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FLOW UNDER A FUNCTION AND
DISCRETE DECOMPOSITION OF
PROPERLY INFINITE W*-ALGEBRAS

W. J. PHILLIPS

The purpose of this paper is to generalize the classical ‘‘flow under
a function” construction to non-abelian W*-algebras. That is, given an
automorphism § of a W*-algebra N and a positive self-adjoint operator ¢
affiliated to the centre of N we show how to construct a continuous
action « of the reals on a W*-algebra M. The resulting covariant system
{M, a,R} is called the flow built on {N, §,Z} under the function ¢.

1. Introduction. We obtain existence and uniqueness theorems for
the representation of a given covariant system over the reals as a flow
build under a function. As an application we generalize Connes’ discrete
decomposition theorems ([3] Théoréme 5.3.1 and Théoréme 5.4.2) using
Takesaki’s continuous decomposition theorems ([8], Theorem 8.1, Lemma
8.2 and Corollary 8.4).

In §2 we fix notation and state some results on covariant systems. In
§3 we define flow built under a function and give necessary and sufficient
conditions for a covariant system over the reals to be isomorphic to a flow
built under a function. §4 deals with the uniqueness problem. That is, we
show the relationship between {N,,60,,¢,} and {N,,¥6,, ¢,} when the
corresponding flows are isomorphic. In §5 we derive discrete decomposi-
tion theorems for properly infinite W*-algebras using Takesaki’s continu-
ous decomposition theorem and our results on flow built under a func-
tion.

The results in this paper constitute the author’s doctoral thesis written
under the supervision of D. Bures. The author wishes to express his
gratitude to Professor Bures.

2. Preliminaries. Let (2, p) be a complete o-finite measure space.
An automorphism 7 of (&, p) is a bijection T: € — Q such that T and 7
are measurable and p o T~! is equivalent to u. A measurable action of a
locally compact, o-compact group G on (£, p) is a homomorphism ¢ — W,
of G into the group of automorphisms of (£, u) such that the map
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(w, t) = W,(w) is measurable when £ X G is equipped with the comple-
tion of the product of u with Haar measure. Measurable actions W and W
of G on (£, p) and (&, jt) respectively are called isomorphic iff there are G
invariant conull sets €, C @ and &, C 2 and a bijection S: £, — &, such
that S and S~' are measurable, i o S is equivalent to the restriction of p,,
to Q,and S o W(w) = W, o S(w) forallt € Gand all w € L.

If + - W, is a measurable action of G on (£, n) then we get a
homomorphism ¢ = «, of G into the group of automorphisms of L*(£2, p)
be defining a,f = fo W, — 1 for f € L*({2, n). The map ¢ - «, is continu-
ous in the sense that for every ¢ € L'(Q, p), t = [ f o W,-i(w)é(w) dp(w)
is continuous. More generally, a continuous action of a locally compact
group G on a W¥*-algebra M is a homomorphism ¢ — «, of G into the
group of automorphisms of M such that for each x € M the map
t = a,(x) is ultraweakly continuous. In this case the triple {M, a, G} is
called a covariant system. A homomorphism k: {M, a, G} - {N, B, G} of
covariant systems is a continuous W*-algebra homomorphism of M into
N such that ke, = Bk forall t € G.

As stated above, a measurable action of G on (£, p) gives rise to a
continuous action of G on L*({, ). The converse is also true:

PROPOSITION 2.1. Let {M, a, G} be a covariant system where G is a
locally compact o-compact group and M is abelian and o-finite. Then there is
a measurable action t - W, of G on a complete o-finite measure space (2, 1)
and an isomorphism k of L*(2, p) with M such that for all t € G and

FELXQ, p), k(fo Wi-1) = a(xf).

If G is a locally compact group {L*(G), o, G} will denote the co-
variant system where (o,/)(s) = f(¢7's) for t € G and f € L™(G). If G is
abelian with dual group G then for p € G define x » € L7(G) by x (1) =
(p,ty ((-, ") is the pairing between G and G).

If {M, a, G} is a covariant system, M* will denote the fixed subalge-
bra M* = {x € M: a,(x) = x for all 1+ € G}. The following is a special
case of [7] Theorem 2.

PROPOSITION 2.2. Let {M, a, G} be a covariant system where G is
abelian. Suppose that p = U, is a strongly continuous unitary representation
of G in the centre of M such that a,(U,) = (p,t tyU, for all t € G and all
pE G. Then there is an isomorphism « of {M, a, G} with {M* ® L*(G),
id ® g, G} such that k(x) =x® 1 for x € M* and «(U,) = 1 ® x, for
p EG.
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A consequence of this proposition is:

PROPOSITION 2.3. Let {M, a, G} be a covariant system, H a locally
compact abelian group and (g, p) — v(g, p) a strongly continuous mapping
of G X H into the unitaries in the centre of M such that v(gk, p) =
v(g, p)av(k, p)) and v(g, p+ q) = v(g, p)v(g, q) for all g k &
G, p,q € H. Then there is a continuous action & of G on M ® L*(H)
commuting with id ® o such that a (x ® 1) = a(x) ® landa (1@ x,) =
(g, p)®x,forallx e M, g€ Gandp € H.

Proof. For p € H set U, =v(g, p)®x, €M® L*(H). By Proposi-
tion 2.2 there is an automorphism B, of M ® L*(H) commuting with
each id ® g, for t € H such that ,8(x® 1) =x®1 and B,(1 ®xp)—
v(g, p)® X, foerMandpEH Set &, = B,a, ®id. Then g — a, is
the required action. O

If {M, a, G} 1s a covariant system with G abelian there is a unique
(up to isomorphism) covariant system { M, &, G} such that M is generated
by an isomorphic image m: M — M of M together with a strongly
continuous unitary representation g —» U, of G satisfying: Um(x)Uf =
T(a,(x)), &, (m(x)) = w(x) and a,(U,) = (p U, forallxeM, g€ G
and p €G (see [8]). M is called the crossed product of the covariant
system and is denoted by M X, G. Takesaki ([8] Theorem 4.5) has shown
that (M X _G) X G is isomorphic to M ® B(L*(G)).

PROPOSITION 2.4. In the situation of Proposition 2.3, let 8 be the action
of G X HonM® L*(H) given by B, ,, = @,id ® ¢, for (g, h) € G X H.
Then M @ L*(H) X(G X H) is lsomorphzc to(MX,G)® B(LZ(H))

Proof. M ® L*(H) X5(G X H) is generated by a copy m(M) of M
and three strongly continuous unitary representations g > U,, p = V,,
h— W, of G, Hand H respectively. (7( M) 1s the image of M ® 1 and V
for p € H, is the image of 1 ® x » 1n the crossed product). Let M, be the
W*-algebra generated by m(M) and {U,: g € G}. Since ,8( go(m(x)) =
m(x) and ,B(qo](U) (4,8 gU, for x e M, g€ G and g € G, it follows
that M, is 1somorphlc to M X ,G. Let M, be the W*-algebra generated by
M, and {V,: p € H} and let 6 be the action of H on M, given by
[/ (y) V. yvy forye M,p € H. 1t follows that M, is M, X, H with §
given by Oh( y) = W,yW; for y € M,. Finally, since ,8(0 P y) y and
B(OP)(W,,) (p, )W, for y EM,, p € H and h € H, we have that



224 W. J. PHILLIPS

M ® L*(H) Xg(G X H) is isomorphic to M, XjH. But M, X;H is
isomorphicto (M X ,G) Xy H ) XgH which by Takesaki’s result is iso-
morphic to (M X ,G) ® B(L*(H)). O

3. Flow under a function. The classical “flow under a function”
construction produces a measurable flow from an automorphism of a
measure space and a function on the measure space. The construction is
as follows (see [1], [2] and [6]). Let T be an automorphism of the complete
o-finite measure space (£, n) and let ¢: & — (0, 0) be a measurable
function satisfying

(3.1) > o(T"w) =00 = X ¢(T"w) forallw € Q.
n=0 n=0

Set & =Q X R and let ji be the completion of the product of p with
Lebesgue measure. Let T and S,, for ¢ € R, be the automorphisms given
by T(w,s) = (Tw, s — ¢(w)), S(w,s) = (w, s+ ¢t) for (w,s) € Q. Let
€, be the space of orbits under T and let 2, be the region under the graph
of pie. @, = {(w, s): 0 =5 <¢(w)}. By (3.1) @, is a transversal of the
orbits under T so we may identify €, and ©,. Let p, be the measure on £,
obtained by restricting i to €,. Since S, and T commute, S, descends to a
flow t > S° on (£, ). See [1] formula 1.1 for the definition of S° as a
flow on ©,. S is called the flow built on the automorphism 7 under the
function ¢. Due to the identification of £, and ,, T is called the base
automorphism and ¢ the ceiling function for S°. A slight extension of [2]
theorem 4 is:

THEOREM 3.2 (Ambrose and Kakutani). A measurable flow t - W, on a
complete o-finite measure space is isomorphic to a flow built under a function
iff W is proper in the sense that for any measurable subset E of positive
measure there is a measurable subset F C E and a number 1, so that W, (F)
intersects the complement of F in a non-null set.

In this section we shall generalize the flow under a function construc-
tion and Theorem 3.2 to non-abelian W*-algebras. We first repeat the
flow under a function construction in terms of covariant systems. Let
{N, 8,Z) be the covariant system where N = L*(Q, p) and 0(f) = fo T™!
for f € N,. Let { M, a, R} be the covariant system where M = L*(Q,, p,)
and a,(f) =foS% fort €R and f € M. Let 6 be the automorphism of
N ® L®(R) = L*(Q, &) given by 6(f) = fo T~ for f € N ® L*(R). There
is a natural identification of M with the fixed algebra [N ® L*(R)]? and
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under this identification a,(y) = id ® o,(y) fory € M and r € R. We can
see that the construction depends only on { N, 6,Z} and ¢ as a self-adjoint
operator affiliated to N by noting that f is characterized by the equations,
6(x®1)=06(x)®1and §(1 ® x,) = 6(e**) ® x, for x € N and s € R.
To extend the construction to non-abelian W*-algebras we need an analog
of property 3.1.

DEFINITION 3.3. Let @ be an automorphism of a W*-algebra N and let
¢ be a positive self-adjoint operator affiliated to the centre of N. ¢ is
called a @ ceiling function iff there is a partition of unity {e,;: i € I} in the
centre of N and numbers ¢, > 0, for each i € I, such that 6(e;) = e; and
dpe, = ¢e,, foreachi € I.

DEFINITION 3.4. Let {N, 6,Z} be a covariant system and ¢ a @ ceiling
function. Let @ be the automorphism of N ® L*(R) (given by Proposition
2.3) which satisfies §(x ® 1) = 8(x) ® 1 and §(1 ® x,) = 6(e™*?) ® x, for
xENands€R. Let M=[N® L?R)]? and for x € M and ¢ € R let
a,(x) =1d ® o(x). The covariant system {M, a,R} is called the flow
built on {N, 6, Z} under ¢.

WEe can characterize flow under a function abstractly.

PROPOSITION 3.5. { M, a, R} is isomorphic to the flow built on {N, 6,7}
under ¢ iff there is W*-algebra P with commuting actions & of R and 8 of Z
such that {N, 8,7} is isomorphic to { P%, 0,7}, {M, a,R} is isomorphic to
(P? &, R} and there is a strongly continuous unitary representation s — v, of
R in the centre of P such that &(v,) = &“'v, and 8(v,) = 6(e™*)v, for
s, t € R (in this last formula we identify N with P%). Moreover, in this case
there is a strongly continuous unitary representation p = u, of (the group)
[0,2@) in the centre of P such that 6(u,) = e "?u, for p € [0, 27).

Proof. If {M, a,R)} is the flow built on {N,#,Z} under ¢, take
P =N ® L*R), @ = id ® 0, f as in Definition 3.4 and let v, = 1 ® x, for
s € R. The converse follows from Proposition 2.2. For the last part we use
the following lemma which will be needed later.

LEMMA 3.6. Let vy be an automorphism of the W*-algebra Q and let

s = v, be a strongly continuous unitary representation of R in the centre of Q

such that y(v,) = y(e"“?)v,, s € R for some v ceiling ¢ affiliated to the

centre of Q. Then there is a central projection e in Q such that {y"(e):
n € Z} is an orthogonal family and 1 = Z5___ y"(e).
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Proof. Let k be the self-adjoint operator affiliated to the centre of Q
such that v, = e”** for s € R. Then y(k) = y(¢) + k. Since ¢ is a y ceiling
operator, there is a spectral projection p of k corresponding to an interval
of the form (-o0, a] for some a € R which satisfies y(p) < p, yv(p) # p,
Y'(p) -0 as n— oo and y"(p)—>1 as n - —o0. e =p — y(p) is the
required projection. O

Now, applying Lemma 3.6 to the situation of Proposition 3.5 we
obtain a central projection e in P with {6"(e): n € Z} an orthogonal
family and 1 = 3., 6"(e). Setu, = Z7___ e""7f,(e). O

To obtain the generalization of Theorem 3.2 we shall use

LEMMA 3.7. Let {M, o, R} be a covariant system. Let M, be a W*-sub-
algebra of M such that a(M,) = M, for all t € R and centre M, C centre
M. Set a)(x) = a(x) fort € Rand x € M,. If {M,, &', R} is isomorphic to
the flow built on {N,,0,,Z} under ¢, then there is an imbedding of
{N,, 0,,Z} into a covariant system { N, 0,Z} such that centre N, C centre N
and {M, a, R} is isomorphic to the flow built on {N, 0,Z} under ¢ = ¢,.

Proof. Using Proposition 3.5 we obtain P, @', ,, s - v} and p - u),
satisfying the conditions of the proposition. We identify M, with P/ and
N, with P For 1 € R, p € [0,2m), &;(u),)u)* is fixed by §,. Hence there
is a unitary v(z, p) in the centre of M, such that a;(u,) = v(t, p)u, for
t€R, p€[0,27). The map (¢, p) = v(¢, p) satisfies the conditions of
Proposition 2.3 with respect to ' and hence with respect to a (since centre
M, C centre M). By Proposition 2.2 we can identify P, to M, ® [*(Z).
Under this identification 4 is id ® o, u,is 1 ®x, for p € [0,27] and a
satisfies a;(x ® 1) = ay(x) ® 1 and a;(1 ® x,) = v(z, p) ® x, for t ER,
x € M, and p € [0,27). Let P = M ® [*(Z), then P, C P, centre P, C
centre P and we can extend 8' to  on P by = id ® . We can also use
Proposition 2.3 to extend @' to @ on P. Let N = P% and for x € N let
6(x) = 6(x). Since centre N, C centre P, C centre P we have that centre
N, C centre N. Finally, set u, = u, for p € [0,27) and v, = v; for s € R.
Proposition 3.5 now shows that { M, a, R} is isomorphic to the flow built
on {N, 6,Z} under ¢. O

The generalization of Theorem 3.2 is

THEOREM 3.8. A covariant system {M, a,R} is isomorphic to a flow
built under a function iff the restriction of « to the centre of M is proper in
the sense that for every non-zero central projection e there is a central
projection | < e and a number 1, such that (1 — f)e,(f) # 0.
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Proof. Without loss of generality we can assume that the centre of M
is o-finite. Assume that {M, a,R} is isomorphic to the flow built on
{N, 6,Z} under ¢. Proposition 3.5 shows that the restriction of a to the
centre of M is isomorphic to the flow built on the restriction of 6 to the
centre of N under ¢. By Theorem 3.2 a is proper. For the converse,
Lemma 3.7 shows that it suffices to obtain the restriction of a to the
centre of M as a flow built under a function. Theorem 3.2 shows that this
is possible. O

4. Uniqueness of flow under a function. Let {M, a,R} be the flow
built on {N, 6,Z} under ¢. In this section we investigate the extent to
which the isomorphism class of {M, a,R} determines {N, 6,Z} and ¢.
The results are well known in the abelian case (see [5]).

We first exhibit two ways of modifying {N, #,Z} and ¢ so that the
resulting flows are isomorphic.

LEMMA 4.1. Let 8 be an automorphism of N and ¢ a 0 ceiling function.
Suppose £ is a self-adjoint operator affiliated to the centre of N such that
V=0¢+0(&) — & is also a 0 ceiling function. Then the flows built on
{N, 0,1} under ¢ and  are isomorphic.

Proof. In the notation of Proposition 3.5 we have 8(v,) = 0(e™*?)v,
for all s € R. Set v, = 6(e'**)v, for s € R. Then f(v]) = 0(e"**)f(e™*?)v,
= @(e"¥)v] for all s € R. Also a,(v]) = e "%/ for all s and ¢ € R. Hence
by Proposition 3.5, both flows are isomorphic to the restriction of a to
P, O

The second modification deals with induced automorphisms in the
sense of Kakutani [S]. For this we need the notion of recurrent projec-
tions.

DEFINITION 4.2. Let # be an automorphism of N and let ¢ be a
projection in the centre of N. e is said to be recurrent under 4 iff
es=V, o0"e)ande=<V ,_,0"e).

There is a canonical way to partition a recurrent projection as
e = 2%_, e, where each e, is central and satisfies (e,) < e, and for n = 2,
0/(e,)e=0 for j=1,2,....,n— 1 and 6"(e,) <e. It follows that e =

w_10"e,) and {6/(e,):j=0,1,...,n — 1,n = 1,2,...} is an orthogonal
family with

o n—l1 00

V)= S So(e)= 3 S oie,).

nEZ n=1 j=0 n=1 j=1
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The induced automorphism 6, of N, is defined by 6,(x) = Z7_, 0"(xe,)
for x € N,. If ¢ is a @ ceiling function then

oo n—1

=2 2 07"(¢)e,

n=1 m=1

is called the induced ceiling function.

LEMMA 4.3. If e is recurrent under the automorphism 6 of N with
V ez 0"(e) =1 then the flow built on {N, 8,Z} under ¢ is isomorphic to
the flow built on {N,, 0,,Z} under ¢,.

Proof. Let {M, o, R} be the flow built on {N, 6,Z} under ¢. We use
the notation of Proposition 3.5. The projection e is recurrent for § and
a,(e) = e for all tER Let P,=P, 0, =6, a(x)=a,x) forx €P,
t €R and let v! = v,e. Then a'(o ) = e”’o' and 6(v!) = §,(e"*)0v! for
s, t € R. Hence, the restriction of &' to PO is isomorphic to the flow built
on {N,,0,,Z} under ¢,. Since V ,cz0"(e) =1, the map x — xe is an
isomorphism of P with P} Hence the restriction of @ to P? is isomorphic
to the restriction of &' to P"'. O

The uniqueness question splits naturally into the dissipative and
conservative cases. Recall that an action a of a locally compact abelian
group G on a W*-algebra M is called dissipative iff there is a strongly
continuous unitary representation p — U, of G in the centre of M such
that o (U,) = (p, t)U forallt € G,p € G (In which case by Proposition
22, {M, a, G} is isomorphic to {M*® L*(G),id ® 0,G}.) a is called
conservative iff there are no non-zero, central, a invariant projections e
such that « restricted to M, is dissipative. A maximality argument shows
that there is a largest central a-invariant projection e such that a restricted
to M, is dissipative and « is restricted to M, _, is conservative. We denote
this projection by e(a).

LEMMA 4.4. Let {M, a, R} be the flow built on { N, 8,Z)} under ¢. Then
{N,6,Z} is dissipative iff {M,a, R} is dissipative. More generally,
{M, s> @, R} is isomorphic to the flow built on {N,q), 0,Z} under ¢pe(0)
and { M, _ 2, R} is isomorphic to the flow built on {N,_, ), 0,Z} under

o(1 — e(0)).

Proof. Suppose {N, 6,Z)} is dissipative. Let Q = N’ then (N, 6,Z} is
isomorphic to {Q ® [*(Z),id ® 0,Z}. Hence we can find a self-adjoint
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operator n affiliated to the centre of N such that ¢ = fn — n. In the
notation of Proposition 3.5 let U, = §(e~"*")v, for s € R. Then 0_((]3.) =U
a,(U) = e™™'U, for s, t € R. Hence a is dissipative.

Conversely, if « is dissipative let s - U, be a strongly continuous
unitary representation in the centre of M such that «,(U,) = e "'U, for
s, t € R. In the notation of Proposition 3.5 let w, = U*v, for s € R. Then
w, 1s in the centre of P, a,(w,) = w, for s, r € R and o( w,) = 0(e"?)w, for
s € R. By Lemma 3.6 there is a central projection e in N with {6"(e):
n € Zj an orthogonal family such that 2°._, 6"(e) = 1. For p € [0,27)
setu, = 27, e'"7@"(e). Then u, is in the centre of N and (u,) = e™"u,
forp € [0,27). Hence { N, 0, Z} is dissipative.

For the last part of the lemma, using the notation of Proposition 3.5
we have e(8) € N = (P%? = (P%)* = M* and the flow built on
{Ny(py» 0,Z} under ¢e(8) is isomorphic to { M, ), @, R}. By the first part

€

of the proof e(8) = e(a). a
The main result of this section is:

THEOREM 4.5. The flow built on { N\, 0,,Z} under ¢, is isomorphic to the
flow built on {(N,, 8,,Z} under ¢, iff there are recurrent projections e, in the
centre of N, with V ez 0'(e,) =1 for j= 1,2 and an isomorphism « of
{(N))e,,(0,)e,,Z} with {(Nz)ez,(ﬂ Ye,, L} such that (¢,)e, = k(¢,)e, +
(0,)e,(&§) — & for some self-adjoint operator & affiliated to the centre of
(V;)e;.

Proof. Lemmas 4.1 and 4.3 show that the stated conditions imply that
the flows are isomorphic. For the converse, Lemma 4.4 shows that we may
deal with the dissipative and conservative cases separately.

Assume that {N,, 6,7} is dissipative for j = 1,2 and let { M, a, R} be
the common flow. Proposition 3.5 and Lemma 4.4 show that { N . j, Z)}is
isomorphic to {N” ® I*(Z),id ® 6, R} and N/', Nj* and M* are all
isomorphic. It follows that {N,, 6,,Z} is isomorphic to {N,,6,,Z}. If
{N,8,Z} denotes this common covariant system then we can find &, &,
such that ¢, = 0(&1) — §j. Hence ¢, = ¢, + 0(§) — £ where £ = ¢, — &,.
This proves the theorem in the dissipative case. For the rest of the proof
we assume that 6, and 6, are conservative. The property of conservative
automorphisms which is needed is that all central projections are recur-
rent.

LEMMA 4.6. If the flow built on {N,, 0,,Z} under ¢, is isomorphic to the
flow built on {N,,8,,Z} under ¢, then there is a W*-algebra Q with
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commuting automorphisms vy, and vy, and a strongly continuous unitary
representation s - w, of R in the centre of Q such that {N,,0,,Z} is
identified to {Q", v,,Z}, {N,, 0,,Z} is identified to {Q™, v,,Z}, y(w,) =
Y,(e”®)w, and v,(w,) = (e “*)w, for all s € R.

Proof. Let { M, a, R} be the common flow. We apply Proposition 3.5

obtaining P;, 6,, a’ and v’ for j = 1,2 satisfying the properties of Proposi-
tion 3.5. In particular, we identify M to both P{' and P{>. Under this
identification a is the restriction of a/ for j = 1,2. Let p > U, be a
strongly continuous unitary representation of [0,2) in the centre of P,
such that 8,(U,) = e~U, for p € [0,2m). Then a(U,) = v(1, p)U, for a
strongly continuous unitary map (¢, p) - v(¢, p) of R X [0,27) into the
centre of Pj2. Note that centre P’ = (centre P;)% = centre M for j = 1,2
and (¢, p) - v(t, p) satisfies the conditions of Proposition 2.3. By Prop-
osition 2.2 we can identify P, with P}) ® /°(Z) and under this identifica-
tion §,isid ® o, U,is 1 ® x, for p € [0,27) and &’ satisfies a}(x ® 1) =
@(x)®1 and &}(1®x,) =o(t,p)®x, for tER, x EP" and p €
[0,27). Now, set P = P, ® [*(Z), vy, = 0, ®id, y, = id ® o and let § be
the action of R on P (given by Proposition 2.3) which satisfies 8,(x ® 1)
=a(x)®1 and B(1®x,) =v(t,p)®x, for xEP, tER, pE
[0, 27). The automorphisms ¥,, ¥, and B, commute for all 1 € R, {P,, 8, X
@',Z X R) is identified to { P%, ¥, X B,Z X R} and {P,, 8, X a*,Z X R}
is identified to {P", ¥, X B,Z X R}. Let Q = P¥, Y, = ¥;lp for j = 1,2
and let w, = v>,v! for s € R. Now, {N,, 6,,Z)} is identified to { P, 6,,Z)
which is identified to {(P%)% ¥,,Z) = {(PF)",¥,,Z) = {Q™, v,,Z}.
Similarly {N,, 6,,Z} is identified to {Q™, v,,Z}. Finally for s € R we
have
'Y](Ws) = 71(0350.:) = vfs-?](e”‘f’l)v;
= vzs"l(em%)v.: = Yl(eis¢l)ws‘

Similarly y,(w,) = v,(e “%)w, for all s € R. O

In the notation of Lemma 4.6, let w, = e'**, for s € R, where k is a
self-adjoint operator affiliated to the centre of Q. Let f be the spectral
projection of k corresponding to the set (—o0,0]. Since y,(k) = k + v,(¢,)
we have that y,(f) =f. Since ¢, is a vy, ceiling function it follows that
Y/ (f) = 0and y;"(f) —» 1 ultraweakly as n — oo. Now set e = f — y,(f).
Then {y{'(e): n € Z} is an orthogonal family with 25°___ y/'(e¢) = 1. Since
Y,(k) = k — v,(¢,) we have that v;'(e)y;"(e) = 0 for n = 1. It follows
that v;'(e) = 2%, g,v/(e) where {g,: n=0,1,2,...} is a partition of

n=0



DISCRETE DECOMPOSITION OF PROPERLY INFINITE W*-ALGEBRAS 231

unity consisting of y, invariant projections. Set e, = 1 — g, € Q" = N,.
We shall show that V', ., 67(e,) = 1. Suppose there is a non-zero projec-
tion p in the centre of Q fixed by both y, and y, with p <g,. Then
v;'(ep) = ep and {y/(ep): n € Z} is an orthogonal family. This con-
tradicts the assumption that 6, is conservative.

Hence, by replacing 6, by (6,)e, we may assume that y;'(e) =
2% 8,Y'(e) where {g,: n = 1,2,...} is a partition of unity consisting of
central y, invariant projections. It follows that {yj(e): n €Z} is an
orthogonal family. Set e, = ZX___ v)(e) € Q™ = N,. Clearly
V ,ez 07(e;) =1 and the canonical partition of e, is (e;), =
2 vk(g,e) for n=1,2,.... This means (v,),(x) = S, 7/((€,),%)
for x € Q. Hence (v,)e,(e) = 22, g,v/'(e) = v5'(e). So by replacing 6,
by (6,)e, we may assume that in the situation of Lemma 4.6 there is a
central projection e with {y/'(e): n € Z} a partition of unity and with
v,(e) = v5'(e). By Proposition 2.2 there is an isomorphism of Q with
N, ® [*(Z) which carries v, to id ® ¢ and v, to 6, ® ¢7'. If we regard
N, ® [®(Z) as bounded functions x: n - x, from Z to N, then we see that
Q™ consists of those operators x satisfying x, = 6, "(x,). Hence k: x - x,,
is an isomorphism of N, onto N, such that 6,k = k6,. Now, let k be the
self-adjoint operator affiliated to the centre of Q such that w, = e"** for
s € R. Then y,(k) = k + v,(¢,) and v,'(k) = k + ¢,. Substituting one
equation into the other yields ¢, = v;'(k) — v,(k) + v,(¢,). That is, for
each n€Z, ¢,=06;(k,_,) —k,_, +(¢,),_,- Take n =1 to obtain
(¢1)0 = &, + ¢,(§) — & where & =06,'(k;). Hence (¢,) = ¢, + 0,(£)
—¢. O

5. Crossed products and traces.

THEOREM 5.1. Let {M, a,R} be the flow built on {N, 0,Z} under ¢.
Then M is properly infinite iff N is properly infinite and in this case M X ,R
is isomorphic to N X,Z. More generally, the tensor product of the crossed
products with the factor of type I, are isomorphic.

Proof. By Lemma 3.5 and Proposition 2.2 there is an isomorphism of
N ® L*(R) with M ® [*(Z) and so M is properly infinite iff N is.

In the notation of Lemma 3.5 let 8 be the action of Z X R on P given
by B = 6"&,. By Propositions 2.2 and 2.4, P X g(Z X R) is isomorphic
to M X, R ® B(I*(Z)) as well as (N X,Z) ® B(L*(R)). Finally, recall
that a W*-algebra is properly infinite iff it is isomorphic to its tensor
product with the type I factor. O
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We can connect traces on M with traces on M.

THEOREM 5.2. Let {M, a,R} be the flow built on {N, 8,Z} under ¢.
Then M is semi-finite iff N is semi-finite. Moreover, M has a faithful,
normal, semi-finite (abbreviated f.n.s-f.) trace T, with 7,  a, = e~'1, for all
t € RIff N has a f.n.s.-f. trace T, with 7, o § = 1,(e™?).

Proof. In the situation of Lemma 3.5, Proposition 2.2 shows that P is
isomorphic to both N ® L*(R) and M ® [*(Z). Hence M is semifinite iff
N is. Let m and n denote the usual traces on L*(R) and /*(Z). Let 7, be a
f.n.s.-f. trace on M with 7, o a, = e”'1; for ¢t € R. Using the isomorphism
of N ® L*(R) with M ® [*(Z) we can transfer 7, ® n to a f.n.s.-f. trace 7,
on N ® L*(R) satisfying 7, © § = 7, and 7, o id ® 0, = &'7, for € R. Let
h be a self-adjoint operator affiliated to the centre of N ® L*(R) such that
e =1® x, fors €R. Thenid ® o,(e") = e’e" and §'(e") = e * ® le”
for 1 € R. Set 7 = 7,(e" - ). It then follows that 70§ = 7(e™*® 1 - ) and
7o id ® g, = 7. Hence there is a f.n.s.-f. trace , on N such that 7, ® m = 7
and som, 0 0 = n(e™® ).

For the converse, if 7,0 § = 7,(e™® - ) we transfer 7, ® M(e™" - ) to
M ® [®(Z) obtaining a f.n.s-f. trace 7' which satisfies 7' o id ® ¢ = 7!
and 7' o @, = e~'r!' for t € R. Hence there is a f.n.s.-f. trace 7, on M such
that 7, ® n = 7'. This implies that 7, o a, = e ‘1, for t € R. O

6. Discrete and continuous decompositions.

DEFINITION 6.1 ([4]). Let P be a properly infinite W*-algebra. A
continuous decomposition of P is a covariant system { M, a, R} with the
properties:

(i) M X R is isomorphic to P.

(i1) M is properly infinite and semi-finite.

(iii) There is a f.n.s.-f. trace 7 on M such that 7o a, = et for all
t € R.

Combining the results of [4] and [8], Connes and Takesaki showed
that continuous decompositions exist and are unique up to isomorphism.
Let P =M X, R be a continuous decomposition of P and let C be the
centre of M. Then the covariant system {C, a|-, R} is an invariant of the
isomorphism type of P. {C, a|-, R} is called the flow of weights for P.
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DEFINITION 6.2 ([4]). A discrete decomposition of a properly infinite
W*-algebra P is a covariant system { N, 6, Z} with the properties:
(1) N X4 Z is isomorphic to P.
(i1) NV if properly infinite and semi-finite.
(iii) N has a f.n.s.-f. trace 7 with 70 § = 7(e”® - ) for some @ ceiling
function ¢.

Connes [3] showed that for factors of type III,, A ¥ 1, discrete
decompositions exist and are unique up to induction (see §4). Our results
on flow under a function yield the following connection between discrete
and continuous decompositions.

THEOREM 6.3. Let P be a properly infinite W*-algebra, {N, 0,Z} and
{M, a,R} covariant systems and let ¢ be a § ceiling function. Then any two
of the following imply the third:

(1) {M, o, R} is a continuous decomposition of P.

(i1) {N, 6,Z} is a discrete decomposition of P witht o § = 7(e™® - ) for
some f.n.s.-f. trace T on N.

(i) {M, a, R} is isomorphic to the flow built on {N, 0,Z} under ¢.

Proof. Assume (i) and (ii) and let {M,, «',R} be the flow built on
(N, 6,Z} under ¢. Theorems 5.1 and 5.2 show that {M,, a',R} is a
continuous decomposition of P. By the uniqueness of continuous decom-
position { M, a, R} is isomorphic to { M,, &', R}. Now assume (i) and (iii).
By Theorem 5.2 there is a f.n.s.-f. trace 7 on N with 1060 = 7(e™?-).
Theorem 5.1 shows that N X,Z is isomorphic to P. Hence {N, 0,Z} is a
discrete decomposition of P. Finally, assume (ii) and (iii). Theorems 5.1
and 5.2 show that { M, a, R} is a continuous decomposition of P. g

Theorems 6.3 and 3.8 give a generalization of [3] Théoréme 5.3.1.

COROLLARY 6.4. A properly infinite W*-algebra P has a discrete
decomposition iff the flow of weights is proper.

Proof. Let {M, a,R} be a continuous decomposition of P then the
restriction of a to the centre of M is proper. By Theorem 3.8 {M, a, R}
can be expressed as the flow built on {N, 6,Z} under ¢. By Theorem 6.3,
{N, 8,Z} 1s a discrete decomposition of P.

Conversely, if P = N X4Z is a discrete decomposition where 70 § =
7(e"® ) for some f.n.s.-f. trace r on N and @ ceiling function ¢ then by
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Theorem 3.8 the flow built on { N, 6,Z} under ¢ is proper when restricted
to its centre. By Theorem 6.3 this flow is the flow of weights. O
Theorems 4.5 and 6.3 give a generalization of [3] Théoréme 5.4.2.

COROLLARY 6.5. For j = 1,2, let {N,, 0;,,Z} be discrete decompositions
of P. Then P, is isomorphic to P, iff for j= 1,2 there are recurrent
projections e; in the centre of N; with V ez 07(e;) = 1 such that the
induced covariant systems {(N,)e;,(0,)e;,Z} are isomorphic.

Proof. For j = 1,2 let 7; be a f.n.s.-f. trace on N, such that 7,0 6, =
7(e~% o ) for some 6, ceiling function ¢,.

If P, is isomorphic to P, then by Theorem 6.3 and the uniqueness of
continuous decomposition the flows built on {N,, 6;,Z} under ¢, are
isomorphic for j = 1, 2. Theorem 4.5 now gives the desired conclusion.

Conversely, let 7, be the restriction of 7; to (N,)e; for j = 1,2. Then we
have 7,0 (8,)e; = 1(e®% ) for j = 1,2. Let « be the isomorphism of
{(N))e,,(8,)e,, Z} with {(N,)e,,(6,)e,,Z} and let h be the self-adjoint
operator affiliated to the centre of (N,)e, such that 7, o k™' = TF,(e™" - ). It
follows that (¢,)e, = k(¢,)e, + (8,)e;'(h) — h. By Theorem 4.5 the flows
built on {N, 6,Z} under ¢, are isomorphic for j = 1,2. From Theorem
6.3, P, and P, are isomorphic. O
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