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A UNIFIED APPROACH TO CARLESON MEASURES
AND 4, WEIGHTS

FraNcisco J. Ruiz

In the present note, for each p (1 < p < ), we find a condition on
the pair (i w) (where p is a measure on R"*! and « a weight) for the
Poisson integral to be a bounded operator from L”(R"; w(x) dx) into
weak-L?(R"*1, p).

Our Theorem I includes, on the one hand, the results of Carleson
[1] and Fefferman-Stein [2] concerning the boundedness of the Poisson
integral and, on the other hand, Muckenhoupt’s results concerning
A ,-weights.

1. Introduction. Given a function f on R", set

Mf(x,1) = sgp{@/gm} (xR 12 0),

where the supremum is taken over the cubes Q in R” centered at x with
sides parallel to the axes and has side length at least z.

The operator .# is the maximal operator which “controls” the Poisson
integral

Bf(x,0)= [ f)P(x=y,00d  (x€R"120),
where
Cc,t

(1x> + £2)

P(x,t) = (n+1)/2

is the Poisson Kernel.

The following question arises:

For a given positive measure on R"*! (= R" X [0, «0)), when can we
assert that ./ is bounded from L?(R") into L?(R"*!, u) and from L!(R")
into weak-L'(R"*1, p)?

Carleson [1] showed that this is true if and only if p satisfies the
growth condition, called the “Carleson condition”,

(1) p(Q) < C|Q| for each cube Q in R",

where Q denotes the cube in R”*! with the cube Q as its base.
+
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Afterwards, Fefferman and Stein [2] proved that .# is bounded from
the weighted space L?(R", w(x)dx) into LP(R"*!, p) and from
LYR", w(x) dx) into weak-L'(R"*!, p) if the following condition is
satisfied:

@) () = sup L2)
x€Q

In fact, from (2), the weak type (1,1) inequality is obtained, and the
rest follows by inierpolation with the trivial result for p = oo.

Here we find the exact condition on the pair (p w) for # to be a
bounded operator from L”(R"; w(x)dx) into weak-L?(R"*% pu). The
results of Carleson and Fefferman-Stein mentioned above are particular
cases of our Theorem I (below), and so are Muckenhoupt’s results
concerning 4, weights.

Throughout this note p will always denote a positive measure on
R"*! & a nonnegative weight in R" and, finally, C will denote a positive
constant, not necessarily the same at each occurrence.

< Cw(x) a.e.

2. Definition. Let 1 < p < oo.
Given w we shall denote by C,(w) the set of measures p on R"*! such
that
p/p

(3) sup p-|(QQ|) (I—éif w(x)_p'/pdx) =C< +o0,
Q )

where the supremum is taken over all cubes Q in R”. C;(w) will denote
the set of measures p such that

(@) (x) = sup ne

and C_(w) the set of measures p such that

< Cw(x) a.e,

(5) p(Q) < Cf w(x) dx, for all cubes Q.
Q

PROPOSITION. Let1 < p < g < 0. If p € C(w) then p € Cy(w).

Proof. This is evident for 1 < p < g < co by Holder’s inequality. If
p € Cy(w) (1 <p < o0), from (3) we get
1= L f W/ P1/P
Qo
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and, therefore,
p)=<C| w.
)
To finish the proof, let p € C;(w) and let Q be any cube in R”. Then

> "/l
(MI(QQI) )P pw(x)'l"/f’ < C forae.x € Q,

and integrating over Q we obtain (3).

REMARK. In general, C,(w) is properly contained in Cj(w) if 1 < p <
g < oo. However, if w belongs to the class 4, of Muckenhoupt, i.e.

1 17
S?“méﬁ“mé“ ﬁ =€

then it is obvious that C,(w) = Cy(w),p < ¢ < 0.
Moreover, in this case, p € C,(w) implies p € C,_ (w) for some
€ > 0 (sincew € 4,_, (see [4])).

3. The results. The relation between the class C,(w) and the
boundedness of the maximal operator ./ is given by the following

THEOREM L. Let 1 < p < 0. Then, the inequality
(6) p({(x,1) e RT M f(x,1) > a})

s e (feL() («>0)
holds if and only if p € C,(w).

Particular cases are:
A. If w(x)=1, then the classes C,(w) are the same for all p
(1 < p < o) and consist of all measures p such that

1(Q) < C|Q| for each cube Q in R",

which is Carleson’s condition (1). In this case, Theorem I gives us
Carleson’s result, mentioned in the introduction.
B. Let us consider now the measures p on R"*! of the form

du(x) = v(x) dx concentrated in R" X {0}.
Then p € C,(w) means that

(7) sgp(lclz—lfgv(x)dx)(é—lfgw(x)—pl/pdx)p/pl< o,

ie. p € C,(w) if and only if (v, w) satisfies the 4, condition (see [4]).
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Since A f(x,0) = f*(x) (x € R") (where f* denotes the Hardy-
Littlewood maximal function of ), we obtain

THEOREM ( Muckenhoupt [4]). Let 1 < p < oo. The following statements
are equivalent:
(1) (v, w) satisfies the A, condition (7).

(i ‘/;f*>a}v(x) dx < a—Cp[ fPo(x)dx  (fe L?(w)) (a>0).

REMARK. In addition, Muckenhoupt showed that (i) is not in general
sufficient for

[ 74(2)70(x) dx < € [ 1f(x) 1P (x) dx.

Therefore, in Theorem I we cannot substitute the weak type inequal-
ity (6) for the corresponding strong type inequality. However, if we add
the hypothesis “w € 4 » » and use the remark in §2 and Marcinkiewicz’s
interpolation theorem, then the strong type inequality follows.

Another way of deriving the same result is shown in Corollary II.

C. For p =1 the theorem gives us the result of Fefferman-Stein,
already named in the introduction.

For the class C_(w) we have the following result.

THEOREM II. If p € C_(w), then

(8) p({(x, t)e R™: Mf(x,t) > a}) <C P w(x) dx.

From the distribution inequality (8), the following result is immediate.

COROLLARY . Let1 < p < 0. If p € C(w), then

Juf dp<cf | o.

Since f* is bounded in L?(w) if and only if w € 4, (1 < p < c0) we
have:

COROLLARY II. Let 1 < p < o0 and w € A,. The following statements
are equivalent

() p € Cp(w)

(i) Jans |17 dp < CF |f 170,
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4. Proof of Theorem I. Assume first that (6) is~ verified and let
1 < p < oo. For any cube Q of R”, and for all (x, #) € Q it is easy to see
that

,;ﬁ [ 1= 221 (e )

therefore

(@)= b [ & RIS (s, 2 0 f 11

< cior([ 1] [ et ax.

Taking f = x ,w™?”7 in the last inequality, we obtain p € C,(w). For
the case p =1, let x € R" be a Lebesgue point of w™!, and take an
arbitrary cube Q such that x € Q. x 0™ € L'(w) and therefore x y0™' €

L', because otherwise it would be ﬂ(wa‘l)(x, t) = +oo forall (x,1?) €
R"*! contradicting (6). Then like in the previous case, taking f = x 0@

where Q' is any cube with x € Q' € Q, we have

Q) _ ( )
o = “\igl f
Now, we let Q' tend to x and it follows that

r(0)/10] < Cw(x),

which implies p € Cy(w).

Now we assume p € C,(w) and we have to prove (6). Only the case
1 < p < oo will be considered, since the modifications needed to deal
with the case p = 1 are rather straightforward. Let f € L?(w), a > 0, and

= {(x,1) € R M f(x,1) > a),
= {x € R": f*(x) > a}.

Let x, € R" be fixed. It is obvious that if (x,, ) € € and ¢’ < ¢, then
(x4, 1) € Q,and x, € @/, and we define

(9) t(x; @) = sup{z:(x,,1) € Q,}

_ 1
B S“p{ 10(xo; 7)) fgm N “}

(where Q(x,; t) denotes the cube centered at x, with side length ¢).
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LeMMA 1. If a > (C/p.(R’jr“))V”HfHLp(w), then t(x,; a) < co for
every x, € Q.

Take Lemma I for granted, and consider the following two possibili-
ties:

(a) W(RY™) = o0

(b) p(RY™) < 0.

In case (a), no matter how a > 0 is chosen, we have #(x,; a) < co for
every x, € Q.

We shall need the following covering lemma of Besicovitch type.

LeMMA II. Let A be a bounded set in R". For each x € A a cube Q(x)
centered at x is given. Then one can choose, from among the given cubes
{ O(x)},ca> a sequence { Q,} ( possibly finite) such that:

(1) The set A is covered by the sequence, i.e. A C UQ,.

(ii) The sequence { Q,} can be distributed in N (a number that depends
only on n) families of disjoint cubes.

A proof of the Lemma II can be found in [3, Chapter 1.1].

Let K be any bounded measurable set of R". For each x € Q5-., N K
we take the cube Q(x; #(x; 27 "a)).

We can apply Lemma II, obtaining { 0, } from

{Q(x; t(x;27")) } sy nk

such that Q)-., N K < UQ, and we have {Q,} distributed in N (depend-
ing only on the dimension) families of disjoint cubes.

Purely geometrical considerations show that {Q,} consist also of N
subfamilies of disjoint elements and £, N (K X [0, 0)) € UQ,.

For each subfamily, say { Q,}, we have

§U2) - £u(2) - L 420

Now, using (9), Holder’s inequality (apphed to (fw'/?)w™1/?) and the
hypothesis we obtain

(UQ ) < 2np2 “(Q ) (fQ |f|)1J

Q17 of
2"”2 IQ I” a”(f |f |7 )(fQ,- w—p'/p)

C
— p
sa,,fRnlflw,

p/p
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and, therefore,

w(2, (K x[0,00))) < X2 [ 7170,

PR,,

Since this estimate is independent of K, we obtain

w(®2) < X5 [ 1117,

In case (b), (6) is proved (as above) for all

1/p
a>2"( < )) 1l co-

M(R:'_+1
But for a < 2"(C/p(RY)NY?||fll Lr()> We have
1

27 2"
e D s n+1 Sl
ol LA rs w(RE) = =n(Q,)

and (6) follows.

Proof of Lemma 1. We suppose that p is not identically zero (other-
wise, the theorem is trivial).
If #(x,; @) = + o0, then

1
a < limsup —————
t— o0 |Q(x0’ t)l '/Q(xo;t) |f|

lim 1 / l/p’
S i Su -_— w_p’ p P
P100Gx0: 0] (fg(xo;,) ) Uz oy

t— 00

. C 1/p C 1/p
tmse | Vo= (i) W

and, therefore, the lemma is proved.
This finishes the proof of Theorem L.

Proof of Theorem 11. Maintaining the same notations, we suppose,
first, that #(x; 27 "a) < oo for every x € Q)-.,.

Then, let K any bounded measurable set of R" and let { Q;} be one of
the N subfamilies of disjoint elements whose unions cover £5-., N K.

Ify € Q,, then it is easy to see that « < 4"f*( y) and, therefore,

UQ,; c {x: f*(x) > 4 "a}
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and, from the hypothesis we have
#(UG) = Zu(@) = €T [ w(x) dr

=C| w(x)dx<C w(x) dx.
uag, (f*>4""a)
From this, (8) follows immediately.
If t(xq;27"a) = + oo for some x, € Q5-.,, then it is immediate that
{x: f*(x) > 4 "a} = R", and in this case we get

p(2) <p(RT™Y) < Cf w(x) dx.
R’I
Therefore, Theorem II is proved.
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