1),
changing the order of summations and summing the resulting inner series
by g-binomial theorem, we get the right hand side of (4.1).

(4.6) D(n,m) =

Proof of (4.2). In (4.1) replacing x by xy and in the right hand side of
the resulting identity expanding (#y*; ¢%)_ /(¢; g*)., by g-binomial theo-
rem and equating the coefficients of ¢” on both sides we get (4.2).

Proof of (4.3). Multiplying both sides of (4.3) by Y, ®)(x, k | )dQ(, x)
where 0 < i < n and integrating from 0 to co, we get the desired value of
c(n, m) on using (3.3), (3.3(b)) and (3.9).

Proof of (4.4)—(4.6) follow by routine methods hence the details are
omitted. In a similar manner one can obtain the following properties of
the polynomials Y*)(x, k | q)

(4.7) ¥(x; k|q)

(qk§ qk)n[CI]m(‘]a_BQ qk)n——m m(a—B)y(B)
k k k k q Ym (x’qu)
o (4% ¢%),l4dl.(¢% ¢%) .

|
M=

i

m
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If x" = 37 _o D(n, m)Y{*(x, k| q) then
(48)  D(n,m) = (-1)""g e kmn=D[gr]
y 2 [g7""] (q k+km,qk I—

[4'],(4" 4%),

. e ) xﬁ+n
(4.9) Y( (x; kl‘l) :['x]ooxk l Dq"{ [_xl/k]oo} .

X

where 8 = (1 + a — k) /k.

Once more we remark that (4.7), (4.8), (4.9) reduce, when k = 1, to
corresponding properties for the g-Laguerre polynomials.

Other formulas which are g-analogs of known results on the Konhauser
polynomials can be easily obtained.

REFERENCES

1. R. Askey, Ramanujan’s extention of the gamma and beta functions, Amer. Math.
Monthly, 87 (1980), 346—359.

2. L. Carlitz, A note on certain biorthogonal polynomials, Pacific J. Math., 24 (1968),
425-430.

3. 1. Deruyts, Sur une class de Polynomes conjugés, Memoires coorounés et Memoires de
Savant Etrangers Academie Royal des Sciences des letters et des Beaux-Art de Belgigue,
Tome 48 (1886).

4. M. F. Didon, Sur certains systemés de polynomes associés, Annales Sc. de I'Ecole
Normale Sup. Tome, 6 (1869), 111-125.

5. 'W. Hahn, Uber Orthogonalpolynome die g-Differezengleichungen geniigen, Math. Nach.,
2 (1949), 4-34.

6. F. H. Jackson, g-form of Taylor’s Theorem, Mess. Math., 38 (1909), 57-61.

7. J. D. E. Konhauser, Some properties of biorthogonal polynomials, J. Math. Anal. Appl,,
11 (1965), 242-260.

8. ____, Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J.
Math., 21 (1967), 303-314.

9. D.S. Moak, The g-analogue of the Laguerre polynomials, Math. Anal. Appl., 81 (1981),
20-47.

10. S. Preiser, An investigation of the biorthogonal polynomials derivable from ordinary
differential equations of the third order, J. Math. Anal. Appl., 4 (1962), 38—64.

Received December 1, 1981.
UNIVERSITY OF ALBERTA
EDMONTON, CANADA T6G 2G1

AND

ARIZONA STATE UNIVERSITY
TEMPE, AZ 85287








