
PACIFIC JOURNAL OF MATHEMATICS
Vol 111, No. 2, 1984

UNIFORMLY NORMAL STRUCTURE
AND RELATED COEFFICIENTS

E. MALUTA

It is shown that uniformly normal structure implies reflexivity. In
spaces with uniformly normal structure some estimates are given for the
uniformity constant and for a related coefficient.

1. Introduction. Our aim is to study two constants of a Banach
space X connected with normal structure. We recall that a normed space
(or a convex subset) X is said to have normal structure if for every convex
bounded non-empty non-singleton subset C of X, the Chebyshev radius of
C relative to C, r(C, C), is strictly smaller than the diameter of C. This
concept was introduced by Brodskii and MiΓman (1948), who also gave
the following characterization in terms of sequences. A space X has
normal structure if and only if there exists in X no bounded non-constant
sequence {xn} such that d(xn,co{xJ}

n

ι'
1), i.e. the distance from the nth

element of the sequence to the convex hull of the preceding elements,
approaches the diameter of the sequence as n approaches infinity. (For
normal type structures and their applications to fixed point theory, we
refer to the exhaustive survey of Kirk [9].)

The first constant we consider, N( X), is the already known constant
of uniformity of normal structure. It has a clear geometrical meaning, for
it is the supremum, taken with respect to the convex bounded subsets C of
X, of the ratio between r(C,C) and the diameter of C. Hence N(X) < 1
characterizes uniformly normal structure. The second constant, D( X), is a
sequence coefficient which controls the behavior, as n approaches infinity,
of d(xn,co{XjYλ~

x)\ more precisely, D(X) describes how closely this
distance can approach the diameter of the sequence.

For the two constants we give some evaluations and estimates. We
prove they both must be one in nonreflexive spaces, thus answering in the
affirmative the following question raised in [9]. Does uniformly normal
structure imply reflexivity? This question follows naturally from the fact
that in [4] it was proved, without requiring any hypothesis of reflexivity,
that a space X with N{ X) < 1 has the fixed point property for nonexpan-
sive mappings.

We prove also that, in infinite-dimensional spaces, N(X) >: 2~1/2,
thus showing that the best value of N(X) is achieved by the space /2, and
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we show that in reflexive spaces the gap between D( X) and N( X) can be
large. In particular, the property D(X) < 1 does not characterize uni-
formly normal structure, yet it is sufficient to assure reflexivity and
normal structure, thus the fixed point property for nonexpansive map-
pings.

2. Notation. In this paper X will always denote a real or complex
Banach space. For subsets A and B of X, we write d(A, B) for
inf{||x — y\\9 x E A, y E 2?}, 8(A) for the diameter of A and co^4 for the
convex hull of A.

To simplify notation we state the following rules: {xn} will always
denote a bounded non-constant sequence in X, and {xn}

h

k will denote the
set of elements of {xn} with k < n < Λ; by {Wa} (a & A) we mean a
decreasing net of bounded nonempty, non-singleton subsets of X.

For Chebyshev radii and centers we use the notation

r(A, B) = inf{r(A9 x): x E B), r(A) = r(A9 X),

G(A, B) = {x E B: r(A9 x) = r(A9 B)}, G(A) = β(A9 X);

and for asymptotic diameters and radii,

8a{{Wa}) = ini{8(Wa):a<=A),

ra{{Wa), A) = mi{r(Wa, A):aEA}.

In particular, for a sequence {xn} we have

suρ{||xn - xj\: n,m>k},

ra({xn}> A) = ωf{r({xπ}, x): x E A).

We also recall the definition of modulus of convexity of X, 8X:
[0,2]-> [0,1], defined by

δx(ε) = inf{l - ±\\x+y\\: x,y G X, \\x\\ < 1, ||^|| < 1, \\x - y\\ > e}.

Furthermore, when there is no possible ambiguity, we write lim an

instead of limπ an.

3. Definitions. We now introduce the two constants of a space X
we are going to study in this paper.
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DEFINITION 3.1. For a Banach space X we define D( X) as

( limsup d(xn,uco{x.}n.)

«(£)) :MCX

{xn} a bounded non-constant sequence in X,

as established in notation [.

DEFINITION 3.2. We set

N(X) = supl _,' : C a bounded non-empty,

non-singleton convex subset of X >.

We start with a few simple remarks. Of course 0 < D( X) < 1 and
j < N(X) < l.ln the definition of Z>(X) we could not consider the limit
of d(xn+ι,co{xj}"), since nothing can be said, in general, about its
existence (consider e.g. in the sequence space c0 the sequence {akek},
where {ek} denotes the natural basis of c0, ak = 1 for k even and
ak = I/A: for /r odd).

In order to obtain estimates on D{X), we prove that D(X) can be
defined in several equivalent ways. Each of these definitions will be useful
in proving some of the following results.

PROPOSITION 3.1.

ί liminf d(xn+uco{x,}")

— « ( { » . » " K - M

Proof. For every {*„} C X, set α = limsup d(xn,co{Xj}"~1). Then
for subsequences {xnk} such that α = lim d(xnk,co{Xj}"k~]) we have

= a.

So, for every {xn} we can find a sequence {yn} (= {xnt}, hence with
)<δ({xn})) such that

,co{^}") ^ limsupd(xn+ι,co{xj}")

This proves our assertion. D
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PROPOSITION 3.2. For a reflexive space X,

n ί v λ flimsupφ,,+ 1,co{xyK) , .
D{X) = sup : {*„} a

convergent sequence in X V.

Proof. For every {xn} CJf, consider a weakly convergent subse-
quence {xnk} For every k we have

hence

lim sup £/(*„,, αφc^}]1"1) lim inf </(*„+,,co{;cy}")

so Proposition 3.2 is a consequence of Proposition 3.1. D

PROPOSITION 3.3

{xw} α non-convergent sequence in X >.

Proof. We have, for every non-convergent sequence {xn} and for
every k.

so

\") < lim li
k n

<D(X)δa({xn}).

From this and the inequality δa({xn}) < δ({xn}) we have

f limsup
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PROPOSITION 3.4. For an infinite-dimensional reflexive space X,

ί limsup d\ x», i.cofx,)")

D{X) = sup 8({x\) : { X n ] a W€akly bUt nOt

strongly convergent sequence in X \.

Proof. Use Proposition 3.2 and the same argument used in Proposi-
tion 3.3. D

4. Main results about D(X) and N(X). We begin proving some
results on possible values of D(X).

THEOREM 4.1. D( X) — 0 // and only if X is a finite-dimensional space.
Moreover, if X is an infinite-dimensional space, we have D(X) >
\(\ — δ^(l))"1 > {. (In particular, D(X) > { in uniformly convex spaces.)

Proof. To prove that dim X < oc implies D( X) = 0, it is enough
to remark that, for every convergent sequence {*„}, we have
lim d(xn+vco{x}n

x) — 0. This, by Proposition 3.2, proves our claim. If X
is an infinite-dimensional space, for every θ < 1, let us build a sequence in
the following way: JC, is an element belonging to S(0,1) = {x E X:
\\x\\ = 1}; for every n > 1, xn_hl is an element of 5(0,1) such that
<i(x^+1,span{xy}") > θ (such an element must exist by Riesz's lemma of
quasi-orthogonality). Then, for any /, j9 i φj, we have \\xι + jcy|| > θ so
fe-xy||<l -Sx(θ). Hence

limsup

Since ̂  < 1 is arbitrary and δx is continuous at 1, we obtain

Concerning spaces having D(X) — 1, we recall that this equality
holds whenever X lacks normal structure, as a consequence of the ex-
istence in X of sequences such that \ιmd(xn^x,co{xj}

n

x) = δ({xn}) (we
refer to [9] for properties of this kind and their relations with fixed point
theory). Moreover the supremum in Definition 3.1 may be achieved by
some sequences. We remark that we can find the "worst" situation, i.e.
d(xnJrλ,co{xj}

ι\) — δ({xn}), for every n, for some sequences, even in a
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superreflexive space. For instance, let I2 be renormed with James's norm,

| J C | = maxfllxll^1/2!!*!!^). Then for the natural basis {en} we have

J

Furthermore, D( X) may be one even in spaces which do have normal

structure. While this will be clear for nonreflexive spaces as a consequence

of Theorem 4.7, we can give an example also for reflexive spaces.

EXAMPLE 4.1. Let X be the I2 product of the /" spaces, n > 2; X is

reflexive and uniformly convex in every direction, so it has normal

structure (see e.g. [3]). Yet D(X) — 1. In fact, consider in each lp

9

1 <p < oc, the usual basis {en}. We have 8({en}) = 2ι/p and

lim d(en+l9co{ej}Ί) = 1, so D(lp) > 2~x/p. For every n > 2, since there

exists a subspace of X isometrically isomorphic to /", we obtain 2~λ/n <

D(Γ) < Z>(*); hence £>( JT) = 1.

We come now to the coefficient N(X)9 which has already been used

by several authors in fixed point theory; in particular, it is the inverse of

Bynum's N(X) ([2]). If N(X) < 1, X is said to have uniformly normal

structure. Many authors have already remarked that this is the case, for

instance, if X is a uniformly convex space.

THEOREM 4.2. D(X) < N(X).

Proof. For every {xn} C X, let C be (»{*„}?. We have δ(C) = «({*„})

and r(C, x) = r({jcn}, JC) for every j c G X I f c G C , c = Σ ^ λ ^ , (λ, > 0,

Σ f λ , = 1), then

Hence we obtain

r(C, C) = /•({*„}, C) > ]im$upd(xa+i,co{x,}Ί)

and

N(X) > s u p j 1 ^ ^ = C = co{xjr} ^ ^(^) •

THEOREM 4.3. In any Hubert space and in two-dimensional spaces,

N(X) — \ J(X), where J(X) is the Jung constant of X. As a consequence

we obtain N(l2) = (n/(2n + 2)) 1 / 2 for Euclidean spaces I2 and N(l2) =



UNIFORMLY NORMAL STRUCTURE 363

Proof. By a classical result of Garkavi and Klee, we have C(C) Π C
7̂  0 for any bounded convex non-empty subset C of X, if and only if X is
an Hubert space or a two-dimensional space. In both cases we then have
r(C, C) — r(C). The assertion now follows from the definition of Jung's
constant and its evaluations in l2

n and in (real or complex) /2 (see [12]). D

As for D(X), we use the following lemma to show that D(X) can be
evaluated in any Hubert space, separable or not.

LEMMA 4.1. For every Banach space X, there exists a separable subspace

Y of X such that D( X) = D( Y).

Proof. Take a monotone increasing sequence {dk} converging to
D( X). For every k there exists a sequence {x^} such that

>dk.

Set y=span{*£}, k = 1,2,...; n = 1,2,...; Y is separable and D(Y)
= D(X). •

THEOREM 4.4. For every infinite-dimensional Hubert space, D(X) =

Proof. By Lemma 4.1, D(X) = D(l2), which is 2~1/2 as a consequence
of Theorems 4.2, 4.3 and the estimation from below of D(lp) obtained in
Example 4.1. D

In general Banach spaces it seems very difficult to evaluate N(X). Yet
we can give some interesting estimations from below.

THEOREM 4.5. In every infinite-dimensional Banach space, N(X) ^

To prove the theorem, we need:

LEMMA 4.2. If X and Y are isomorphic Banach spaces, then

[d(X, Y)Y]N(X) < N(Y) < d{X, Y)N(X),

where d(X, Y) denotes the Banach-Mazur distance from X to Y.
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An analogous result holds for D(X). The lemma is an easy conse-
quence of the definitions of Banach-Mazur distance and of N( X), and has
already been used by Bynum for his N(X).

Proof of Theorem 4.5: By a classical result of Dvoretsky (see e.g. [3]),
if X is an infinite-dimensional Banach space, for every integer n and for
every ε > 0, we can find a subspace Y of X isomorphic to the Euclidean
^-dimensional space /2, with d(Y, I2) < 1 + ε. Now fix n, and, for every
ε > 0, consider Yε C X such that d(Yε, I2) < 1 + ε. By Lemma 4.2 and
Theorem 4.3 we have

1/2

( ) ( ) foreveryε;

hence (n/(2n + 2))1 / 2 < N(X). Since n is arbitrary, we obtain 2" 1 / 2 <
N(X). D

THEOREM 4.6. N(X) = \ if X = (Λ2,|| UJ, but N(X) > { if the
dimension of X is greater than two.

Proof. The first part of our theorem follows from Theorem 4.3 and
the evaluation /(X) = 1 in real L°°(μ) spaces ([6]).

For the second part, as a consequence of Theorems 4.3 and 4.5, we
have only to prove the thesis for any finite-dimensional space X, XΦl2

n,
with dim X > 3. Under these hypotheses there exists a bounded closed
convex non-empty set C such that β(C) Π C = 0 (see the proof of
Theorem 4.3). Yet, by a compactness argument, both β(C, C) and β(C)
are non-empty and this implies r(C, C) > r(C) > \ δ(C). D

If X is a non-reflexive space, we can evaluate both D( X) and N( X).

THEOREM 4.7. If X is a non-reflexive Banach space, then D(X) = 1.

Proof. By a result of MiΓman and MiΓman ([11]), we can say that if X
is a non-reflexive space, then, for every ε > 0, there exists a sequence {xn}
such that 1 - ε < ||i/lw - wπω|| < 1 + ε for any uln E coίx^j^, w ω̂ G
co{xy}~+1, and for any n. Then δ({xπ}) < 1 + ε and d(xπ+I,co{xy}ΐ) >
1 - ε. Hence it follows that D{X)>\. D

An immediate consequence of this theorem, taking into account
Theorem 4.2, is:

COROLLARY 4.1. If X is a non-reflexive Banach space, then N(X) — 1.
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The corollary answers in the affirmative the following question raised
in [9]. Does uniformly normal structure imply reflexivity? Moreover
Theorem 4.7 allows us to claim

THEOREM 4.8. / / D{X) < 1, then X has the fixed point property for
non-expansive mappings with respect to closed bounded convex subsets.

In fact, D(X) < 1 implies reflexivity and normal structure, so the
result follows from [8]. Furthermore, we show in §5 that D(X) < 1 does
not imply N(X) < 1, so Theorem 4.8 is not contained in the theorem of
Gillespie and Williams ([4]).

COROLLARY 4.2. IfN(Y) < 1 for every separable subspace Yof X, then
X has the fixed point property for nonexpansive mappings with respect to
closed bounded convex subsets.

Proof. Theorem 4.2 and Lemma 4.1 show that D(X) < 1. •

REMARK 4.1. For Banach spaces which contain subspaces isomorphic
to c0 or l\ so, in particular, for non-reflexive spaces with an unconditional
basis, Theorem 4.7 can be proved as a consequence of James's theorem
([7]) on the nearly isometric embedding of c0 or Z1 in X.

REMARK 4.2. The "stability" under renorming we proved for D(X)
and N(X) in non-reflexive spaces is quite surprising. In fact, the usual
situation for normal type structure is a strong dependence from the norm.
Consider, for instance, I2 with a Hubert norm and James's norm (see p.
361). Furthermore, it has been proved that normal structure can be induced
on every separable Banach space by a suitable renorming (see [3], [9]),
while, of course, nothing similar is true for uniformly normal structure.

5. Relations with Bynum's normal structure coefficients. Now we
are going to explore relations among D( X) and some coefficients defined,
for reflexive spaces, by Bynum ([2]). We have already remarked that N( X)
is the inverse of Bynum's N( X), i.e.,

-j-^—-— : C a convex bounded non-empty,
r{C,C)

non-singleton subset of X \.
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We recall also that

BS(X) = inΐl ίf

 a γ n ) ' : {xn} a non-convergent sequence in X\

and WCS(X) is defined as BS(X) but with the infimum taken with
respect only to weakly but not strongly convergent sequences.

N(X) and BS(X) can be defined in every Banach space; WCS(X),
on the contrary, is well defined only in infinite-dimensional reflexive
spaces, where, by the Eberlein-Smulian theorem, we can assure the ex-
istence of weakly convergent sequences which do not converge.

Bynum proved that, in reflexive spaces, 1 < N( X) < BS( X) <
WCS(X) < 2. Furthermore, we have:

THEOREM 5.1. In infinite-dimensional reflexive spaces D(X) <
l/WCS(X).

Proof. On account of Proposition 3.4, it is enough to prove that

Kmsupd(xn+l9co{Xj}") < ra({xn},co{xn}) for every {xn} in X.

Let x e CO{JCW}, x = Σfλ7;cy (λ, > 0, Σfλ y = 1). Then

ra({*n}> x) = limsupll^ - x\\ > limsup έ/(xΛ + 1,co{xy}^)

•

REMARK 5.1. An analogous argument and Proposition 3.3 give D(X)
< \/BS{X) in any Banach space. So in particular, as a consequence of
Theorem 4.7, 55(X) = 1 in non-reflexive spaces.

REMARK 5.2. It is not clear whether D{X) and \/WCS{X) must
coincide in every infinite-dimensional reflexive space.

Bynum showed that BS{12) = H^C^/2) = 2 1 / 2. We can argue as in
Lemma 4.1 to say that, for every X, there exists a separable subspace Y
such that BS(X) = 55(7) (H^C^X) = WCS(7)). So we obtain

COROLLARY 5.1. In every infinite-dimensional Hilbert space BS(X) —
WCS(X) = 21 / 2.

In infinite-dimensional Hilbert spaces, both D(X) and \/WCS{X)
must be 2~1/2. Yet this property is not characteristic of Hilbert spaces.
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EXAMPLE 5.1. Let Xbe the I2 product of the spaces /* = (Rn,\\ H )̂,
n>\. Baillon proved that WCS(X) = 2 1 / 2 ([11]). Moreover consider the
sequence {xn} C X, where, for each xn9 the only non-zero coordinate is
the wth and this one is the vector (1,0,... ,0) of Rn. Then δ({xn}) = 2 1 / 2

and ]imd(xn+l9co{xJ)Ί) = 1, so D(X) > 2"1 / 2. From Theorem 5.1 it
follows that D(X) = \/WCS{X) = 2"1 / 2, yet X cannot be a Hubert
space because it has subspaces isometrically isomorphic to /̂ °.

Baillon also proved that, for the space X of our last example, N( X) is
one. So we obtain:

COROLLARY 5.2. D(X) < 1 does not characterize uniformly normal
structure.

For more results about characterizations of normal type structures by
means of sequences, see [10].

From Theorem 5.1, combining Bynum's evaluation of WCS(lp) with
the lower bound for D(lp) we obtained in Example 4.1, we have:

THEOREM 5.2. D{lp) = 2~]/p for 1 <p < oo.

At first sight we could think that we have to construct suitable spaces
to find a big gap between D(X) or \/WCS(X) and N(X), as we did in
Example 5.1. On the contrary, if we do not require N( X) = 1, this is the
case also for some classical spaces (and obviously for the finite-dimen-
sional ones). In fact, taking into account Theorems 4.5 and 5.2, we obtain:

COROLLARY 5.3. D(lp) = \/WCS{lp) < N{lp) for 1 <p < 2..

REMARK 5.3. The lower bound given by Bynum for his N(X) using
the modulus of convexity of X, namely N(X)>(1 — δx(l))~\ and the
analogous bound we obtained in Theorem 4.1 for D(X), are not candi-
dates for the actual values of N(X) and D(X), not even if X is a
uniformly convex space. In fact, N(l2) = \/D{l2) — 21 / 2, while, using
Hanner's estimates of the modulus of convexity in Lp spaces ([5]), we
obtain 1 - δ/2(l) = 31/2/2.

We can also give the following equivalent definition for N( X), thus
obtaining immediately, and without any hypothesis of reflexivity on X,
Theorem 1 of [2].
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PROPOSITION 5.1.

N(X) = inf J

Proof. To simplify notation we call the right-hand side of the equality
W{X). The inequality N(X)> W(X) follows immediately by taking,
among nets {Wa} C 2X, nets such that Wa = C for every α, where C is a
bounded convex non-empty, non-singleton subset of X. Vice versa, for
each set Wa E.{Wa),

" r(coWa,coWa) r(Wa,co{Wa}) ra({Wa},co{Wa}) '

Hence

This holds for every {Wa) so N(X)<W{X). D

The author wishes to thank P. Papini for many useful remarks and for
calling her attention to [2] and [11].
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