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CLASSIFICATION OF ALGEBRAIC SURFACES
WITH SECTIONAL GENUS LESS THAN OR
EQUAL TO SIX. I: RATIONAL SURFACES

ELVIRA LAURA LIVORNI

Using Sommese’s results on the adjunction process we give a
biholomorphic classification of rational algebraic surfaces with the genus
of a hyperplane section less than or equal to six.

Introduction. In this paper we have given a biholomorphic classifica-
tion of smooth, connected, projective, rational surfaces X with smooth
hyperplane section C such that the genus g of C is less than or equal to
six. In 1936, L. Roth in [R] had given a birational classification of such
algebraic surfaces with g less than or equal to six. Our biholomorphic
classification goes considerably beyond his classification. Let L = [C] for
some hyperplane section C. Since in the cases in which g = 0, 1, X has
been completely classified by Del Pezzo [N], we need only to consider the
cases in which g = 2,...,6. Since the cases g = 2, 3, 4 follow very easily
from A. J. Sommese [So], the really interesting cases are g = 5, 6. Our
classification has a slight overlap with P. Ionescu [Io]. Our classification is
essentially based on the adjunction process which was introduced by the
Italian school and which has been particularly studied by Sommese [So].
Our notations are as in [So] except for the following. X will denote a
smooth, connected, projective, rational surface and L a very ample line
bundle on X. Let L = K, ® L. Then ¢ is the map given by the sections
of the line bundle L. Sommese, [So, (2.0.1) pg 390], has proved that
dim ¢;(X) = 0if and only if g = 1. If X is rational then dim ¢(X) = —o0
if and only if A'°(X) = dim H'(X, O,) = 0 and in this case (X, L) has
been classified by Del Pezzo, (0.6). Let ¢ = r o s be the Remmert-Stein
factorization of ¢;. In the case in which dim ¢7(X) = 1, it follows from
Sommese [So, (2.1.1) pg 390] that, since A"°(X) = 0 in our case, s is an
embedding. If dim ¢;(X) = 2, Sommese [So, (2.3) pg 392], has proved
that there exists a pair (X, L) such that:

(a) X is obtained by blowing up a finite set of points F of X, =
X-X

(b) Every smooth hyperplane section C €| L| is the proper transform
of a smooth hyperplane section C €|L — F|.
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94 ELVIRA LAURA LIVORNI

(c) L is ample and is very ample if #'(L) = 0.

(d) K;® L is, in our case, very ample except in the two cases (2.5.1)
and (2.5.2) of [So, pg 394].

Let L' = K3 ® Land ¢, = ¢y, 7. Then o7 = ¢, o .

We call X the minimal model of X relative to L. It has the property
that there is no irreducible curve 9 C X such that ¥ - % = -1 and
L-9%=1. We call (X, L) the minimal pair of (X, L). Note that since
L -9 =1, C is smooth. Our main goal is to classify the pairs (X, L) and
eventually the pairs (X, L). What makes the rational case interesting is
that, by [So, (3.1) pg 395], ¢,. is an embedding except for special cases
that can be classified. This allows us to use a recursive method to classify
the pairs ()2, I:). We would like to give an example of how the method
works. To do this we fix the following notation. Letd = L - L, g = g(L),
d=L-L,d=L"-L and g’ = g(L’). Suppose that we are considering
the case dim ¢ (X) = 2, g = 6 and that we have obtained the invariants
d =10, g =4, d =8, ¢ =-3. Then we look at the classification for
g = 4. Since there is no surface with sectional genus four and such that
d— ¢} =d — ¢} =11, we conclude that such a surface doesn’t exist.
Unfortunately, it starts to happen when g = 6 that, as the genus g grows,
g’ becomes greater than or equal to g when we iterate the adjunction
process. This is essentially the reason which makes it very difficult to use
this method to try to extend the classification beyond g = 6. We sum-
marize in the following tables the results which we have obtained. When
dim¢(X) =1, ()2', ﬁ) denotes a minimal model and its relative line
bundle. We thank Andrew J. Sommese for suggesting the problem and for
his valuable advice.

0. Background material. Since most of our background material is
as in [So], we will collect only material which cannot be found in [So]. We
first state the following proposition which can be found in [R].

(0.1) PROPOSITION. Let L be a line bundle on a smooth, connected,
projective surface X. Then:

(d =g +g—2

(2)dd’ =4(g— 1%

B)d+d =ct+4g—1).

Proof. To prove (1) we use the adjunction formula for the line bundles
L and Ky ® L and the fact that

d=(Ky+L) - (Ky+L)=ct—d+4g— 4.
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To prove (2) we use the Algebraic Index Theorem applied to K, and
K, ® L and the adjunction formula for the line bundle L. To prove (3) we
use the adjunction formula for the line bundle K, ® L and equality (1).

(0.2) THEOREM. Let X be a smooth, connected, projective, rational
surface and L a very ample line bundle on it. Let C €|L|. If g = g(C) =
g(L) = 0 then (X, L) is one of the following:

() X =P L =0p(1) or L = 0p:(2).

b)) X=F,L=[E,+kfl,k=r+1
If g = 1 then X is one of the following:

(¢) X = P? with at most six points blown up.

() X=P'XPland L- L =28.

Proof. If g(C) = 0, the result follows by Del Pezzo’s Theorem (0.6)
Now suppose g(C) = 1. Since by the First Lefschetz Theorem [A +F]
and [Bo], #'°( X) < g(C), we have to examine two cases:

(i) g(C) =1, "(X) =0,
and

(i) g(C) =1, A" X) = 1.

In case (1), since g(C) = 1, C is an elliptic curve. Therefore K - is trivial,
which implies K ® L is trivial. Thus K, ~ L™'. Since L' is a negative
line bundle, it follows that K is a negative line bundle, so X is a ruled
rational surface. Moreover, by Serre duality [Ha, pg 239],

h(Lle) =h (L ®Kc) = h*(L"]) =0

because K- is trivial and L' |- is a negative line bundle. Since h'(L|) = 0,
by the Riemann-Roch Theorem [Ha, pg 295],

W(L|.) =d—g(C)+1=d,

where d = L - L. Now using the long cohomology sequence associated to
the short exact sequence

0-0,-L-L|.~0,

we obtain that h1°(L) =d + 1. Hence X is a ruled, rational surface of
degree d in P? Then by [N, pg 366], X has to be either (c) or (d).
Moreover, by [N], since X is non-singular, if & denote the points that we
blow up on P? to get X, then the ¥, have to satisfy the following two
conditions:

(1) any three points among the ? are not colinear;

(2) there is no conic carrying six of the %..
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In case (ii), since g(C) = 1 = A"°(X), again using Del Pezzo’s Theo-
rem, we have that X is a P'-bundle over a curve T and smooth C €| L | are
sections. Since C is a section, g(I') = g(C) = 1, i.e. X is a P'-bundle over
an elliptic curve.

(0.3) PROPOSITION. Let X be a smooth, connected, projective surface
embedded by a very ample line bundle 2 in P*. Then

(03.1) £-L(L-2—5)—10(g(R) — 1) + 12x(0,) = 2Ky Ky.
Proof. See [Ha, pg 434].

(0.4) Castelnuovo’s Inequality [Ba, pg 234 ff; G+ H]: If C is an
irreducible curve embedded in P'~! and C belongs to no linear hyperplane
P72, then with d the degree of C and g the genus:

d—2 d—1](l—2
<[ —— — — | —— -
e R = (]

where [ | is the least integer function.

(0.5) CLIFFORD’s THEOREM. Let L be an invertible sheaf on a curve C
such that

0<degL<2g(C)—2.
Then

2(hO(L) — 1) <deg L

and equality holds only in the following cases:
) L=0.,L=Kg
(11) C is hyperelliptic.

[Sa, pg 158].

(0.6) DEL PEZZO’S THEOREM. Let L be a very ample line bundle on a
surface X. Then g(L) = h'°( X) if and only if

(a) X = P%and L = Opx(1) or 0p2(2).

(b) X is a P'-bundle over a curve and smooth C €|L| are sections.
Moreover, if h"°(X) = 0 then in case (b) X is a Hirzebruch surface.

For a modern proof see [Fu] or, for example, [So,, (0.6.1) pg 19].
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1. The case of h°(L) = 3, 4.

Let X be a smooth, connected, projective, rational surface and L a
very ample line bundle on it. If #°(L) = 3 then

(X, L) = (P2, 0p:(1)).
If h°(L) = 4 then
(X,L)=(F,E®f).

The proof follows from the following propositions.

(1.1) PROPOSITION. Let X and L be as in the above theorem but without
assuming that X is rational. If h°(L) =3 then g =0 and (X, L) =
(P?, 0p2(1)). If R%(L) = 4 then g = 0, 3, 6 and h'°(X) = 0.

Proof. If h°(L) =3 we see trivially that the statement is true. If
h°(L) = 4 then X is a hypersurface in P?; hence by the First Lefschetz
Theorem [A + F], #'°(X) = 0. Since C is embedded in P? we get g = 0,
1, 3, 6.

Suppose h°(L) =4 and g= 0. By Del Pezzo’s Theorem [N], X
is a Hirzebruch surface. Let X =F,, L=[E_ + kf] k =r + 1. By the
Riemann-Roch Theorem and the long cohomology sequence of the short
exact sequence

0-04->L->L|.-0,

we getd = 2. Thus 2 = (E_ + kf) - (E,, + kf), which implies r = 0, i.e.
2=d=2k=k=1. Therefore (X, L)=(F, E, + f). Now suppose
h°(L) = 4 and g = 1. By Theorem (0.2) either X is P? with at most six
points blown up or X = P! X P! and d = 8. Since h’(L) =d + 1, see
Theorem (0.2); thus d = 3, which excludes the case X = P' X P'. Thus X
has to be a blow up of P2. By Ky = L' we obtain ¢{ = -3, which
contradicts the fact that Kp: - Kp2 = 9, and we can blow up at most six
points. Therefore if h°%(L) = 4 then g = 0, 3, 6.

(1.2) PROPOSITION. Let (X, L) be as in the previous proposition. Let
h°(L) = 4. If g =3 then (X, L) = (H,, 0p:(1)), where H, is a hyper-
surface of degree 4 in P2 h'O(X) =0, h**(X)=1,and L-L=4. If
g =6, then (X, L) = (Hs, Ops(1)), where H is a hypersurface in P>,
R X) =0, h*°(X) =4 and L - L = 5. Moreover, in the first case, K, is
trivial, and in the second case, K H L = 0ps(1).
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Proof. We will first study the case in which g = 3. Let § be the degree
of C. Since C is embedded in P2,

g=3(6—1)(8 - 2),

which gives 8§ = 4, i.e. C is a curve of degree four in P2. It follows that X
is a degree four surface in P3. Hence

(X,L)= (H4’ Ops(1) IH4)'
Since Ky = Ops(d — 4),Ky, is trivial, by the adjunction formula, so
h%(Ky,) =1, which implies #"%(X) =0 and A*°(X) = 1. Moreover,
deg(Ops(1) ‘H4) =4
deg((‘),)z(l) |H4) = ®P3(1) |H4 - Ops(1) IH4
=0ps(1) - Ops(1) - Op, = 4.

Now consider the case g = 6. As before we see that X is a degree five
hypersurface in P3. Thus

(X, L) = (HS’ Ops(1) |H5)‘

In this case Kj; = Ops(1), hence L = Ky;, i.e. Hy is embedded in P’ by
the canonical line bundle. So Kj; ® L = 0ps(2). Moreover, h'%(X) = 0,
1*°(X) = 4 and deg(Op(1) |y,) = 5.

2. The case of dim¢;= 1. Under the hypothesis that dim ¢;( X)
= 1, by [So, (2r.1) pg 390}, if ¢ = r o s is the Remmert-Stein factorization
of ¢, then X > Y - P, where X is a P'-bundle over Y which is embedded

in P. Moreover,
(2.0.1) ci+4g—4=d.

(2.1) LEMMA. Let X be as before. Then h°( L) = 6 unless
g=2, d=5, ¢t=1.

Proof. Since we may assume A°(L) = 5, in order to prove the lemma
we assume h°(L) = 5. Now using Proposition (0.3) and (2.0.1) we see that
the following invariants are the only ones possible:

MHg=2,d=2,ci =-2

Qg=2,d=5c=1,

B)g=4d=1.c =-11;

4 g=4,d=06,cy =-6.

Cases (1) and (3) contradict Castelnuovo’s inequality (0.4) and case
(4), since h°(L|-) = 4 = g, implies, by [Se, (0.9.6) pg 382], that K is
trivial, which gives a contradiction.



ALGEBRAIC SURFACES WITH SECTIONAL GENUS < 6 103
Now we assume #°(L) = 6. Consider the long cohomology sequence
associated to the short exact sequence
(2.1.2) 0-0,-L->L|[.—-0.

Since h°(L) = 6, then h°(L|-) =5 and L|.- L|-=2g — 2 except when
g=6,d=9and h%L) = 6. In fact if L|.- L|. < 2g — 3, by Clifford’s
Theorem (0.5)

2g — 3

nO(L|) = +1<g—1.

Let g=6. Then A°(L|.) =5 and by Castelnuovo’s inequality d = 9.
Hence
9=<d=2g—3=0.

Therefore d = 9. Now assume that L - L = 2g — 2. Using the fact that for
a birational ruled surface with h'%( X) # g,

L-L 10 gt+1

5 T hO(X) < S
which follows by [So, (2.1) pg 390], we obtain
(2.1.3) L-L=<4(g+1).

By Castelnuovo’s inequality and (2.0.1), it follows that if X is birational to
a Hirzebruch surface then the pair (X, L) has to satisfy the following
invariants:

(Ng=25=<d=<12,5<h%(L)<12,1 =} <8;

2g=37=<d=<166<h%(L)<15-1=c¢f<8§;

3)g=4,8=d=20,6<h"(L)<18,-4=<c} =<8

4 g=58=<d=<246<h"(L)<2],-8<c}=<38

(5)g=69=d=28,6<h"(L)<24,-11 <c} <8.

Consider now the case in which g = 5. If we assume d = 8§, then by
Castelnuovo’s inequality #°(L) =5 or 6. Since in the case in which
h°(L) = 6, K is trivial, see [So, (0.9.6) pg 382], we have that #°(L) =5
and, using Proposition (0.3), we obtain ¢; = —2. But the invariants d = 8
and c; = -2 contradict the fact that if X is a minimal model then d = 24,
c? = 8. Therefore d # 8. Since if X = P2, dim¢;(X) = 2, we can state
the following theorem.

(2.2) THEOREM. Let X be a smooth, comnected, projective, rational
surface such that dim ¢;( X) = 1. Denote by X a minimal model and L the
relative line bundle. Then

(X,I:)Z(Fr,ZE+(g+r+l)f), r=0,...,g.
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For ( X, L) we have obtained the following sets of invariants:

(1) g=2 5=d=12, 5<h%L)=<12, 1 =¢} <8, at most seven
points blown up

(2 g=3,7<d=<166=<h%L)=<15, -1 <c?=<8, at most nine
points blown up

3 g=4,8<d=20,6=<h"L)=<18, -4 <c?=<38, at most twelve
points blown up

4 g=59=<d=<24,6=<h%L)=<2l, -8 <c? =<8, at most fifteen
points blown up

(5)g=06,9=<d=<28, 6 <h%L)=<24, -11 <c? <8, at most nine-
teen points blown up.

Thus we get the table on page 95.

3. The case of dim ¢;(X) = 2. Under the hypothesis that
dim¢~(X) = 2, A. J. Sommese has proved in [So, (2.3) pg 392] that, if
¢ =ros is the Remmert-Stein factorization of ¢, then X e —S>P”,
where 7: X - X expresses X as X with a finite set F of points blown up.
Further,

A

Ky®L=r*(Kz®L),
where L is an ample line bundle on X with
L= (r*L) ®[r'F]™".

In particular, s = ¢,.. Moreover if H'(X, L) =0 then L is very ample,
and since A'°(X) =0, s is an embedding unless there is a smooth
hyperelliptic C €| L|. He has also proved in (3.1) pg 395 that this last
situation can only happen when:

(3.0.1) X is a two-sheeted branched cover of P?, p: X - P? with a
smooth quartic curve as branch locus B. Moreover, L = [p~\(B)] is a very
ample line bundle on X, g = 3 and ¢ is simply p. Further, dim h°(L) =7
and d = 8.

(3.0.2) X is a smooth, connected, projective surface which is a 2-sheeted
branched cover p: X - 9, where 2 is a quadric in P* with an isolated
singularity e and such that it meets transversally a cubic surface C in a curve
B. X is such that B and e are its branch locus. In this case g =4,
dim h% L) =7 and d = 9.
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(3.1) LEMMA. Let X be a smooth, connected, projective, rational surface
such that dim ¢(X) = 2. Then h°%( K, ® L) = g.

Proof. Use the long cohomology sequence of
(3.1.1) 0-Ky->Ky®L-K.—0.

(3.1") COROLLARY. Let X be as above. Then g # 2.
Proof. Use Lemma (3.1).

By Castelnuovo’s inequality and (2.1.3) it follows that:

if g=6 then 7=d=28;
if g=5 then 7=d=24;
if g=4 then 6=d=20;
if g=3 then 6=d=16.

(3.2) THEOREM. Let X be a smooth, connected, projective, rational
surface such that dim ¢;(X) = 2. Suppose (X, L) is a minimal pair. If
g =3 then either (X, L) = (P2, 0p:4) or (X, L) is as in (3.0.1). If
g(L)=4 {helz the following cases are possible:

() (X, L) = (Hy, 0o(2);

(i) (X, L) = (Hy, Ops(3));

(iii) (X, L) is as in (3.0.2).

Proof. Let g = 3. By Lemma (3.1) we know that the adjunction map
surjects onto P2. By the long cohomology sequence of (2.1.2) it follows
that A'(L) = 0. Hence by [So, (2.4) pg 393], L is very ample. If there
exists a C €| L| which is hyperelliptic, again by [So, (3.1) pg 395], X is as
in (3.0.2). So we can suppose there is no such C. Since by [So, (3.1) pg
395], ¢, is an embedding, we have that X = P2 and

K;®L=Kpn®L=0p(-3)®L,

which gives L = 0p2(4). Thus d = 16, ¢ = 9 and °(L) = 15.
Now suppose g = 4. Assume first that

d=6=2g—12.
By the Riemann-Roch Theorem
R(L|) =3+ r'(L]e),
and by Clifford’s Theorem
R°(L|.) < 4.
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Since in the case in which h°(L|.) = 4, by [So, (0.9.6) pg 382], K, is
trivial, it follows that A°(L|.) = 3 and h'(L|.) = 0. Thus by the long
cohomology sequence of (2.1.2), h'(L) = 0, and by [So, (2.4) pg 393] we
obtain that L is very ample. If d = 7, again by (2.1.2), #'(L) = 0 and L is
very ample. If there is a C €| L| which is hyperelliptic, again by [Se, (3.1)
pg 395], we have that (X, L) is as in (3.0.2). Thus we can suppose there is
no such Cin |L|. Again by [So, (3.1) pg 395], since h(X) =0, ¢, gives
an embcddmg in P ie. X is a hypersurface in P°. Denote X by Hj.
=0p(8 —4andK;® L = Ops(1). So

Ops(8 — 4) ® L = 0ps(1).
Let L = Ops(k). Then
Op:(8 + k — 4) = 0p:(1).
Therefore
L= Ops(5 — 8) I3
and since L is very ample, 8 < 4. Thus
T<d=28(5—98).
Let 8 = 0. Then d = 0, which gives a contradiction. Let § = 1. Then
=(5—128)-6=16.

Since § = 1deg(X) = 1, X is mapped into a linear subspace, i.c. X > P2
Thus #°(K 3 ® L) = 3, which gives a contrad1ct1on since "% K; ® L) =

by Lemma (3. 1) Let 8 = 2. Then d = 18, &2 = 8, hO(L) 16. Let & = 3
Then d = 12,¢2 = 3, h°(L) = 10. So if § = 2 then X is a quadric in P’
and L = (91,3(3) i.e. (ii). If 8 = 3 then X is a cubic in P* and £ = 0:(2),

re. (i).

(3.3) THEOREM. Let (X, L) be as in the previous theorem. If X is a
minimal model relative to L then X is given as in the above theorem. If X is
not a minimal model relative to L and g = 3 then X is gotten by blowing up
at most ten points on P> If g = 4 then X is gotten by blowing up one point
on the surface in (3.0.2).

Proof. Let g = 3. We have seen that 6 < d < 16. In the case in which
there exists a hyperelliptic hyperplane section, we can assume d = 6, 7. If
d =6, c} = 0and h°(L) = 5. Thus using (0.3.1) we get a contradiction. If
d=17,c; =1and h°(L) = 5, 6. Since in the case in which #°(L) = 5 we
get a contradiction as above, it follows that A°(L) = 6. Thus, in this case,
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X is gotten by blowing up one point on the relative minimal model. Now
consider the case when C is not hyperelliptic. Since 6 = d < 16, X can be
gotten by blowing up at most ten points on P2 In the same way we get
the statement for g = 4.

We will use Proposition (0.1) to compute the values of d” and g’. See
the table on page 96.

Now we study the case g = 5. In this case A°(L’) = 5. Thus X is
embedded in P* by L’ and by Proposition (0.3) we get

(3.3.1) d'(d' —5)—10(g — 1) + 12 = 2¢%.

Since h°(L) =5 by Castelnuovo’s inequality, d = 7. If d = 7, again
by Castelnuovo’s inequality, #°(L) = 5. Then applying Proposition (0.3),
we obtain ¢? = —7. Let (X, L) be a minimal pair. Thend = 7. Ifd = d = 7,
using (3.3.1) we get a contradiction. Therefore d = 8. Let d = 8. By
Clifford’s Theorem and the fact that /% L) = 6 implies K 5 1s trivial, we
have h°(L) < 6. Thus h°(L) = 5. Note that in this case we don’t know if
L is very ample. Since d = 7, ¢> = -7 and d = 8 then ¢ = —6. Since X is
a minimal model relative to L and L’ is spanned by [So, (1.5) pg 387],
then K;- Ky =é =c¢> =K, - K,, where X’ is X considered in respect
to L’. Thus ¢;> = -6 and we get a contradiction since (3.3.1) has no
solution. Hence d = 9 and ¢;* = é] = 5. Now using Proposition (0.1) we
getd’ <7.Sinced’ = g + h** — h'¥ — 2, it follows that

3=d =7.

By Proposition (0.1) and (3.3.1) we get:

(ayd’" =7,8 =4,c?= -2,

(byd =6,g" =3,¢>=-1;

(©d =5¢g=2c*=1;

(dd =4,g =1,c>=4

(e)d =3,8=0,cP?=8.
Because cj* has to be greater than or equal to five, only the last case is
possible. Using Proposition (0.1) and from the short exact sequence

0-0;>L—>L|g-0

we obtain d = 21 and A% L) = 18. Since ¢> = ¢>* =8, d =21 and d = 7,
we must have ¢ = -6 which contradicts the fact that ¢? = —7. Therefore
d+1.

Now assume d = 8. By Castelnuovo’s inequality #°(L) =5, 6. If
h°(L) = 6, by [So, (0.9.6) pg 382], K is trivial, thus #°(L) = 5. By the
Riemann-Roch Theorem and (2.1.2) it follows that A'(L) = 0 which, by
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[So, (2.4) pg 393], implies that L is very ample, and by Proposition (0.3)
we get ¢; = 2. By Proposition (0.1) we have d’ = 6 and g’ = 3. Since
¢t = ¢}?, by (3.3.1) we get ¢2 = —1. Therefore d = 9 and h°(L) = 5. We
have obtained the following invariants:

d=9, W(L)=6, ¢2=-1, d' =6,

g =3, d=8, h'(L)=5, c¢}=-2.
Now we look at the table for the genus three surfaces. Since d’ — ¢ = 6
+ 1 =17, if 1t exists, X has to be P2 with ten points blown up. Because the
degree has to be six and the genus has to be three, an example of X may
be given by L = 7*(0p2(7) — 10p?), where 7: X — P? is the blow up map
and by 10p? we mean ten generic points each considered twice. Unfor-
tunately we don’t know if 7*(OQp2(7) — 10p?) is very ample. Let d = 9.
Then A'(L) =0 and by [So, (2.4) pg 393], L is very ample. By the
Riemann-Roch Theorem and

0-0,~L-L|.—0,

it follows that h%(L) =6, d =9, ho(l:) = 6. By Proposition (0.1), d’ = 7.
Moreover,

d =g+ h*—p0—2,
Thus 3 < d’ < 7. By Proposition (0.1) and (3.3.1) we get

d | g é d
7 | 4 | =2 7 | contradictsd =9
6 3 -1 9 same relative minimal model
as in the earlier case
5 2 12
4 1 4 16
0 8 21

In the case in which d’ =3, g’ =0, & = ¢? =8, d = 21, by Theorem
(0.2), X is a Hirzebruch surface, and by the short exact sequence

0-0;>L—>L|z->0

we get h°%(L) = 18. So X = F,, L’ = [E]* X [f]°. Since by [So, (3.1) pg
395], L’ is very ample, which happens if and only if a > 0 and b > ar, and
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since K[ E]™* ® [f]7*7", see [Ha], we have
3=L"-L = (aE + bf) -(aE + bf)
= —a’r + 2ab > -a*r + 2a.
So
3>a’r>r.

Let r = 0. Then 3 = 2ab, which gives a contradiction. Let r = 1. Then
3=a(2b—a). Thusa=1,b=2,ie. L' = E ® f2. Therefore

L=(E*®f3) ' ®@E®f2=E*®f°".

Let r = 2. Then 3 = 2a(b — a), which gives a contradiction. We can
conclude that if d =9 then (X, L) = (F,, E> ® f%), d = 21, h% L) = 18,
d=3,8=0,=c?>=8,d=9, c?= -4, h%L)=6, X is gotten by
blowing up at most twelve points. By our previous classification we see
that in the case

d =5 g=2 é&=1, d=12,
(X, L)is (E,[2E + (r + 3)f1), where r = 0, 1, 2 with seven points blown
up and, since d = 9, X is gotten by blowing up at most three points, while,
when

d=4, g=1, ¢¢=4, d=16,

by applying Theorem (0.2) we see that X has to be P2 with at most six
points blown up and L’ = K3'. Since L' = K4 ® L it follows that [ =
K #. Consider the very ample line O p2(3) on P2. Denote by X, P2 with five
points in general position blown up. If 7: X - P? then L’ = 7*(0p2(3))
and L = 7*(0p2(-3)) ® K7\ (X, L) gives an example of a surface satisfy-
ing our invariants. X is gotten by blowing up at most seven points. We can
state the following theorem.

(3.4) THEOREM. Let X be a smooth, connected, projective, rational
surface and L a very ample line bundle on it. Suppose dim ¢;-(X) = 2 and
g = 5. Then (X, L) has to satisfy one of the following sets of invariants:

(1) X is P with ten points blown up. L = w*(0px(7) — 10p?). d = 9,
RO(L)=6,62=-1,d"=6,8 =3,d=8,h°%(L)=5,c? = -2.

Q(X,L)y=(F,E*®f%),d=21,h%L)=18,8*=8,d’=3,g' =
0,9=d=<21,6<h%L)<18,-4=<c} =<8

(3) (X, L) is (F.,[2E + (r + 3)f]) where r = 0, 1, 2 with seven points
blown up, d=12, %(L)=9, & =1,d' =5, g =2, 9<d=<12 6<
hRY(L)<9,2=<cl=<1l.
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(4) X is P? with five points blown up. L= 7*(Opa(-3)) ® K7 d = 16,
ho(L) =13, G=4d=4g=1,9<d=<16,6=<h"(L)<13, -3 =<}
=4.
Let g = 6.

(3.5) LEMMA. Denote by (X, ﬁ) a relative minimal pair of (X, L),
where X is a smooth, connected, projective, rational surface such that
dim¢(X) =2,g=6and ¢} >0. Then 14 < d < 24.

Proof. By the identity (K- K¢)(L - L) = (Ky- L)* which follows
from the Algebraic Index Theorem [G + H] either d =7 or d = 14.
Assume X # P?. Then ¢} < 8. By

(3.5.1) Ki+ L) - (Kj+L)=g+ h*° —p'0—2,
X

if follows that d <24. Suppose d = 7. Then d =d =7 and L is very
ample. Now applying Castelnuovo’s inequality, 2°(L) = 5, and by Pro-
position (0.3) it follows that & = —12, which gives a contradiction since
we are assuming ¢7 > 0.

(3.6) THEOREM. Let X be as in the previous lemma. Then ()?, ﬁ) has to
satisfy one of the following sets of invariants:

()d’=4,d=124,¢2 =8, =0,h°(L) = 20;

(2)d’=5,d=20,¢2=5¢ =1,h%L)=

B)d =6,d=16,¢>=2g =2,h°L) =12

@d=7d=14,¢=1,g =3,h%L) =
Moreover, in the first case (X, ﬁ) = (P, X Py, Opipi(3,4)). In the second
case X is P? with four points blown up. In the third case ()2, ﬁ) is (F,
2E + (r+3)f], r =0, 1, 2, with six points blown up. In the last case X is
a two-sheeted branched cover of P* with a smooth, quartic curve as branch
locus with one point blown up.

Proof. By (3.5.1) and Proposition (0.1),
4=d =7.
Let d’ = 4. Again by Proposition (0.1),
g =0, 14<d=<24 and & =d— 16.
Since for d = 14, 15, 16, ¢ ¢t = -2, -1, 0, respectively, it follows that
d=4, 17<d=<24, g =0 and 1=<¢&<S8.

Because g’ = 0, using Theorem 0.2), we have that either X = P2 and
K;®L= Op2(1) or OpaA2), or X =F. Since X=P? cannot happen
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because ¢, embeds X in P3, the only possible cases are when X is a
Hirzebruch surface. Let L’ = E* ® f> witha > 0, b > a - r. Since

4 = (aE + bf) - (aE + bf)

and b > ar, we see that r = 1 is not possible. Now consider F, = P' X P'.
We want a very ample line bundle Opi,pi(a, b) such that 4 = 2ab and

=(a—1)-(b—1). Thus Opiypi(a, b) = Opipi(1,2). Therefore L=
Opixpi(3,4). Now assume d’ = 5. Exactly as before we have

16<d=<20, g =1 and 1<¢ <5.

By Theorem (0.2), it follows that X is P2 with four points blown up. Thus
d =20, ¢ =5, h°%(L) = 16. Hence case (2) of the statement has been
obtalned. Now assume d’ = 6. Exactly as before we get

d=15,16, g=2 and & =1,2.

Since by our previous classification d’ — ¢? = 4, we have ¢ = ¢;> = 2 and
(X, L)is (E, 2E + (r + 3)f]), r = 0, 1,2, with six points blown up. Let
d’ = . As before we get

d=14, g'=3, &=

Since d’ — &> =6, by our previous classification we get (X, L)is a
two-sheeted branched cover of P with a smooth, quartic curve as branch
locus with one point blown up. A possible example is given by L=p*Ky}
— g* where p: X - X". To complete the study of the smooth, connected,
projective, rational surface, it remains to investigate the case in which
g=6and ¢ <0.

(3.7) THEOREM. Under the above hypothesis, the minimal pair (X', L)
has to satisfy one of the following sets of invariants:

()d=9,h(L)y=6,é=-2,d"=9,g =5,(X,L)=(F, 2E +
(r+ 3)f)), r=0,1,2, with ten points blown up. X = X and a possible
example is given by L = a*(0pi p1(7,6) — Tp* — 34¢°).

(2) d=9, 'NL)y=5 or 6, ¢3=-1, d' =10, g =6, X is P?
with ten points blown up. X = X. A possible example is given by L =
7*(0p2(13) — 10p*).

B3)d=9,h%L)=6,2=0,d'=11,g=7,X=X.

4 d=10, h%L)=6, ¢3=-2, d'=8, g =4, X is P' X P!
with ten points blown up. X = X. A possible example is given by L =
W*(G)P‘XP'(S 5) - IOPZ)

(5)d=10,n%L)=6,¢} =-1,d' = 9,8’ = 5, X is P with ten poins
blown up. X = X A possible example is given by L= 7*(0p2(10) — 10p°).
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6)d=11,h%L) =17, = -1,d" =8, g’ = 4, X is gotten by blowing
up four points on the surface (2 5.2) of [So]. X = X. Possible examples are

= p*Ky 3 — 4q%, wherep: X > X', or L = 77*(@,,z(9) — 6p — 44°).

(1) d = 12, hO(L)*8 =-1,d=1¢g =3 (X, L)—( ,[2E +
(r+4f)D, r= .,3, with nine points blown up. X = X 4 possible
example is given by L = 7*(Opi1p1(6,4) — 9p ).

(8)d=12, h%L)=8,¢2=0,d" =8, g’ =4, X is gotten by blowing
up one point on the surface (2.5.2) of [Sol. X = X. A possible example is
given byL p*K ¢ — q* wherep: X - X'

(9)d=13,h%L)=9,62=0,d" =1, g’ = 3, X is P> with nine points
blown up. X is gotten by blowmg up at most one point. A possible example is
given by L = 7*(0,2(7) — 9p?).

Proof. By the Algebraic Index Theorem as used previously, either
8<d=<13 or d=25. By (3.4.1) d’ = 4. Suppose d=25. Then using
Proposition (0.1) we get d” = 4 and g’ = 0. Applying again Proposition
(0.1) and the fact that ¢ <0 we get d <16 which contradicts our
hypothesis. Hence 8 < d < 13. Consider first the case d = 8. By Castel-
nuovo’s inequality A%(L) = 5. Since cf < 0 implies ¢ <0, by the Alge—
braic Index Theorem d = 8, i.e. d=d =8, h%(L) = h°%L) =5, X = X,
L = L. Thus L is very ample. Using Proposition (0.3), ¢ = ~7 and again
by Proposition (0.1) d’ = 5, g’ = 1. Since ¢? = ¢} = ¢{?, by our previous
classification we see that this case doesn’t occur. Now consider d = 9.
Then d = 8,9 and #°(L) = 5,6. If h°(L) = 5 then A°(L) = 5 and h'(L)
= 0. Thus, by [Se, (2.4) pg 393), L is very ample. Thus by Proposition
(O 3), ¢# = —1. Hence in this case, using Proposition (0.1) we get d’ = 10,

=6. In the case in which A% L) = 6, by (3.5.1) &’ = 4 and by Proposi-
tion (0.1), d’” < 11. Using again Proposition (0.1) we obtain

d | d | &=d—-11 | g=d—4 | h%L) | d—&

9 4 —7 0 6 11
5 -6 1 6 11
6 -5 2 6 11
7 —4 3 6 11
8 -3 4 6 11
9 -2 5 6 11
10 —1 6 5,6 11
11 0 7 6 11
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By our previous classification we see that the only possible cases are the
last three. If d =8, then ¢? = -3,-2,-1 respectively. Moreover by
Castelnuovo’s inequality, 2°(L) = 5. So, applying Proposition (0.1), ¢; =
7, which gives a contradiction. Thus d = d = 9, i.e. X = X. In the case in
which g’ = 5 as in the case g = 5 we have obtained the possible example
that we have stated. In the case in which g’ = 6 we apply again the

adjunction process. Thend” = 2K ; + L)- 2Ky + L)=9and

(BKz+L)-2Kz+L)+2

5 =5
Since ¢;* = ¢* = ¢} = —1, we have that d” — ¢'*> = 10. Thus, by the
previous classification, we determine what X has to be and the possible
examples. In the case in which g’ = 7 we don’t know anything about X.
Now consider the case 10 < d < 13. By Proposition (0.1) and (3.5.1) we
get as usual the following table:

[ ——

d | d & | g | KLy | &—¢ | d—¢&
10 6 | —4 | 2 6 10 14
71 =31 3 6 10 13
8 | —2 | 4 6 10 12
9 | =1 | 5 6 10 11
10 0| 6 6 10 10
11 6 | -3 | 2 7 9 14
71 -2 3 7 9 13
8 | —1 | 4 7 9 12
9 0| 5 7 9 11
12 6 | -2 | 2 8 8 14
71 -1 3 8 8 13
8 0 | 4 8 8 12
13 6 | —1 | 2 9 7 14
7 0| 3 9 7 13

Now using the previous classification and the fact that if d= 10, d’ = 10,
g’ =6then K;- L =0and K- K3 = 0, which contradicts the Algebraic
Index Theorem, we obtain the following surfaces:
(H)d=10,d’ =8,¢2=-2,g =4, h°(L) = 6.
(2)d=10,d'=9,¢3=-1,g =5,h%L) =6.
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(3)d=11,d’ =8,¢& = -1,
@d=12,d'=17¢=-1,
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g =4hA(L)="1.
g =3,r(L)=38.

(5 d=12,d" =38, “,2=0 g =4,h(L)=8.
6)d=13,d’=17,62=0,g' =3, h%L)=9.
Exactly as before, looking at the previous classification we obtain the

statement.

Now assume X = P2. Then L = 0p2(5) and X is gotten by blowing up
at most sixteen points. We have summarized our results in the tables on

pages 6 and 7.
REFERENCES

[A+F] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections,
Ann. of Math., 69 (1959), 713-717.

[Ba] H. F. Baker, Principles of Geometry, V, Cambridge University Press, 1933.

[Bo] R. Bott, On a theorem of Lefschetz, Michigan Math. J., 6, 211-216.

[Fu] T. Fujita, On the structure of polarized varieties with A-genera zero, J. Fac.
Sci. Univ. Tokyo, 22 (1975), 103—-115.

[G+H] P. A. Griffiths and J. Harris, Residues and zero cycles on algebraic varieties,
Ann. of Math., 108 (1978), 461-555.

[Ha] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.

[Io] P. Ionescu, An enumeration of all smooth projective varieties of degree 5 and 6,
Preprint, Series in Mathematics Nr. 74 /1981.

[N] M. Nagata, On rational surfaces 1, Mem. Coll. Sci. Kyoto, (A) 32 (1960),
351-370.

[R] L. Roth, On the projective classification of surfaces, Proc. London Math. Soc.,
(2) 42 (1937), 142-170.

[Sa] B. Saint-Donat, On Petri’s analysis of the linear system of quadrics through a
canonical curve, Math. Ann., 206 (1973), 157-175.

[Sk] F. Sakai, Semi-stable curves on algebraic surfaces and logarithmic pluricanoni-
cal maps, Sonderforschungsbereich Theoritische Mathematik 40, Universitit
Bonn.

[S+R] J. G. Semple and L. Roth, Introduction to Algebraic Geometry, Clarendon
Press, Oxford, 1949.

[So} A. J. Sommese, Hyperplane sections of projective surfaces I—The adjunction
mapping, Duke Math. J., 46 No. 2 (1979).

[So,] , On the minimality of hyperplane sections of projective threefolds, J.

Reine Angew. Math., 329 (1981), 16—41.

Received April 26, 1982.

UNIVERSITA DEGLI STUDI DELL’AQUILA

Via RoMa 33

67100 L’AQUILA, ITALY





