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AN INTERPOLATION THEOREM
AND ITS APPLICATIONS TO
POSITIVE OPERATORS

V. ToTIK

We answer a special case of a problem of Z. Ditzian. The obtained
estimate for the Peetre K functional is applied to the characterization of
functions for which ||7, f — f|| = O(n~*) (0 < a < 1), where T, is either
the Bernstein, Szasz-Mirakjan or Baskakov operator or their Kantoro-
vich-invariant and || - || denotes either the L?” (p = 1) or the supremum
norm.

1. Let (a, b) be an interval, B = L?(a,b) (1=p<o0) or B=
Cla, b], ¢ a non-negative function on (a, b) and r =1 an integer. Z.
Ditzian [6] estimated the Peetre K functional

K, f)y= inf  (If—glz+ legls)

2,8 Vabs. cont.

by norms of second order differences of f when ¢ had certain regularity
conditions. In connection with this he raised the problem if in the case
(a,b)=(0,1), B=L?0,1) (1=p<o), p(x)=x* («>0), fEB,
(support f) C (0, 3/4), the estimate

(1.1) D3 *(f, 1) S K, (17, f) < Dyw},*(f, 1)
holds, where

1/p

i () =p | [F 18 f(0) P ]

n=t rn)l/(l—a)

1/p
+ sup {flAz,,rf(x)l”dx} for0<a<1,
rn

-,.'Stl/(l—a)

_ 1/p
wE*(f, 1) —_—sup{f(1 ¢ IAZ"’xaf(x)}”dx} fora =1,

n=t ,.n)l/(l—u)
and

A% f(x) = fx = h) = 2f(x) + f(x + h).
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In §2 we justify this for the special case » =1 in a more general
setting. Even this has many applications, e.g., the characterization of the
function classes

(MK f=flp<Kn*n=12..} (0<a<l),

where the K, are the Kantorovich polynomials, as well as other problems
concerning Kantorovich type operators. Finally, in the last section we
briefly discuss the analogous problem in the C-metric.

2. As we have already mentioned, Ditzian’s result is complete when
@ behaves like x* (a > 0), however his “modulus of smoothness” is rather
complicated and the case of an infinite interval or an infinite singularity at
the endpoints is not covered. Ditzian also showed how the general case
can be reduced to that where ¢ has no singularity inside (a, b).

We want to estimate

(2.1) K(tza f) = inf (”f“ 8llLrcapy T tzll(ng””Ll’(a,b))

g’ abs. cont.

by norms of second differences of f which contain the function ¢ itself
and not another one of the same order. This will cause several problems,
but it turns out to be very fruitful in applications.

Since a linear substitution brings (a, b) to either (0, 1), (0, c0) or
(— o0, 00), we may suppose (a, b) is (0, 1), (0, o0) or (— oo, c0). We also
assume ¢ is positive and twice continuously differentiable on (a, b). We
need further assumptions on ¢ around the endpoints, which we give for
a = 0 and b = oo with the agreement that similar conditions hold around
b =1 or a = —oc0. Thus, we suppose:

(1) @ is convex or concave in a right (“left”) neighbourhood of a = 0
(b= o0);

(2) there is a constant C = 2 such that in these neighbourhoods

(1/C)e(x) =@(y) = Cp(x) forx <y =<2x,

and

()= 2 g = c q’if)

are satisfied;

3) furthermore,dg ¢ is concave in the mentioned neighbourhood of
a=0and @0 + 0) = lim,_o49@(x) =0, but ¢(x)/x > 00 as x - 0 +
0, then there is a y < 1 such that ¢(x)/x” decreases in a neighbourhood
ofa=0.
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For the sake of accuracy we give the analogue of (2) at b = 1:
(1/C)e(x) =¢(y) = Co(x) for (1 —x)=(1—y)=2(1-x),

(i< o 2X) vy 1< o PX)
e e N O T 2

For example our assumptions are satisfied for the functions
x*(log(1 + | x]))?, x*|log x |, x*(1 — x)? provided that at the second one
a7 1when8>0anda = 0.

Let us agree that K denotes a constant not necessarily the same at
each occurrence, but C, C,, 4 and 4, always denote the following
constants:

(a) Cis asin (2);

(b) A4 is the constant in

4 1 ’ ’ 17|
1 eriwiy = A g W Ly + (8 = @S iria )

valid for all a’ < b/, f, f” € L?(a’, b’) (see [6, Lemma 2.1]);
(c) 4, = 2 and, for p > 1, 4, is the constant in the maximal inequality

(4, =2(5p/(p — 1))?; see[14, p. 7]);
(d) finally, we set

(2.2) C = 48C6AAP.
Let ¢ be a twice continuously differentiable function on (0, co) with
_ 1 ifx=1,
(2:3) ¥(x) = {0 if x =2,

and 0 = y(x) < 1 otherwise. We may assume C is so large that |¢'|< C
and |¢" |< C are also satisfied.
For small 2 > 0 let

(2.4)
h* = inf{x|x — heo(x) >0} when (a, b) = (0,1) or (a, b) = (0, o0),
h* = inf{x|x + he(x) <0} when (a, b) = (— o0, »);
furthermore

h** = sup{x|x + ho(x) <1} when (a, b) = (0,1),

h** = sup{x|x — ho(x) >0} when (a, b) = (0, ) or (— o0, ).
By our assumptions ¢(x)/x is monotone around the endpoints; hence for
small &, x = ho(x) € (a, b) when x € (h*, h**), and, for (a, b) = (0, 1)

or (0, o0), (h*, h**) is the largest interval with this property. We also have
ho(h*) =|h*| in every case, ho(h**) = h** when (a, b) = (0, ) or
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(— o0, 0), and A@(h**) = 1 — h** when (a, b) = (0, 1), provided 4A* and
h** are finite, respectively.
After these preliminaries we define, for small 7 (see (2.2)):

Qo(f, 1) =Qy(t) = sup “Ath:f”L”((C,h)*,(C,h)**)’
o<h=<t

950)(0: sup |[A2hf”L”(h,2(C,h)*+h)’

o<h=r*
QP(¢) = sup “Ahf“LP(2(C, RY**—1—h,1—h)>
O<h=t*
9‘2"’(t)=|f— 7 / flu)
12(-—1151/2)
II |3 ff( )( ) Lp(l'),

where i = 0 or 1, I, = (0,2(C,2)*), and I, = (2(C,¢)* — 1, 1). Finally with
the agreement [ f = [Z% f = 0, we put

Q1) = NN Locyeys= /2,000

Q(r) = A1 Lo (= o0 20ty

(note that Q(” and 2V (j = 1,2) are the same conditions around a = 0
and b = 1, respectively).

Setting
5 — 0 ife(0+0)=0,
® 11 ifp(0+0)>0,
5 — 0 ife(l—0)=0,
"1 ife(1—0)>0
and

0 if lim M|<

5 _ X—00 X
) 1 if lim "l(x—)[-—-

x>+ 00 X
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we can now define for small ¢, say 0 < ¢ < ¢, our moduli of smoothness:

w(f, 1) = Qo(2) + (1 — §)QO(2) + 5,25(¢)
+(1—8,)0°(¢) +8,25(¢)
when (a, b) = (0,1);
w(f, 1) = Qo(r) + (1 — 8)QO(z) + 8,QP(2) + 8,08(¢)
when (a, b) = (0, ©);
and
w(f, 1) =Qy(t) +8,.95(r) + §__ 9 =(¢)
when (a, b) = (— 0, ©);

and for these we have

THEOREM 1. Let @, K(t, f) and w be as above. There is a constant K
independent of f € L?(a, b) (1 =p < o0) and 0 < t < ¢, such that

(1/K)e(f, 1) = K(2*, f) = Ko (], 1)
holds.

REMARKS. (1) If there is a constant K > 0 such that for A* < x < h**
we have 1 = h¢’(x) = K, then we can write

Q¥(t) = sup “A%z(pf”L’(h*,h**)
o<h=y
rather than (7). Also, in lieu of Q{”(7) and Q{"(¢) we can always write
QrO(r) = sup ||45, Hlion.s

O<h=r*

and

QO(1) = sup ||A2hf||LP(§,1—h)
O<h=t*
(¢ € (0,1) is fixed). The estimate of Theorem 1 holds just as well. Both of
these statements follow easily from the proof below.
The above remark enables us to write convenient bounds at the norms
in the applications, e.g. if (a, b) = (0,1) and ¢(x) = {x(1 — x), then
h* = h?/(1 + h?), h** = 1/(1 + h?), but we shall write

— 2
w*(f,1) = sup ”Ath;f”L"(hz,l—hz)+ Sup ”Ahf“LP(h,l—h)

O0<h=t O<h=<i?
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rather than w, and the estimate
(1/K)o*(f, 1) < K(2%, ) < Ko*(f,1)

holds just as well as in Theorem 1.

(2) When (a, b) = (0,1) and ¢p(x) = x* (a > 0), then we obtain (1.1)
for r = 1 (see also Remark 1). The case r > 1 remains open.

(3) Q¥)(¢) and Q{=*)(¢) are not true moduli of smoothness. They
simply measure the growth of f around the endpoints (for the sake of
clarity we remark that in 2§,

1) = g ) e = 2E V2 )= )

is the “orthogonal projection” of f onto the set of the linear functions, i.e.
[, is the only linear function for which

l,(¢)dt = t)dt and d(e)de= [1f(¢)dt).
fideyae= [ 1) Je)de= [ of()do)
We mention two corollaries which are by no means trivial.

COROLLARY 1. If @, and @, are two functions satisfying our conditions
and if w, and w, are the corresponding moduli of smoothness, then
¢, = Ko, implies

ww.(f’t)SKl‘%z(fat) 0<r=1,)
for all f € L?(a, b) with K, independent of f and t.

COROLLARY 2. w( f, At) < KN*(f, t) for A = 1 with K independent of
A=l fel?(a,b)and 0=t =1,

Proof of Theorem 1. First we show that K(¢2, f) < Kw( f, t).

(I) The case (a, b) = (0, 1). It is enough to prove that for f € L?[0, 1]
and (support f) C (0, 3/4), we have K(1°, f) < Kw( f, t) (see [6, p. 310)).

(a) First let us suppose ¢(0 + 0) = 0, ¢ increases and ¢(x)/x de-
creases in the interval (0, d) and lim,_ g4 @(x)/x = oco. In this case
0, = 0 and A* > 0 for all &2 > 0 (see (2.4)).

We show the existence of a function f, for which

(2.5) N f = fll e,y 78 T t2||‘P2fx””LP«C.:)*J/S)
12C34
1

provided ¢ is sufficiently small (here K is independent of f and 7).
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We may suppose 0 <t < 1/8. For the function
(2:6)  f(x)= fdu/ f(x + 09(x)) + f(x — vo(x))) do
we have (see Minkowski’s inequality in [14, p. 271])
1 u
W= ft“L”((C,t)*J/S) = —tzfodu/o “Azucpful_!'«clu)*,?/s) dv=w(f,1),

and a simple calculation shows that, with ¢ = ¢@(x),

*f(x) = (29”9 + 6¢2)(f, — f)
+ (pe” — 4¢') fA f(x)d

@A f(x) + 1AL f(x)

+ Zt‘f [ Ut + 19) = fx ~ 19)

—2f(x + up) + 2f(x — ug)] du
Hence, using the fact that for (C,¢)* < x < 7/8 and sufficiently small ¢
we have, by @(y) # O(y) (y - 0),

2C*((Ct)*) _ 2C _ 1

-

(Clt)*?_ - (Cl[)z - 1‘2,

7+ gp|<

we obtain from Minkowski’s inequality

2 2
NP N Loy 18)
2,—2 — 2
=ttt {SHf; f“Lp((C],)*]/g) + ?‘/(;“Au(p”L"((C,u)*j/S) du

2
1A%, S]] u«clr)*ﬂ/&}

NN Loy 78 + BS)
< 150(f, 1) + B(f)
where

flx +19) = f(x — 19)

—2f(x + up) + 2f(x — up)) du

LGt 7/8)

Let g € L?(0,1) be a function the derivative of which is locally
absolutely continuous with ¢’g” € L?(0, 1). Clearly,

(2.7) B(f)=B(f—g)+ B(g)
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and

B(f-g)=2( swp |¢'(x)])
(Ci)*<x=<7/8

X 61 supl|( f— g)(- +“‘P)||LP((C,:)*,7/8)

B
e((Ci1)*)

<2- 12t
“ e

“f_g“L"

24C
= ”f 8llzr

where we used the fact that for the substitution p = x + ug(x) we have

(2.8) do = (1+ ug'(x))dx = (1 — tcg%ll)) dx

C 1
(1 —-C—l) deidx
7

when |u|<t¢, § =x > (C;t)* and ¢ is small enough. Also, for small ¢,
7 = x> (C;t)* and |v|< tp, we have

22 =1 - TS

t X
1-—|==
( Ct) 2’

x+o=x(1+1p(x)/x)=<2x,

x+02x(l—t

and, hence, by Taylor’s formula,

j;'(g(x +19) — g(x — t9) — 2g(x + ug) + 28(x — ug)) du
=I fotg'(X)(tho — 4ug) du
+[[ [0 =0l x o) do = [ (=t9 = 0)g(x+ o) do
~2("(up = 0)g"(x + o) do
+ 2/_"¢(—u<p — 0)g"(x + v) dv] d

ol <te q)?‘(x +v)

< 6t3q>2( max ) g
=6Cr’M(¢%g";x) (3}

=x = (Ct)*),
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where M(g; x) denotes the maximal function of g. This and the maximal
inequality give, for 1 < p < oo and small ¢,

@9)  Blg)=2-6c%(  max  1¢/(x)|)IM(¢8")I.

(C)*=x=<

3 ‘P((Clt)*)

< 12C%4,t
< 12C%4,C; ' %978 .-
Forp =1,

lflfiw(iw —v)g"(x+ v)dvdu
0vY0

ol
T \p=e @?(x +0) /Yo

- t u 177
=< Cltopg 2fa’ufqu(xiﬂp)lg (x =19)|@dr
0 0

fiu(pqaz(x +0)|g"(x + v)|dv|du
0

= C [ (1= )¢ (x = 19) | 8" (x = 79) | dr
0
= C%* ¢ (x = 19) | g"(x = 9) | d,
0
and so, by Taylor’s formula,

2. B(g) =2-6C*? '
(2.10) B(g)=2-6C%( _ max  |¢(x)|

t
X max fofpz(x *719)|8"(x = 719)|dr

L'((C\1)*,1/8)
7/8
< 12C3C1"tftf (18" )(x = rp(x)) dx dr
0 Y(C)*
=24C°C'9’g I,

where at the last step we used (2.8).
By (2.7), (2.9) and (2.10)

B(f) = 12C°4,C; (I = gl + 11978 N 10 )-
Taking on the right side the infimum over all possible g, we obtain
B(f) =< 12C3APC1_'K(t2, f)

for all sufficiently small z, and (2.5) has been verified.
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For the function
t*/2

f*(x) = —ti:; f([ f(x+u+v)—f(x+2(u+v))dudv,
we have, for small ¢ (see e.g. [6, pp. 319-320)),

W/ = £ e, = w(t) (= wl(f, 1)),

and since in our case ¢(x)/x" decreases around x = 0 for some y < 1, we
also have

202 p4r 2 2
NP N proaicm =@ (Z(Clt)*)”ft*““L"(O,Z(C,t)*)

< CrPp((Cy)*)(1%) 2 w(1)

2 =2 ) p((c)) |
= Ct*(t*) “w(t)e ( Ct ((Clt)*)y) )
= Ce2(e) u(1)g? (cnffﬁ? )/()

= Ctz(t*)_zw(t)(pz(cll/“_7)1*)
< K2 (r*) (1)@ (1*) < Kw(1);
hence

(2.11) W= F* N ero2cc,m T *g? N Lro2cyny = Ka(t).

Now if ¢ is the function of (2.3) and
g(x) = $((Cyt)*x) fx(x) + (1 = $((C1)*x)) £, (x)

(let f(x) = 0 for 7 < x < 1), then from (2.5) and (2.11) we obtain (using
[6, p. 310])

12€%4,24C°

INf— 8llirony T t2||(PzgtN”LP(0,1) =Ko(f, 1)+ “_Cl—

k(2 f),

by which (see (2.2))
K(e, f) = Ko(f, 1) + 3K(2, f),

and the proof is complete.
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(b) If @(x)/x increases in a right neighbourhood of x =0 or if
@(x)/x is bounded there, then h* = 0 for small 4, and for f, as in (2.5) we
have, for small ¢,

W= fllerony T t2”(p2ft””L"(0.7/8) <Kaw(f,1)

(see the above proof).
Finally, if ¢(0 + 0) > 0 we can also argue as above, except we must
use the linear function

o (12x — 61)) 11
(x) = mff( ST () )« 7)
1=1(0,2(Cy1)*)

rather than f* (for £** our assumption gives

W= £ Loy FHRPCE*Y N riry = U = ¥ Loy = (1))

(IT) The case (a, b) = (0, o0). Here we must show that for f € L?(0, )
and (support f) C (1, 00), we have K(¢%, f) < Kw(f, t) (see (I) and [6, p
310]). If ¢(x)/x 1s bounded as x — oo then h** = oo for small 4 and the
proof of (I)(a) holds here also (even f* need not be used). If, moreover,

@(x)/x — o0 as x — oo then 4** < oo for all 4. By the method of (I)(a) it
can be proved that

W= fllra jagcepn T t2”q)2fz””L”(I/Z,(Clt)**)
= Kw(f, 1) +6C4,C'K(1%, f),
and since we also have
”f”LP((C,:)**/z,oo) =w(f, 1),

the proof can be completed as above.
The case (a, b) = (— o0, 00) can be treated similarly.
We now turn to the proof of w( f, t) < KK(t?, f). The estimate of

Qo(f, 1) = sup I|A2hq>f”L"((C,h)*,(C,h)**)
0h=rt

is standard: Let g, be chosen so that it satisfies

(2.12) 1f = 8lliocapy + L2098 N Lrary = 2K(27, f).
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Considering (2.8), which holds for (C,¢)* = x = (C,t)**, we obtain, for
p > 1 from the maximal inequality (see also the considerations above),

QO(f’ t) = QO(f_ &8s t) + Qo(gn t)
=8f — &llrrcar

hep/2
1

2
—¢*(-+u+0)
—hes2 ¢* (- +u+v)

+ sup

o<h=t

X |g/(-+u+v)|dudo

LP((Cih)* (Cih)**)
_ 2 ”.
<81f— &llras + Ko 2(he) M(9%8)"5 Ml rcas

< K(1f = 8llrasy + 2198 N rcasy)
< KK(¢%, f).

For p = 1 use Fubini’s theorem (also compare (I) and [6, pp. 317-318]).
Around the endpoints the smoothness of f is also measured by other
terms. We shall estimate these only at a = 0 or b = oo since the cases
a = —oo or b = 1 are similar.
The term

_ 2
95°’(f, 1) = sup “Ahf||LP(h,2(C.h)*+h)
O<h=r*

occurs when ¢ is concave in a right neighbourhood of a = 0, (0 + 0) = 0
and lim ,_ 4, @(x)/x = co. By our assumption in this case, ¢(x)/x" is
decreasing around a = 0 for some y < 1. For x < &,

2
/-x+h/2 2u du _ fx+h/2 l; Y ul_zydu
@*(u) x @*(u)

h2Y x+h/2 o
=<K Z(h)f u du
q) x

2y h2
h2“2‘y <

¢ (h ()’

=K
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so the Holder inequality gives, for 0 < h < r*,
1/p
h| px+h/2
{/ f " /(x—u)g (u) du dx}
0 1vx
h x+h/2 3 U
¢*(u) g/ (u)]
{ ( ' ¢ (u)

K{ X (p(hh)) [ 1w p -

p 1/p
du ) dx}

IA

1/p
() du dx}

K( . ) ([ (g ) ae)

IA

<K ) “(p2 ”

@*(*)

=< K*19°87 | Lo a.py-

HL"(a b)

This and (2.12) yield
QO(f,1) =KK(:*, f),

exactly as in [6, p. 318].
If a = 0 and ¢(0 + 0) > 0 then we have to estimate

b4

L)

o 12(-~11/2) 1
sz‘2>(f,t)~”f~mff() W T L0 L

where I = (0,2(C,t)*). Let us consider the function g, from (2.12). Since
g/’ € L'(I), we may assume the continuity of g/(x) at x = 0, i.e.

g'(x) =g'0) + [ g"(u) du.
0
Using Hardy’s inequality ([14, p. 272])

= '—‘—“ h P 0 >1
Lromy P — 1“ Il L2000y (p )

(2.13) ”%/Oxh(ﬂ')dT
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and the fact that p(x) < Ko(u) for u < x <|I|, we obtain, forp > 1,

(1)

|I| ”g;( ) — gt(O)_gtl(O)x”LP(l)

_dipe@ oy
=K [ 18i(n) = gi(0) 1dr

L2(T)

2
o' (x) [~ .
=K|— j(;|g,(u)|du

L#(I)

1x
<K|—= [ ¢*(u)|g’'(u)|du
I RAICACUET By

2
, =Kll¢ gtll”Lp(a‘b)'
)

For p = 1 we obtain, similarly,

o’(1])
|IP

< (p|9|§|)fmffl "(u)| du dy dx

s<p2(|1|)f0 |g"(u>|dus1</0 o> () |g"(u)] du.

——lg(x) — £,(0) — g/(0)xll :(py

Now @*(|I])/|I* = Kt~ ?, hence the two previous estimates can be written
as

QP(g,, 1) = Ktznq’zgt””LP(a,b)’
so
QO(f, 1) =QP(f — g, 1) + Q0(g,, 1)
=K(1f = &ll, + ©*19%/l,) =< KK (22, f).
Finally, for b = oo, ¢(x)/x = o0 (x — o0) we have to estimate

QR(f, 1) = WA Loy /2,009 -

Since g,, 8" € L?(1, ), Stein’s inequality ([13]) gives g, € L?(1, ).
However, g, is uniformly continuous on (1, o0) (take into account that

¢’g € L*(1, )), hence lim,_ , g/(x) = 0. Similarly, lim _ . g,(x) =0
and we obtain, from Hardy’s inequality ([14, p. 272])

fwh(f)dTL -

X

) SPHXh(x)”LP(O,oo) (p=1),
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that for small ¢,
9> (3(Cit)**)
(3(cyr)**)°

Spf (p( )Ig,(u)ldu

X

——"’ij‘) g(x)

”gt“LP((C|l)"‘*/2 )

LP((C)**/2,00)

LP((Cy)**/2,00)

=p) [ g

X

LP((Cyt)**/2,00)
22
=pille gz””u(a,b)a

where we used the fact that @ is convex for sufficiently large x (¢(x)/x —
oo!), hence @(x)/x increases for large x. Since

P(HCr)™)/ () =k (K>0),

it follows that
Q(f, 1) =Q(f— g, 1) + (g, 1)

=\f— 8llerap + Kt*||lo’g N Loca, by
< KK(t%, f),

and the proof is complete.

In applications it will be important to supplement Theorem 1 with an
estimate of K(¢?, f) by the second difference A} f alone. Keeping the
above notation let

o(t) =v(f, 1) = sup “Ath;f”Ll’(h*,h**)’

O0<h=t

and for this we can prove

THEOREM 2. With the assumptions of Theorem 1 let ¢ have limit zero at
finite endpoints of (a, b) ((a, b) = (0,1) or (0,00)) and let p(x)/x be
bounded at infinity ((a, b) = (0, ) or (— o0, ®)). Then there is a constant
K such that

—v 1) = )<K
holds for all f and 0 <t < ¢,.

Specially, K(z2, f) = O(¢t*) and o( f, t) = O(t*) are equivalent for
a>0.



462 V. TOTIK

REMARK. Our comment concerning the bounds in the norms in
Theorem 1 applies also to Theorem 2.

Proof. By Theorem 1 and Remark 1 we need only prove that

20(1) sK[’Pﬂ-’T—)dT
0 T

when f € L?(0,1), (support f) C (0,3) and ¢* >0 for ¢t >0 (take into
account that by assumption in this case there is a y <1 for which
@(x)/x? decreases in a right neighbourhood of x = 0; thus ¢'(x) =
Yp(x)/x thereso 1 — he'(x) =1 — hyp(x)/x =1 — vy (x = h*), and we
can apply Remark 1).

Let

2 — 201 2
K*(t ) f) = lgf(”f— g”LP((C,:)*J/S) + 7 g””LP((C,t)*J/S))

be the incomplete K-functional. By the proof of Theorem 1
(2.14) K*(e?, f) = Ko(f, 1) + B(f)
(see (2.6)—(2.7)) and, since

¥ 19() 2 (Go) = - (Cpl(C)) = (1= &

Z%(Clt)* Z(Cl%)* (x = (Cyt)*)

(the last inequality comes from (2.4)), we obtain, as in the proof of
Theorem 1,

B(f) = 12C°4,C7 (I = &llioqeyyararm + 2198 Wircusnrars) s
and, together with this,
B(f)=48C°4,C,'K*((1/2)%, f).
This and (2.14) yield (see also (2.2))

t 1 t
2 *“'W“(?))

! K*(( ! )2,f)§Kv(t),

2n+l 2n+l

where we used the fact that K*(¢, f) <|| f]|,» for all ¢.



INTERPOLATION AND APPROXIMATION 463
Now
t* = tp(t*) < tp(x) forx = (Ct)*

)

il;f(”f— 8llLrqcnyr /et ’*2“8”||LP((C,1)*,7/8)) < K*(1?, ) = Ko(t)
is also satisfied and this easily implies
(2.15) “Azt*f“L”((C,t)*+t*,7/8——t*) =< Ko(t).

By the assumptions on ¢ there is a y <1 such that ¢(x)/x” decreases
around x = 0, and for this y we have

2e%)' 7" = 26(@(1%) / (1%)7) = 2¢(((20)*)/ ((20)*)7)
= (@0)%)'7,
(1)* < 21/0-1px,

This, (2.15) and the continuity of the mapping ¢ — ¢* imply there is an L
and a K such that

sup ”Azhf“LP(LhJ/s—h) < Ko(t)

h<r*

forallt, =t =0.
Since
2 211 A2
”Ahf“L”(c,d) =n “Ah/nf”L"(C—h+h/n,d+h—h/n)’
one can easily get from the previous estimate that

(2.16) sup || A% Meransm = Ko(t)

h=r*

also holds with K independent of small ¢, say ¢ < ¢,

Now let
(2.17) w(t) = :up ”A2hf||LP(h,1/2)-
=
Since

N f(x) = AZh/zf(x - %) + 245, f(x) + A%,/zf(x + —g-)
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it follows readily from (2.16)—(2.17) that
w(t) =w(2/2) + 3 sup “A%:/Zf”LP(h,3/4)

h=t*
= w(t/2) + Ko(t).

Iterating this and taking into account that f € L?(a, b) implies w(t/2")
= o(1) (n —» o0), we obtain

w(t) < Kng)v(—;;) < K/(:v—(:ld'r

and the proof is over.

3. As a first application let us consider the Kantorovich polynomials

K, f(x) = éo((n + l)f(k+|)/(n+l)

f(u) du)p, (x)  (@=x=1),
k/(n+1)

where
Posl(x) = (Z)x"(l —x)"*  o0<k=n.

These can be used to approximate a function f € L?(0,1) (1 <p < o) in
the L?-norm and the saturation properties of this approximation were
settled by Maier [9, 10] and Riemenschneider [12]. It has been an open
problem for some years to characterize those functions f for which
K, f—fllr,=0(n"%) (0<a<1) (see [2, 3, 4, 5, 7]). We solved this
characterization problem in [18, 19] and now we give a somewhat different
characterization by the aid of Theorem 1. This new approach can be
applied to other operators (see the subsequent sections) and it treats the
cases p =1 and p > 1 simultaneously (our earlier method was very
different in these two cases, compare [18] and [19]).

Let p(x) = Jx(1 — x),
D = {g|g € L?(0,1), g’ absolutely continuous,
x(1 = x)g"(x) € L7(0,1)},
and
Sg(x) = (x(1 — x)g"(x), g(x)),
“Sg“p = ”‘Pzg"”LP(o,l) + “g”LP(O,l)'
Then D C L?(0,1) is a linear dense set and S: D —» L?(0,1) X L?(0,1) is

a linear operator. We set

(3.1) K(e?, f) = igf(nf— gll, + 2(lgll, + llo’g”l, )
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and notice that this K differs from the K functional (2.1) associated with ¢
only by t2i|g||p. Since in (3.1) we may assume ||g||, < 2||f]|,, we obtain
that K(¢2, f) = O(t**) (K from (3.1)) and K(¢?, f) = O(¢**) (K from
(2.1)) are equivalent for 0 < a < 1. If we show that

(3.2) IK.f—fll,<Kn""IISfll, (fE€D),
(33) ISK, (I, = Kn|| fll, (feL?),
and

(3.4) ISK,(fll, =KISfl, (f€D)

are satisfied with a constant K depending only on p, then a result of
Grundmann [8] shows that, for 0 <a <1, ||K,f— fll, = O(n™*) and
K(2%, f) = O(+**) are equivalent. Combining this with Theorem 2 and
the following remark, we obtain

THEOREM 3. Let 1 <p < 00,0 < a <1 and p(x) = {yx(1 — x). Then
for a function f € L?(0, 1) we have
IK,f—fl,<Kn* (n=1,2,..)
if and only if
(3.5) ||A2,"pf||Lp(,,z'|-hz) < Kh?« (h>0).

Proof of Theorem 3. (3.3) and (3.4) can be proved by a direct
calculation (see e.g. [17, 18]), so we justify only (3.2), the strongest of the
estimates (3.2)—(3.4).

First we show that

(3.6) I, =Kisfl,  (f€D).

Let fi(x) = f(x)¥(3x), where ¢ is defined in (2.3). Since f(x)=
FEW3x) + f(x)(1 = Y(3x)) and | {151 32,5 < KIISF], (see [6, Lemma
2.1]), by symmetry it is enough to show ||f|||u(ox/3) = K[le|| If he
L%0,1) (1/p + 1/q = 1) with compact support in (0,3/4), then an
integration by parts gives

(3.7) U f1(x)h(x) dx lff (x) ('r) d’l‘) dx

q)zl(,) fo‘h('r) dr

=< K9’ fll, Il

=|e’f'll,
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where at the last step we also used the Hardy inequality (2.13). Since
h € L40, 1) and (support #) C (0,3 /4) was arbitrary, (3.7) yields

“fll”p <K|¢’ 1””1, = K“(sz””LP(o,l/a) + (max |¢” I)”f”L"(l/3,2/3)
+ (2 max|¢,|)”f,“LP(l/3,2/3) + |[(P2f"||LP(1/3,2/3)
= K||Sfll,,
by which (3.6) is proved.
Now let

B(fi0) = B,f(x) = 3 /(%) p,u)
k=0

be the nth Bernstein polynomial of f. By (3.6) and Jensen’s inequality (put
f’ = 0 outside [0, 1)),

1K, f—BfH

(k+1)/(n+1)—k/n 4 k
((n+1)f ff’(-+
k=0 k/(n+1)—k/n 0 n

n+nf§n() (§+v)

%{fo é((n-#l)fl/n ( +v)

k=0

o] dvdu)p,,,k(-)

’4

IA

dvpn,k(')

k=0 p

D 1/p
dv)pn‘k(x) dx}

IA

K
= R, = s,

where we used the equality

fpnk(x n+1 (1=k=n).

Hence it is enough to prove that for f € D we have

(3.8) 18,7 = 11, < SIS/,
By Taylor’s formula
f(2) = f(x) + f(x)(t = x)

LR e e
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Now forr € (0, ¢t — x), t, x € (0, 1), we have
|t — x|
~ x(1—=x)’

t—X—7
(x+7)(1=x—1)

so, since B, (¢t — x; x) = 0, it follows that

|B, f(x) = f(x)|
|t — x|
=38

For p > 1 we use the maximal function M(-) and the maximal
inequality to obtain
t — 77 . .
s Lty |
¢’

= —IIM(qvf” N, <—*ll<Pf”l| <—lle||,,,

(x +7)1—x—7)|f"(x+ 1)

dr; x)

I1B.f = fll, =

P

where we also used the fact that

B((t—xpsx) = =X (xefo,1)).

n

For p = 1 Fubini’s theorem yields (put p, _, =0)
“B f_f“L'(Ol/2)

=37 5 S — w0 ax
= [ 2 B 10 = w1 il )
= [ S (7t = iy, )
= [ S ([t = 1w )

Il
M=
——
;S

=~
Il
(=)

L7 w0 = w17 ) [y (6) =y al6))

IA
M=

([ut = wirwia)(; - 57

n

o

ISA1] 12

Sl’»’:’ﬁ

A similar estimate holds on the interval (1, 1) and the proof is complete.
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4. Generalizations. The method of the previous section solves the
characterization problem for more “wild” operators than the “regular”
Kantorovich ones; furthermore it enables us to give general direct and
indirect estimates for the order of Kantorovich approximation (cf. [11]).

First let us consider the operators

K = éo(unl,klf] Flu) da

where {1, ,},-15 .o<k=n 18 @ system of intervals C [0, 1] with centers at
the numbers {x, ,},-,, .o<k=n- If we assume:
(i) for each n {x, ,}7_, constitutes an arithmetical sequence (i.e.
Xpr1 = 3(X 4 t X, 402), Kk =0,1,...,n — 2), and
(i1) there is a constant K such that for all » and k,
1

]xn,Ols—;’ Il—xn.nlszi _<Inkls_’

Kn ' n

poil(x)  (x€[0,1]),

then K} behaves similarly as K,, namely [|[KX¥f — fl| s, = O(n %) is
equivalent to (3.5) (f € L?(0,1), 1 =p < 00, 0 < a < 1). An example for
K is the operator

i (k+1)/(n+2)+1/2(n+k)
Kifx) = 3 [+ 6 f(u) | p (%)
k=0 (k+1)/(n+2)—1/2n+k)

We now turn to the estimate of || K, f — fll;».1)-

THEOREM 4. Let 1 <p < o0, f € L?(0,1), p(x) = {x(1 — x),
w(f,8) = sup (183, Al renany T IO fl Lrcnes—nty)

o<h<$é
and E( ) = 1K,/ = fll ooy, Then
(0
E(f) =K, |o|f: = ‘*“1‘Hf||u(o,1>)’
\/; n

(ii) for y > 0,

1 1 — 1
w(f, ﬁ) =Ky OB+ Ky i

REMARK. If 0 <a <1 and a + y < 1, then we obtain from (ii) that
E (f)= O(n™ %) implies

<Kn" 'Y kv <Kn %

| =g
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hence Theorem 4 contains Theorem 3 (see Theorems 1 and 2).

Proof. (1) follows easily from the results of the previous sections: with
a suitable g

E(f)<E/(f—g) +E,(g)

< k(17— gll, + (11, + I19%8"1,))
<k(&(5. /) + 21,

<K +%ufn,]).

o ( s L
n
In the proof of (ii) let L be a constant for which

ISK, fll, = LISfl, (n=1,2,...)

is satisfied for every n and f € D (see (3.4)), M = L'/Y and let k, = k, , be
defined by

n n
— << ki =—, E = min E .
M,+l M: kx(f) /M <k=n /M k(f)

Here i = 0,1,...,i,, where i, is the first integer with n/M"»"! < 1. Now
by Theorem 1 and (3.3)

1 1 1 1
Ew(f; —) = K[ 1) 51 =Ko £, + 18K, A,

\/,7 n
1
= B (1) + 2ISKe(f = K H), + ISK, K 11,

Kk
<E (1) + 0B (f) + ISK fll, < -

i,—1

<E.(f)+ § :20 L'kE,, (f)+ —L’;i"-uSKk,nfllp
<E(f)+ % g—ol A’;,. L'E, (f)+ K”f+L
=50+ 5 (F) im0+ s,
s%él (%)yEk(f) + Kn" Y111,

and the proof is complete.
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5. Let us consider the Szasz-Mirakjan operators

Ak o (x)" -
Snf(x)—kgof(;)sn,k(x), s,(x)=e —k—!——,x__O,

and their Kantorovich variant (see [17])

s5/0)= 3 (nf

k=0 k/n

(k+1)/n

(u) a5, ()

Let p(x) = Vx,
D = {f|f € L?(0, ), f’ abs. cont., x{'(x) € L?(0, )}
and
Sf(x) = (xf"(x), f(x)), WS, = N9* "N 2r©.00) T 1 fll L0009

Exactly as in §3 it is enough to justify the analogues of (3.2)—(3.4) for the
verification of

THEOREM 5. Let ¢o(x) =Vx, fEL?(0,0), 1=p<o0, 0<a<l.
Then

NSy f = fllLro.m) = o(n™%) iff HA f“LP(h2 ©) = 0(h*?) (h—0).

Proof. Again we prove only

K
(5.1) IS/ = fll, = ISAl, (f€ D)
(see also [17]). Using Stein’s inequality ([13])
”g/”L"(O.oo) =K HngHgH”p = K(”g“L”(O,oo) + ”g””LP(O,oo))’

the inequality || /||, = K||Sf]|, can be shown as the analogue (3.6) in §3.
This reduces (5.1) to

18,7 ll, <=1SAl, (/€ D)

(see also §3), the proof of which coincides with that of (3.8) when p > 1.
The case p = 1, however, requires a finer consideration, which we give
below. By the method of §3 the problem is the estimation of

R e

k/n

ulf"(u)|du
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Here

(—S — x)'/j/nulf”(u)ldu,

IERIETE

and since the terms under the integral sign are non-negative, we can write
(5.2) as

S ([ LA @ as e @
=3 (/0 f(u )'(f k/n n,k(x)dx)du

_fk/nulf”(u)l(f E‘Z‘r;———')‘c“s,,,k(x)dx) du)
= [T s ol) d

+ kél (/Ok/n +/l:n)u|f”(u)| (f()“&/_);_*_xs’hk(x) dx) du,

where at the last step we used the fact that

K i) = suc(x) (k=)

and

0 1
/ s, 1 (x)dx =— (k,n=1,2,...).
0 ’ n

Since [y‘[(k/n — x)/x]s, (x) dx increases for u < k/n and decreases for
u = k/n, furthermore [°[(k/n — x)/x]s, ,(x) dx = 0, we have

fuﬁ/—%t—xsn,k(x)dxzo (u=0).
0

Taking into account that, for fixed u, (k/n) — x is non-negative for x < u
and large enough k and that

§ k/n— x

X

O._
spilX) = =5, 0+ S,(1 — x; x) = 5, o(x),

k=1
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we can continue the above equality as

L w1 f s o0x) ax )
+f ulf"( u)]f( °° k/n Sy x(x)] dxdu
=/O ulf”(u)lfo Sn,o(x)dx
_1 «© 1’
—;fo ulf"(u)) du

and the proof is complete.

6. Let
) = 3 1[5 bt

bl = ("R (k2 0)

be the nth Baskakov operator and

Ve = 3 (nf """ 1wy de) b, )

k=0 k/n

its Kantorovich-variant. For this we have

THEOREM 6. Let ¢(x) = \/m l=p<wand 0 <a<1l1. For
an f € L*(0, c0) the statements
”I/n*f—f”Lp(O,oo) = 0(”%‘)
and
lAhq;f”zP(z;zz ) O(hza) (h - O)

are equivalent.

Proof. We follow the arguments of the previous points. Since the
analogues of (3.3) and (3.4) for the operators V¥ can be proved easily (the
computations are very similar to those in [17, 18] — see also [16]), we need
only consider the estimate

WV = Alleroe =5 lISfII (f€D),
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where
D = {f|f € L?(0, ), f abs. cont., x(1 + x)f"(x) € L?(0, x0)},
Sf(x) = (x(1 + x)f"(x), f(x))  (f€D),
and
ISA1l, = NP°S " Lr0.00y T 11 20,009
By Taylor’s formula
f(2) = f(x) + f(x)(t = x)

t—x t—x—17T ’r
+f0 (x+1_)(1+x+7)(x+'r)(l+x+7)f (x + 1) dr,

and here for r € (0, t — x),

r—x—
6.1
(6.1) (x+7)(1+x+71)
|t — x| X
4 =1 == <
x(1F x) for ¢ 2orx<1,
[t—x| (1+x)
< -
(%) (0 F1) for 0 t<2,x>1
Thus,

|V, f(x) — f(x)]
__KV( (1=x)° x(l, llif);x)M(z(Hz)f”(t);x)

x(1+ x)
=2 M(g?"; %),

where M(-) is the maximal function, and where we used that V(1 — x; x)
= 0 and, by [16, Lemma 4],

V((t—x) ax(l +x);x)$£.

x(1+x) 1 +1
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Thus, forp > 1,

1V, f = Al < UM N, <2171,

Forp = 11let
[nx/2]
U ) = 3 S5 )b, ux).
k=0
By (6.1)
[17£) = fx) 1 + ] "W f(x) = U f(x) = flx) 1 dx
|k/n — x| ”
=K g x(l + x) (1 + u)lf (u)ldu bn,k(x)a

and the method used in the previous section shows the right-hand side is
at most ( K/n)||Sf|l,.
Thus it remains to prove

73]

or, by ”f,”L'(O.oo) = K||Sfll, (see §3),

2

oc,( [nx/2]
1 k=0

K
b,,,k(x)) dx =S/

(nx/2]
o (k+1)/n K
62 73 (" 10 1du )b, ) dx = I
I k=0 k/n
The left-hand side is
* (k+1)/n o
n u du) b, .(x) dx,
kgo( '//;/n lf( )I '/;xlax(l,Zk/n) o
and if we show that
(6.3) f°° bx)dx=S (k=0,12,..),
max(1,2k/n) n

then we obtain the bound
(k+1)/n K
fk /() [t = 11l 30,

for the left side of (6.2), which already proves (6.2) because || f]| 110 o) =
1S£11,-
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In (6.3) x = 2k/n, hence

b, (x)=(n+k—1)(n— l)x(n * Z - 2)x"_'(l +x)7" 7k

n—1+k-—l)

< 3(n+k—1)(k—(n— l)x)( X

Xxk—l(l + x)-(n-l)—(kﬂ)

= 3(n+k+ D(b,_ i (x)) (n=3),
so, with k = max(1,2k/n);

ffb,,.k(x) dx < (n+k—1)b,_, (k).

By Stirling’s formula we obtain for k = [n /2],

(n+k—1)b,_ (k) <

K (n+K)"! (Zk)"( Zk)“""‘“
n

1+ =5
\/; kknn—-Z n

2 k
(1+k/ (n+ k)" 07* )

SK\/;(

esil el

(1+(n/2)/ (n+ ny2))" 2072

1 n/2 >
SK‘/;(TTT/Z) <= Kn °,

and, for 0 = k <[n/2],

(n k= Db,y 4(6) = (n k= )" TET 2ok

k
n
o3[l
n
n+n/2 3/2\ n
SKI’I(I + 1/2) 2—n—n/2 SKn( (1 + 1/2) )
(1/2)11/2 2

<Kn?,

because (n + k — 1)b,_, (1) increases for k = [n/2].
We have proved (6.3) and, together with this, also Theorem 6.
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7. Finally, we sketch briefly the continuous case. Let B be any of the
Banach spaces C[a, b}, C[a, b), C(a, b] or C(a, b) with supremum norm
[l |- In the first three cases we can identify B with the subspace of C(a, b)
consisting of functions having limit at a and b, at a, and at b, respectively.
This enables us to work on (a, b).

We keep the notations and simplifications introduced in §2. In the
continuous case we need one more assumption on ¢: if b = oo and
lim,_ . ¢(x)/x = oo, then there is a y > 1 such that ¢(x)/x¥ 700 in a
neighborhood of b = oo (naturally a similar condition must hold around

—o0 when @ = —o0).
Forf € Blet
K(e,f)= it (If =gl + 2lle’g"l)-

g’ abs. cont.

We define for small #;

Qy() = sup ”Ahq)f”C(h* B**)s

0<h=t

Q%(1) = sup ”Ahq:f”C(3h*/2,2h**/3),
O<h=:

szs“(t)=”f—2|,|/f(u) VD - B a

wherei =0or 1, I, = (0,2¢%), I, = 2t* — 1, 1),
Q(¢) = sup  |f(x) — f(»)|

X, p=1** /2
and
Q(¢) = sup |f(x) —f(¥)].
x,y=<21*
With
[0 ifp(0+0) < oo, {0 if (1 —0)< oo,
71 ife(0+0) = o T ife(l = 0) = oo,
and

0 if lim "’(")<oo,

x-+roo |X]|

1 if lim Mzoo,

x—* 00 Ix|
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we can define our moduli of smoothness as
w(f,t)= Qo(’) + YOQ(IO)(Z) + Ylﬂ(ll)(t)
when (a, b) = (0,1);
w(f, 1) = (1 = 1,0)Q(1) + v, 25(r) + %2 (1) + v, 25(¢)
when (a, b) = (0, «0);
and
w(f,1) = (1= 1) (1 = v_)R0(1) + (Yoo + Yoo = YY) 25(2)
7, 08(r) + v, .2 (2)

when (a, b) = (— 0, ©);

for these we have

THEOREM 7. Let B, ¢, K and w be as above and f € B. Then there is a
constant K independent of fand t (0 < t < t,) such that

lw(f, t)=K(t*, f) =< Kw(f,1).

The proof is similar to that of [6, Theorem 3.1]. We omit the details.
Just for the sake of illustration let us prove the estimate Q{°)(¢) <
KK(t?, f). The term Q5 occurs in w when b = oo and lim___ , ¢(x)/x =
co. By our assumption there is a y > 1 such that ¢(x)/x" increases for
large x, say for x = x,,. Let g, be given by

If— gl + lle’g/ | < 2K(¢2, f).
We have for § > x = x,,,

2

2
e ”II—

(7.1) |g/(x) — g/(§)] fx *(u) g (u )Izlzd“g(p;(x)

so @’ has a limit at infinity. Since g, is bounded on (1, c0) we necessarily
have lim,_ ., g/(§) = 0, by which (see (7.1))

lg/(x) 1= 2(x/@*(X))(K(2, £) /1) (x=x,)
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Thus, for y > x = j1* = x,,

18(x) = 8,(0)1=| [ 5i(u) du

K( f) 7 u®
<2 2 fxq)z(u)u' 2 du

K(tz, f) x27 Y 1—2y = K(tz’ f) XZ
=K 2 cpz(x)fxu du<K 2 qu(x)
K@) (/2 K(2f) ()

1?2 @(1*/2) 1?2 @H(r*)

= KK(:%, f),

SO

]f(x) _f(y) |= 2”f_ gl + lgt(x) - gr(y)l
<KK(t*, f) (x,y=4r*)

as we stated above.

Now let us apply Theorem 6 to the following positive linear operators.
Let 7, be any of the operators:

n0) = 35 (Hx0 -0 sechl,

s.fx) = 3 s kel e clo.o),

V.f(x) = éof(g)(” N ﬁ -1 )x"(l +x)7"7, fe o, ),

i.e. any of the Bernstein, Szasz-Mirakjan and Baskakov operators (see [1,
15, 16]). We put

wr(f,8) = Sup‘s“Azh‘pf“C(hz.l—hz)’ o(x) =yx(1—x),T,= B,,

0<h<
"-’T(f> 8) = sup ”Ath;f”C(hZ,oo)7 ‘P(x) = \/;a T,=S,,
0<h=$§
and

wr(f,8)= OSUPSHAthprC(zhz.oo)’ e(x)=yx(1+x),T,=7V,
<h=
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respectively, and for these we have

THEOREM 8. Let T, and w = w; be as above and E,(f) = EI(f) =
I f = T, Il Then

(@)
E(f)=Ko(f.1//n),
(ii) for y > 0,

w(f, —‘/1:) <K n ™ g KYE (f).

n k=0

COROLLARY 3. ||T,, f — f|l = o(1) if and only if w( f, 8) = o(1) (6 = 0).

COROLLARY 4. For 0<a <1, ||T,f—fl| = O(n™ %) (n - ) if and
only if w( f,8) = 0(8%%) (8 - 0).

REMARKS. (1) When 7, = B, Corollary 3 is simply the statement
|B, f — fllcion; = o(1) for every f € C[0, 1]. However in the cases T, = S,
or T,, = V,, Corollary 3 characterizes those bounded functions for which
T, f(x) — f(x) = o(1) uniformly on the positive real line (see also [15,
16)).

(2) For T,, = B, Corollary 4 was also proved by Ditzian [6].
(3) Since, e.g.,

supsnAiwfuahz,w) <Kh*,  ¢(x)=x,

0<h=
is equivalent to
¢**(x)[85(f, x) = Kn?**  (x=h),
we obtain that S, f — f = O(n™%) is equivalent to
x*|f(x —h) —2f(x) + f(x + h)|< Kn** (x=h)
(cf. [15)).

(4) The Meyer-Konig and Zeller operators (see [16]) could be treated
similarly.
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The proof of Theorem 8 uses Theorem 7 and the arguments applied in
§4, namely if we put

D = {f|f € C[0,1], f abs. cont., |x(1 — x)f"(x)|= K},
Sf(x) = x(1 = x)f"(x)  (T,=B,),
D = {f|f € C[0, ), f" abs. cont., | xf"(x)|< K},
Sf(x) = xf"(x)  (T,=S,),
and
D = {f|f € C[0, ), f" abs. cont., |x(1 + x)f"(x)|< K},
Sf(x) =x(1 +x)f"(x)  (T,=V,),
respectively, then the estimates

ITAI=KIfl, IST,fi<Knlfl  (f€B)

and
WT,f—fll = %IISfII, IST, fl < K|ISfll (f€ D)

are satisfied in every case. We omit the details.

REFERENCES

[1] M. Becker, Global approximation theorems for Szasz-Mirakjan and Baskakov opera-
tors in polynomial weight spaces, Indiana Univ. Math. J., 27 (1978), 127-142.

[2] M. Becker, K. J. Lautner, R. J. Nessel and G. J. Worms, On global approximation by
Kantorovitch polynomials in L?, to appear in: “Constructive Function Theory”
(Proc. Conf. Varna, 1981).

[3] M. Becker and R. J. Nessel, On the Global Approximation by Kantorovich Polynomi-
als, in: “Approximation Theory III” (Proc. Conf. Austin, 1979), Academic Press,
New York, 1980, 207-212.

, On Global Saturation for Kantorovitch Polynomials, in: “Approximation and

Function Spaces” (Proc. Conf., Gdansk, 1979), North-Holland, Amsterdam and

Polish Sci. Publ., Warsaw, 1981, 89-101.

, Some global direct estimates for Kantorovitch polynomials, Analysis, to
appear.

[6]  Z. Ditzian, On interpolation of L,[a, b] and weighted Sobolev spaces, Pacific J. Math.,
90 (1980), 307-323.

[7] Z. Ditzian and C. P. May, L, saturation and inverse theorems for modified Bernstein
Polynomials, Indiana Math. J., (1976), 733-751.

[8] A. Grundmann, Inverse Theorems for Kantorovich-Polynomials, in: “Fourier Analy-
sis and Approximation Theory” (Proc. Conf., Budapest, 1976), North-Holland,
Amsterdam 1978, 395-401.

[9]1 V. Maier, The L, saturation class of the Kantorovich operator, J. Approx. Theory, 22
(1978), 223-232.

, L-approximation by Kantorovic operators, Anal. Math., 4 (1978), 289-295.

(4]

B

(10]




(11]
(12]
(13]
(14]
[13]
[16]
(17]
(18]

(19]
(20]

INTERPOLATION AND APPROXIMATION 481

M. W. Miiller, Die Giite der L,-Approximation durch Kantorvic-Polynome, Math. Z.,

152 (1976), 243-247.

S. D. Riemenschneider, The L ,-saturation of the Kantorovic-Bernstein polynomials, J.

Approx. Theory, 23 (1978), 158-162.

E. M. Stein, Functions of exponential type, Ann. Math., 65 (1957), 582-592.

, Singular Integrals, Princeton, New Jersey, 1970.

V. Totik, Uniform approximation by Szdsz-Mirakjan type operators, Acta Math.

Acad. Sci. Hung., 41 (1983 /3-4).

, Uniform approximation by Baskakov and Meyer-Konig and Zeller operators,

Periodica Math., to appear.

, Approximation by Szadsz-Mirakjan-Kantorovich operators in L?( p > 1), Anal.

Math., 9 (1983), 147-167.

, L?(p > 1)-approximation by Kantorovich polynomials, Analysis, to appear.

, Approximation in L' by Kantorovich polynomials, Acta Sci. Math., to appear.
, Problems and solutions concerning Kantorovich operators, J. Approx. Theory,

47 (1983), 51-68.

Received July 21, 1982.

BoLYAI INSTITUTE

JOZSEF ATTILA TUDOMANYEGYETEM, TTK
SZEGED, ARADI V. TERE 1

H-6720, HUNGARY








