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A CHARACTERIZATION OF LOCAL
EQUI-CONNECTEDNESS

KATSURO SAKAI

Let X be a semi-locally contractible metrizable space. We show that
X is locally equi-connected (LEC) if and only if X has a local mixer
introduced by van Mill and van de Vel MV, ,].

Throughout this paper, all spaces are metrizable and maps are con-
tinuous. Let X be a space. We will use the same symbol A X to denote the
diagonals of X2 and X, that is,

AX={(x,x):xe X} or ={(x,x,x):x € X},

and we will let
A*X = {(x,y,z) €EX’: x=yory=zorz= x}
= U (XX {x} x{x} U{x} X X X{x} U{x} X{x} X X)

xeX

A local mixer for X is a map p: U —» X of a neighborhood U of A*X in
X3 to X which satisfies the following condition:

if ((x,, ¥,» 2,))o, is a sequence of points in X such that
the sequences (x,),, and (y,).-, both converge to a € X,
then the sequences (1(x,, ¥,» Z,))oe s (B(X0s Zns V0))oe, and
(u(z,, x,, ¥,))i,, converge to a for some m;

or, equivalently, (see [MV,, Lemma 2.3]):

for each x € X and for each neighborhood V of x, there
exists a neighborhood W of x such that

(#) EW)=(XXWXW)U(WXXXW)
UWXWwWXX)cul(V),
thatis, E(W) C U=domp and p(E(W)) CV.

When U = X? = dom p, we call p a mixer for X. If X is compact, then (*)
(or (#)) is equivalent to the condition that

p(x,x, y) =p(x,y,x) =p(y,x,x) =x
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for all x, y € X. The concept of a (local) mixer for a (compact) metric
space was introduced by van Mill and van de Vel [MV/,].

We say that X is locally equi-connected (LEC) provided there is a map
A: U X [0,1] - X, where U is a neighborhood of A X in X2, such that

AMx, y,0)=x, Ax,y,1)=y forall(x,y) €U,
AMx,x,t)=x forallx € X,t €[0,1];

the map A is called a (local) equi-connecting function. When U = X2, we
say that X is equi-connected (EC). These concepts were introduced by Fox
[F] (cf. [S], [H], [D] and [C]).

A space X is said to be semi-locally contractible if each point of X has
a neighborhood which is contractible in X; a space X is said to be
semi-locally path-connected if each point of X has a neighborhood whose
any two points can be joined by a path in X. In [MV,,], van Mill and van
de Vel showed that

(1) each semi-locally path-connected space admitting a (local) mixer
is (LC*) C*;

(i1) each A(N)R has a (local) mixer; and

(iii) each contractible space admitting a mixer is EC and each semi-lo-
cally contractible separable space with a local mixer is LEC.

In this paper, we will show that each (L)EC space has a (local) mixer
(Theorem I), and each semi-locally contractible space admitting a local
mixer is LEC (Theorem II). These results generalize (ii) and (iii). From
these results we obtain the following characterization of (local) equi-con-
nectedness.

THEOREM. 4 metrizable space is (L)EC if and only if it is (semi-locally)
contractible and has a (local) mixer.

First, we will prove the following:

THEOREM 1. If X is LEC, then X has a local mixer. If X is EC, then X
has a mixer.

Proof. Let U be a neighborhood of AX in X? and A: U X [0,1] - X
an equi-connecting function. For each a € X, let U, be a neighborhood of
ain X so that U/?> C U. There is an open neighborhood U/ of a such that
U’ C U, and NU/? X [0,1])) C U, [D, Lemma 2.3]. By [BP, Ch. II,
Theorem 4.1], there exists a metric d on X compatible with the topology of
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X and such that {{x € X: d(x,a) < 1}: a € X} refines {U}': a € X}. We
define a metric d* on X* by
d*((x, y, 2), (x", y', 2)) = max{d(x, x'), d(y, y"), d(z, 2')}.

Then d* induces the product topology of X°.
For each n € N, define

Vo(n) = {(x, y,z) € X*: d*((x, y, z), AX) < 1/n}.

Observe that for each (x, y,z) € Vy(1) and for each s, ¢ €][0,1],
AMA(x, y, 8), z, t) is well defined. Put

X, = U xx{a} X {a},

X, = U {a} X X X {a},
X, = U {a} X{a} X X,
aeEX

and for each n € N and for i = 1,2, 3, define
Vi(n) = {(x, »,z) € X*: a*((x, », 2), X;) =< 1/4n}.
Then we have a neighborhood
V= ¥,(1) U (1) U %(1) U B(1)
of A*X =X, U X, U X;. Fori=1,2,3, put
Y,= U (V,(n)\int %(n)).

neN
Since V,(n)\int¥Vy(n — 1) C Vi(n — D\int ¥(n — 1) for each n > 1, it
follows that
Y,= U (Vi(n) N (Vo(n — D\int ¥y(n))) U (V;(1)\int (1)),
n>1

that is, Y; is a union of closed sets which is locally finite in "\ A X. Thus
Y, is a closed neighborhood of X\ AX in V"'\ A X. Moreover, Y,, Y, and Y,
are mutually disjoint. Indeed, if not, then we can assume without loss of
generality that there exists a point

(x, y, z) € (V(n)\int ¥(n)) N (V;(m)\int V(m))

for some n < m. Then

d*((x, y,z),(b,a,a)) <1/4n
d*((x, y,z),(a’,b,a") <1/4m <1/4n
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for some a, a’, b, b’ € X. Since
d(x,a)<d(x,a’)+d(a’,z)+d(z,a) <3/4n<1/n,

we have d*((x, y, z),(a, a, a)) < 1/n; hence (x, y, z) € int V(n). This is
a contradiction.
Let f, g: Y\ AX - [0, 1] be Urysohn functions such that

fhuY)=0, f(Y,)=1; g¥;) =0, g(Y,UY,) =1
We define pu: V' — X by

p(x, y,z)
=132 if(xayaz)EYIU}fZ’
X if (x,y,z) EY, UAX.

Clearly, u is well defined and continuous at each point of '\ A X. We will
show the condition (#), which implies p is continuous at each point of
A X and p is a local mixer for X.

Let a € X and W be a neighborhood of a. By [D, Lemma 2.3] there
exists a neighborhood W of a such that W’ C {x € X: d(x, a) <1} and

AA (w2 x[0,1]) x w” x[0,1]) C W.
Note that W”* C V and p(W"?) C W. Choose n > 1 so that
{(xeX:d(x,a)<1/n+ 1/4n} C W”
and put
W ={x € X:d(x,a) <1/4n}.
Then it follows that
EW)=(XXW XW)U(WXXXW)U (W XW XX)
CV(n)U Vy(n) U Vy(n) CV.
Observe that E(W’) N Vy(n) C W2, 1t follows that u( E(W’)\Vy(n)) C
W. Since (E(W")\V,(n)) N V(n) C Y, fori = 1,2, 3, it is easily seen that
p(E(W")\V,(n)) C W. Therefore u( E(W’)) C W.

In the case U = X, using a metric d on X such that the diameter of X
with respect to d is less than 1, we have a mixer u for X because V' = X. I

Next, improving the technique of van Mill and van de Vel [MV,,
Theorem 3.1], we will prove the following without separability:

THEOREM II. Let X be a semi-locally contractible space. If X has a local
mixer, then X is LEC.
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Proof. Let p be a local mixer for X. Using the semi-local contractibil-
ity of X and the A. H. Stone Theorem (e.g., see [BP, Ch. II Theorem 2.1J),
X has a locally finite o-discrete cover U= U, U, by open sets
contractible within X, where each QL is discrete in X. For each U € A,
let F;: U X [0, 1] —» X be a contraction of U onto some x,, € X, that is,

F,(x,0)=x and F,(x,1)=x, forallx € U.

Take a closed cover {A(U): U € U} and an open cover {B(U): U € AU}
of X so that

A(U)CcB(U)cCcdB(U)CU

for each U € Q. For each U€ A, let f,: X —[0,1] be a Urysohn
function such that

fu(clB(U)) =1 and f,(X\U)=0.
For each n € N, we define a homotopy F*: X X [0, 1] - X by

F*(x,t) = {Fu(x, fu(x)-1) ifxeUe,,
, X otherwise.

Since U is locally finite and each A, is discrete, there exists an open cover
Y of X each element of which meets at most finitely many elements of QU
and at most one element of U, for each n € N. For each V € V, let k(V)
be the number of U € A with ¥ N U % @. And for each 0 <i < k(V),
let W(V, i) be an open cover of V such that

(1) WV, k(V)) <, WV, k(V)—1) =, -
<, W(V,1) <, WV,0) = {V};
2 fwed(V,i),UeUand WN A(U) # &, then W C B(U),

where U’ <, U means that for each W’ € AU’ there is some W € U such
that

EW)=(XXW XW)U (W XXX W)
UWw Xw XX)cul(Ww),

where this relation is denoted by W’ C,W. Now we have an open
neighborhood,

w*= U (W2 W eW(V, k(V)) for some V € V},

of AXin X2
We will construct two maps

G,H: W* X[1,0) > X
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as follows:
G(x,p,1)=x;  H(x,y,1)=y,
and for ¢ € [n, n + 1], inductively,
G(x, y,t) = p(G(x, y,n), H(x, y,n), F(G(x, y, n), t — n));
H(x, y,t) = p(G(x, y, n), H(x, y, n), F"(H(x, y, n), t — n)).

We will show that G and H are well defined and for each W € W(V, k(V)),
V € V, there is some n(W) € N such that

3) if x,y € Wandt = n(W), then
G(x,y,t) = G(x, y,n(W)) = H(x, y, n(W)) = H(x, y, 1).
To this end, let V € Vand W € W(V, k(V)). Set

(Vew:vnu+g)={U:i=1,2,.. k),
U EU,, fori=1,2,....k(V),
n(l) <n(2) <---<n(k(V)).
By (1), take W, € U(V, i),i = 0,1,...,k(V), so that
(4) W=W,, CuWiry-1 C, - C, W, C, W, =V.

Since W, N U= @ for any U € AU, n < n(1), it follows that G and H
are well defined on W? X [1, n(1)] and

G(x,y,t)=x, H(x,y,t)=y foreach(x,y,t) € W?X[1,n(1)].
Suppose G and H are well defined on W?2 X [1, n(i)] and
(5) G(W2 x[1, n(’)]) U H(W2 x[1, "(’)]) C Wey—isr-

From the definition and (4), it follows that G and H are well defined on
W2 X [n(i), n(i) + 1] and
G(W?*x[n(i), n(i) + 1]) U H(W?* X[n(i), n(i) + 1]) C Wy
Since W, ,,,-, N U= & for any U € U, n(i) <n <n(i + 1), it follows
that G and H are well defined on W2 X [n(i) + 1, n(i + 1)] and
G(x,y,1) = G(x, y,n(i) + 1), H(x, y,t) = H(x, y, n(i) + 1)
for each (x, y,t) € W X[n(i) + 1, n(i + 1)],

where we consider n(k(V) + 1) = o0 and [1, 0] =[], o0). Thus, by in-
duction, we conclude that G and H are well defined on W? X [1, o0) and
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satisfy condition (5) for all i = 1,2,...,k(V). Next, we will find n(W') €
N. Since {A(U): U € AU} covers X, there is a U € QU such that W N
A(U) # 9, however U = U,, for some i; = 1,2,...,k(V) because VN U
# @ . Thus we have some iy, = 1,2,...,k(¥") such that

Wiwy—ipe1 NA(U,) # 2.
From (2) and (5), it follows that
G(W? X {n(io)}) U H(W? X {n(io)}) C B(U,) C U, € Wsyy-
Recall that f,, 0(cl B(U,)) = 1. This implies
F@(B(U,) X (1}) = Fy(B(U,) X {1}) = x,.
Hence from the definition, we have
G(x, y,n(iy) +1) = H(x, y, n(iy) + 1)
= p(G(x, y, n(iy)), H(x, y, n(iy)), xy, )

for each x, y € W. Put n(W) = n(i,) + 1. Then (3) follows from the
definition and the property of a (local) mixer.
Now we define G’, H': W* X [0,1] - X by
G(x, y,1/t) ifr#0,
G(x,y,n(W)) ift=0andx,y € W,

H(x, y,1/t) ift #0,
H(x,y,n(W)) ift=0andx,y€ W.

G/(x, y,1) = {

H'(x, y,t) = {

From (3) these are obviously continuous and
G'|W* X {0} = H'|W* X {0}.
Thus we have an equi-connecting function A: W* X [0, 1] — X defined by

{G’(x, y,1—2t) if0o=<r=<1i,

Ax, y, t) = )

H(x,y,2t—1) ifi<sr=<]1. O
In the following, we will consider after J. Dugundji [D] a condition

that a space with a local mixer is an ANR. Let g be a (local) mixer for a

space X. For A C X define A*V = u(A4%) when 4° C dom p, and induc-

tively, define A®"*D = y((A4*™)?) when (4*™)3 C dom p. We define

A=) = _ A" if each A®™ is well defined. For 4 C B (C X), we

say that 4 is p-stable in B provided A»* is well defined and 4*>) C B.
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COROLLARY. Let X be semi-locally contractible. If X has a local mixer u
with the property:
(xx) for each x € X and each neighborhood W of x, there is
%k %
neighborhood V of x which is p-stable in W,

then X is an ANR.

Proof. From Theorem II, X is LEC. By [D, Theorem 3.2], we may
show that each open cover U of X has an open refinement  such that
every partial realization f: K° - X in V of the 0-skeleton of any polytope
K extends to a full realization of K in @U. This follows from (**) and the
following lemma:

LEMMA. Let X be semi-locally path-connected and have a local mixer p.
Assume that an open cover U of X has an open refinement  such that each
V €Y is u-stable in some W € °S. Then every partial realization f:
K° — X in Vof the O-skeleton of any polytope K extends to a full realization
of K in °US.

Proof. We define an extension of f over K by induction on the
skeletons of K. Assume f has been extended to a map f,: K” — X so that

fe)c N {y®em:flenK®) CcVeV)}

for each closed simplex o of K", where K" denotes the n-skeleton of K.
We denote the closed unit (n + 1)-ball and unit n-sphere in R**! by B"*!
and S”, respectively. Let 7 be any (n + 1)-simplex and h,: B"*! > 7 a
fixed homeomorphism. Note that

Lh(8")=f(r)c N {vem: f(rnK°)cVveT).
Using the technique of [MV,, Theorem 1.3], we have an extension g :
B"*! > X of f,h,|S" such that
g.B" ) c N {ve+: f(rnK°)CcVeV}.
Defineamap f,,,: K"*' > X by
fn+] IT = g‘rh;l: T>X
on each (n + 1)-simplex 7 of K. Then f,, , is an extension of £, such that

fin(r)c N {y®"D f(rNnK®) cVeT)
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for each closed simplex 7 of K"*!. Thus we have an extension f: K — X
defined by f|K” = f, on each K”". This extension f is obviously a full
realization of K in 9. o

REMARK. Let pu: U — X be a map of a neighborhood U of AX in X* to
X. We will call p a local weak mixer provided p satisfies the following
condition:

(w) p(x, x, y) = p(x, y,x) = p(y, x, x) = x
if (x, x, y), (x, ¥, x), (y, x, x) € U.

When U = X3, we call p a weak mixer. The properties of a local mixer
used in the proof of Theorem II are (w) and:

for each x € X and for each neighborhood V of x in X, there
exists a neighborhood W of x such that W X W X X C u'(V),

and then dom p is a neighborhood of AX X X in X rather than of A*X.
And moreover, if we assume X is locally contractible then it suffices that
dom p is a neighborhood of A X in X and (#)’ can be replaced by:

each x € X has a neighborhood W, in X such that for any
(#)” neighborhood V of x there is some neighborhood W of x
with WX W X W, C p™\(V).

If X is locally compact, then a (local) weak mixer satisfies (#)”. Thus we
have

THEOREM. A locally compact metrizable space is LEC if and only if it is
locally contractible and has a local weak mixer.

From this theorem, it follows that:

COROLLARY. Let X be locally compact and locally contractible. If X has
a local weak mixer then it has a local mixer. And, moreover, if X is
contractible then it has a mixer.

Supplement: In [MV,] it is a question whether every Banach space has
a “natural” mixer. In Euclidean space let u(x, y, z) be the inner center of
the triangle with vertices x, y and z. Then p is clearly the mixer. T.
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Yagasaki gave a “natural” mixer for each convex set X in a normed space
as follows:

p(x, y, z)
1
lx =yl +lly —z|l +lz — x|
Ay —zll-x+lz—x|l-y+llx—yll-z} if(x, p,2) €AX,
x(=y=12z) if(x,y,z) €EAX,

where || || denotes the norm. In fact, if (x, y,z) € AX and ||x — q|,
|y — a]| <e¢, then

Iu(x, y, z) = all
1
e =yl +lly =zl + 11z — x|l
XAy =zl -lix —all + iz = x| - lly — all + ||z — all}

=
|

< —zll-etllz—x||-e+||lx — ‘llz —a
”y_zl|+“2_x||{lly I I I Ix =yl -l Il

IIx — Il
=g+
Iy —zll + llz — x||

liz — all.

If ||z — a|| < 2¢, then

Ix = |
|z — a|| <||z — a|| < 2e.
=zl Filz —agie el

If ||z — a|| = 2¢, then

Ilx — Il
ly =zl +llz — x||

llz = all < iz — all

llz —all —e
€ €

= < =
l—¢/||lz—all  1—1/2

2e,

because

Ix =yl =llx —all +1ly — all <2,

llz = xll=llz —all —llx —all>|lz —a|l — &
and, similarly, ||y — z|| <||z — a|| — &. Therefore ||u(x, y, z) — a|] < 3e.
Since p is symmetric, this implies p is continuous at each point of AX

(hence at any point of X°) and p satisfies (#) (equivalently, (*)). There-
fore p is a mixer forX.

The author would like to thank T. Yagasaki for his definition of
natural mixer.
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