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STABILITY FOR SEMILINEAR PARABOLIC
EQUATIONS WITH NONINVERTIBLE
LINEAR OPERATOR

MILAN MIKLAVCIC

Suppose that
x'(t) + Ax(t) = f(t,x(2)), =0,
is a semilinear parabolic equation, ¢~ is bounded and f satisfies the
usual continuity condition. If forsome 0 < w < 1,0 < a <1l,awp > 1,
Yy>1
fesde*<C, 121,
If(r, x)ll < (4=l +@ +1)7), 1=0,
whenever ||4%x|| + ||x|| is small enough, then for small initial data there
exist stable global solutions. Moreover, if the space is reflexive then

their limit states exist. Some theorems that are useful for obtaining the
above bounds and some examples are also presented.

1. Introduction and the Main Theorem. Assume that 4 is a sec-
torial operator [2] on a (real or complex) Banach space X and that there
exist M; > 1,0 < w < 1 such that

@) fle < M, fort >0

1
M) (i) |l4e || < Myt fore > 1.

Some theorems useful in determining « are presented in §4, and an
example is given in §5. For B > 0let X? = D(A”) and||x||z = |(4 + 1)#x||
for x € XA.

Assume that 0 < a < 1 and that V is an open set in X*. Suppose that
f: [0,00) X V> X is such that for every t >0, x € V there exist
g, ¢ € (0,0),0 < » <1, for which

If (515 %1) = f(s52, x5)]| < C(Isl - sz|v +x, - lela)

whenever s, > 0, x;, € Vand|s, — | + ||x;, — x||, < efori = 1,2.

For 0 <7< o0 let S(r) be the set of continuous functions
x: [0,7) = X which satisfy

(i) x([0,7)) € Vand f(-, x(-)) € C([0,7), X)

199



200 MILAN MIKLAVCIC

(i) x'(z) exists (in X), x(¢) € D(A) and x'(t) + Ax(t) = f(¢, x(t))
forO0<t<r.
Solutions defined in this way have many known nice properties (see
Appendix 2).
Suppose that p > 0, p > 1/aw, vy > 1, M, > 0, M; > 0 are such that
if x € X*and ||A%|| + ||x|| < p, then x € V and

() IF(2, )| < Mllax]” + M (1),  t=>0,
where ¢(£) =1if 0 <7 <1 and ¢(¢) = ¢t if t > 1. A theorem useful in

establishing bounds of this type is given in Appendix 1; an example is

analyzed in §5.
In §3 it is shown that if 0 < p < 1/aw then there do not need to exist

global solutions for all small initial data.
Observe that there exists M, > M, such that

(3) a4 < Mb(z), ¢>0,
where b(t) =t * for 0 <t <1 and b(¢) =t * for t > 1. For 8> 1
define
(4) B(B) = sup{c—w(z)f’ b(t — s)ch(s) dst > o}
0

and note that 8/(B8 — 1) < B(B) < oo.

MAIN THEOREM. Suppose that x, € X% 2N < p and
N?"'pM,M,B(awp) < 1, where

N = (”Aaxo” + [lxoll + M3B(Y))PM4/(P - 1).

Then

(a) There exists x € S(o0) such that x(0) = x, and, for >0,
l4°x ()]l < Ne*(2), |x(1)]| < N.

(b) For each &> 0 there exists § > 0 such that if y, € X* and
1Yo — Xolla < O then there exists y € S(o0) with y(0) = y, and

sup Ix(2) = y(D)ll. <.
t>

(c) If X=N(A)® R(A) then there exists y € N(A) such that
lim,_, ||x(?) — yll. = 0. (N(A) is the null space of 4, R(A4) is the range
of 4.)

REMARK 1. If X is reflexive then X = N(A4) & R(A4) [5].
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ReMARK 2. Consider the Navier-Stokes equation in an exterior do-
main. According to [9], 4 can be taken to be a nonnegative self-adjoint
operator, so that w = 1, and the nonlinear part satisfies

5/3, 41/3
£ (2, )| < e[ A42x]| |47 x| < |4 %" ||| 7" for x € D(A4%*).

Hence, all conditions can be satisfied. See also [3].

2. Proof of the Main Theorem.

Part (a). We may assume that in (2), M, > 0, M; > 0. Observe that
[|4%ll + |l1xoll < p. Let 0 < 7 < 00, x € S(7) be as in Theorem A2.3 of
Appendix 2. Let 7, be the biggest number such that 0 <7 <7 and
|4%x(2)|| + ||x(2)|]] < p for 0 <t <. In the following, assume that

O<t<m.
Observe that
(5) "A“e”"’xo" = M4(||A"x0” + ||x0||)c°“"(t) = Mc*“(1).
Define
(6) g(2) =|lax ()],
(7) h(t) = S g(s)c™=(s).
<s<t
Since
(8) x(t) = e x, + ft e AU9f(s, x(s)) ds
0
we have

g(1) < Myc™ (1) + jo Mb(t - 5)(M,yg(s)? + Myc¥(s)) ds,

equations (4), (6) and (7) imply that

) h(t) < ¢h(2)” + N(p —1)/p,
where & = M,M,B(awp). Set L = (pé) 47~V _Since 0 < N < L there
exists 0 < L, < N such that

s<&?P+N(p-1)/p forO<s<L,,
s>+ N(p—1)/p forLy<s<L.

Since A(0) = ||4%x,|l < N we have by (10) and (9) that #(0) < L, and
since h is continuous we have that h(¢) < L, < N. Therefore, by (6)
and (7)

(11) l[4%(2)]] < Loc™(t) < Ne*(t).

(10)
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From (4) and (8) it follows that
lx()ll < Mylxoll + MyM,LEB(awp) + MM, B(y),
and from (10) it follows that
lx(£)| <N

This and (11) imply that
(12) l4°x ()] +[lx()] < 2N < p.
Therefore 7, = 7. Since

(e, x(0)] < MyN? + M,
(12) and Theorem A2.4 imply that 7 = oo.

Part (b). Let N; > N be such that 2N, < p and Nf~'pM,M,B(awp)
< 1. Let §;, > 0 be such that if z; € X* and ||x, — z,||, < 8, then
(haezoll +lzoll + M3B(v)) pMa/(p = 1) < Ny

Suppose that z, € X* and ||x, — z,|l, < 8,- By Part (a), there exists
z € S(o0) such that z(0) = z, and, for ¢ > 0,

l4°z()]| < Nye=o(2),  fz()]l < Ny

Fix anyz > 7 + 1 > 2. Then

2(t) — e~ 4=7z(1) = f e~ A=9f(s, 7(s)) ds

T

and, hence,
lz(z) — e =z(7)| < M4foo (M,Nfs™ P + M,s™7) ds = g(1).

Similarly we obtain

nA"(z(t) - e"’“"”z(’r))n < 1

1-—

aM4(M2N1pT_mp + M3'r_y) + g(”')

= h(r) - g(7).
Theorem Al.1 of Appendix 1 gives us a constant ¢ such that
lz(¢) — e 4= "z(7)]|, < & (7).
Since z could also be x, it follows that

lz(2) = x()llo < 28h(7) + My|lz(7) = x(7)].-
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Therefore,
sup [|x(s) — z(s)|l. < 2¢h(7) + MIO sup z(s) = x(s5)la-
s=0 <s<Tt+

This and Theorem A2.5 imply Part (b).

Part (c). If z € D(A) then by (1), ||e"#4z|| > 0 as ¢ — oo. Therefore,
if z€ R(A) then|le™*z] > O ast - o0, and if z € N(A4) then e 'z = z
for ¢t > 0. Define Px = lim,_, e “4'x € N(A) for x € X.

I— o

Fixanyv > ¢t > 7 > 1. Then

e_A(v_,)x(t) _ e—A(v—f)x(T) _ f’ e_A(u—s)f(S, x(s)) ds,

(13) e~ #“=x(2) — e~ 4~ x(7)]
< lew (M,N?s™ P + M,s™7) ds = g(1).

Therefore
[Px(t) — Px(7)| < &(7)

and, hence, there exists y € N(A) such that ||y — Px(7)|| < g(7). This
and equation (13) give us .

be(2) =yl < 28(7) +|[Px(7) — e~ "x(7)].

3. Counterexamples. In this section assume that 4 is a sectorial
operator on a Banach space X. Suppose also that e~ is bounded for
t>20,0<a<1p=>1andf(x)=|A4%|’x forx € D(A%).

Clearly, f: X*— X is locally Lipschitz. Define S(7) as in the Intro-
duction.

Suppose that x, € D(A®). Define g(t) = ||A%  *'x,||? for ¢t > 0, and
let 0 <7< oo be such that [fg(s)ds <1/p for all 0 <z <. For
0 <t < 7, define

x(t) = (1 - pfotg(s) ds)_l/pe—A’xo.

A simple computation shows that x € S(7). Suppose also that x, is such
that [5° g(t) = oo, therefore, for no € > 0 exists x, € S(o0) for which
x(0) = ex,. Now, to see that in the Introduction we cannot allow
awp < 1, we need to find an A4 that satisfies (1) and x, as above. Take
X = LY0, 00), w €(0,1], h(s) =s + is® for s > 0 and let 4 = h—the
multiplication operator. Assuming that awp < 1 we can find B > 0 such
that (a + B)wp < 1. Now, let the above x, be (x,)(s) = s#~le™* for
s > 0. This is the counterexample in case p > 1; in case p €0, 1) replace
the above f by f(x) = ||A°Px||x for x € D(A%).
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Suppose that x, € X, g(t) = ||4%  “4'x,||? for > 0 and [! g(s) ds —
oo as t = 07, Define x(0) = 0 and

1 -1/p
x(t) = (1 + pf g(s) ds) e x,, 0<t<l.
t

Then x = 0 and

(a) x € C([0,1), X).

(b) x(t) € D(A), x'(¢) exists, x'(t) + Ax(t) = f(x(¢)) for0 < ¢ < 1.

(c) For every 0 < 8 < 1 there exists ¢ such that for all 7, s € (§,1)

If (x(2)) = F(x(s))]| < clt = s].

(@) [ollfCx(s)l ds < oo.
To see that such x, and A exist, take X = L'(0,0), h(s) =1if0 <s <1,
h(s)=sifs>1and 4 = h. Assume thatap > 1and 0 < B < a — 1/p.
Define (x,)(s) = 0if 0 < s < 1 and (x,)(s) = s~ '~ #if s > 1. Therefore,
in the class of solutions that satisfy conditions (a)—(d), one does not need
to have uniqueness, stability, etc. [2].

4. The linear operator. In this section assume that X is a complex
Banach space. Proofs of the following lemmas are presented at the end of
the section.

LemmA 4.1. Suppose that § > 0 and that f: S = {z € C|0Re(z) >
Im(z)|} = X is holomorphic. Suppose also that B > 1, M; > 0, M, > 0 are
such that
Im(z)
Re(z)

If M, = 0 set w = 1, and otherwise = 1 — 1/B. Then for some c
()] < {ct‘1 ifo<t<1,

a ™ ift>1.

B
Re(z)

forz € S.

IF (=)l < Mlexp(Mz

Using this lemma and the Hille-Yosida Theorem for ¢’*4, ¢ small and
nonzero, one can easily obtain necessary and sufficient conditions for (1)
to hold. Instead of this theorem we shall, following [8, 10}, present more

illuminating and more useful sufficient conditions.
For f: R = [0, o0}, f(0) = 0, define Lf: R — [0, oo] by

(Lf)(x) = sup {sx — f(s)}.

Lfis called the Legendre transformation of f.
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LEMMA 4.1. Suppose that

(@) f: R = [0, 0], f(0) = 0;
(ii) A: D(A) € X = X is a linear operator;
(i) Ay > 0and R(A4 + X)) = X;

205

(iv) for every x € D(A) with ||x|| = 1 there exisis | € X* such that

1l = {(x) = 1 and f(Im[/( Ax)]) < Re[l(Ax)].
Then

(@ + ia) 4 +(Lf)(a) + 2) 7| < 1/Re(2)
whenever z € C, Re(z) > 0,a € Rand (Lf)(a) < .

Using this lemma one can immediately obtain the following two

theorems.

THEOREM 4.1. Suppose, in addition to the assumptions of Lemma 4.2,

that

()0 < ¢ <7/2,0 < b < o0, are such that (Lf)(x) < b for |x| < t1g¢

Wyw/2 —¢p <a<a/2
Then
1

|¢ + blcos(m — a — )
whenever { € C,{ # —band a < |arg({ + b)| < 7.

[(4 -7 <

THEOREM 4.2. Suppose, in addition to the assumptions of Lemma 4.2,

that

@) f(x) = f(—x) for all x > 0 and (Lf)(8) < oo for some § > 0;

(11"”) A is densely defined.
Then A is a sectorial operator and

e~ < exp((Lf>[%§j—§]Re<z>)

whenever z € C and |Im(z)| < 6 Re(z).

Proof of Lemma 4.1. Define p = § /2 and

z(x) = {

and note that for r > 0,

70 = 30 [ (20 =072 (0)1((x)) a.

|x| — ipx if-1<x<1,

|x| — t’pLxI)CI_m3 if |x| > 1,
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Hence, for some c; and all ¢ > 0, || f'(2)|| < co(L1(¢) + I,(2)), where
I(z) = fl ((x — 1) +(ux)2)-ldx <t
0

o0 —_
L(t) = f ((x —1) +(ux1_1/3)2) dx < cyt 1B,
1
If M, = 0, take z(x) = |x| — ipx for x € R.

Proof of Lemma 4.2. We may assume that X # {0}. Suppose x €
D(A),||x]| =1and 0 < s < 1. Let / be as in (iv). Observe that (Lf)(as) <
s(Lf)(a) < oo and.

(Lf)(as) = asIm(I(A4x)) — f[Im(I(4x))],
0 < (Lf)(as) + Re(I[(1 + ias)Ax]).

Hence, for every z € C,

Re(z) < Re(/([(1 + ias) A4 + z +(Lf)(as)] x)).
Therefore, foreveryz € C,x € D(A4),0 <s <1,

Re(z)|x|| <[((1 + ias)A4 +(Lf)(as) + z)x].
In particular, if Re(z) > 0, x € D(A),0 < s < 1, then
Ixll < A(s)(4 + g(s))x]l,

where

g(s) = ((Lf)(as) + Ao(1 = 5) + 25) /(1 + ias)

and

h(s) = (1 +(as)’) “(Ao(1 = 5) + sRe(2))
Now, increase s from O to 1.

5. Examples. By AC we will denote the set of complex-valued
functions which are absolutely continuous on [—a, a] for all a > 0. Fix
1 < p < oo and define

Tf=f, [feD(T)={geL”nAC|g' €L"}.
Define 7 = — 7. L? will stand for L(R).

THEOREM 5.1. Suppose that p > 1 and that
(1) g,: R~ R, g,=h, + h,forsomeh, € L? and h, € L™.
(i) g.: R~ R, g, € ACN L*” and pg, > g a.e.

SetA =T+ gT, + g,and

h(x) = %(xnglum)z( ";(;’J—_—f)')
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Then
(a) 4 is sectorial and if Im(z)(p — 2)| < 2(p — 1)!/*Re(z) then

le—47 < exp(h[lm(z) ]Re(z)).

Re(z)
(b) sup,.,||t“Ae™"|| < oo where w =1 if gy = 0 and w = 1/2 other-

wise.

Proof. 1t is clear that A is sectorial and that (b) follows from (a) and
Lemma 4.1. Suppose that f € D(T') and that |f||, = 1. Let [ = |f|?/f.
Hence [fl =1 =||l||, where 1/g =1 —1/p. Let ¢ = [IAf. Integrations
by parts give that Re(¢) > 0 and

[tm(e)| < 3 121(p ~ 1)”*Re(e) +[gy].. (Re(c)) ">

An application of Theorem 4.2 completes the proof.
For the operator T’ + g, T, + g,, we now present some bounds similar
to those in equation (2).

LEMMA 5.1. Suppose that p < r < o0 and 8 = (1/p — 1/r)/2. Then
for f € D(T),

W71l < 20771501

0+1/2 —-0+1/2

U7l < 2070 If 1
Proof. Choose any z > 0. Hence
f=Q722)(z = T) 7" +(Ty + 2) )T + 2%f)
and
f=3(z = 1) = (Ty + 2) NT7 + 2).
Since |[(z + T) " 'gll, < 2%’ '|igll, for g € L? we have
U1 < 2272 Tf ll + 22N llps

71l < 22 TS Nl + 22

Theorem A1.2 implies the following lemma.

LEMMA 5.2. Supposep < r < oo. Then
@If2y>1/p—1/randa = (1/p — 1/r)/(27), then for some c,

Il < TFllf 5, e D(T).
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by If2y>1+1/p—1/rand =1+ 1/p —1/r)/(2y), then for
some c,

I < T Il " fe D(T),

Holder inequalities imply

LEMMA 5.3 Suppose that
(i) g, t€[p,olandl/p=1/q + 1/t.
(i) r, s €[0,00),r + s> 0and (r + s)t > p.
(iil) Ifs > O then 2y > 1+ 1/p — 1 /v, where v = max{ p, ts }.
(iv) If s =0 then 2y > 1/p — 1/(rt).
Then for some cand all f € D(T"), g € L4
r+s—a

lelf 171, < ellgld TG0

whereay = (s +(r+s—1)/p+ 1/q)/2.

LEMMA 5.4. Set 6 = 1 — 1/p and assume that
(1) oy, &y, By, B, € C are such that if

(N +aX+a,)(N+BA+B,)=0

and Re(A) = 0, then A = 0. Define g,;(x) = oy, g,1(x) = &, for x > 0 and
811(x) = By, 81(x) = B, for x < 0.

(i) g1, & R+ C are such that both x — (1 + |x|)°g,(x) and
x = (1 + |x)°"'gy(x) arein L. Define g, = g, + 15,8, = & + 8n-

(iil) There is no ¢ € C such that g,(x) = (¢ — x)g,(x) a.e.

(iv) If p = 1 then g, € AC.

W Iff € AC, " € AC, sup,(1 + |x) "°|f'(x)] < o0 and [ + g, [ +
8, f = 0, the f is a constant.

Then for some c and all f € D(T),

"Tf”p = C”Tf - g - ng”p-
The obvious consequence of this lemma is

THEOREM 5.2. Suppose that the assumptions of Lemma 5.4 are satisfied
and that T — g, T, — g, is a generator of a bounded strongly continuous
semigroup. Then Lemma 5.2 and Lemma 5.3 hold with T replaced by

T—g7T,— 8.
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Proof of Lemma 5.4. If one expresses f” in terms of f(0), f'(0) and
f” + g f" + 8, f then a direct computation shows that
C1. (1) implies that for some ¢, and all f € D(T),

U7l < ei(IF” + guf’ + gafll, + 1) + eyl +18,])17(0)]).

On the other hand, one can show that
C2. (1), (i1), (iii) imply thatif f, € D(T),n = 1,2,... and

sup([l£/ll, +1If7 + &ufs + g21,l,) < o0,

then for some c, and all n, |f,(x)| < ¢,(1 + [x])? a.e. Moreover, if g, # 0
a.e., then for some ¢, and all n, | f,(x)| < ¢c;(1 + |x)°*! ace.

Suppose that the conclusion is false. Then there exist f, € D(T),
n=12,... such that ||f, + g, f, + g, /,ll, <1/n and ||f]]], =1 We
shall distinguish four cases: Case 1 (p > 1, g, # 0 ae.), Case 2 (p > 1,
g, =0ae), Case3(p=1,g,# 0ae) Cased(p=1,g,=0ae). Since
in all cases one arrives at the contradiction in a similar way, only Cases 1
and 4 will be analyzed here.

Case 1. Since | f)(x) — f)(y)] < |x — y|° we have by Ascoli’s Theorem
that there exists f € AC such that f’ is continuous, and for all x € R,
1[f(x)] < 51 + |x)°F, | f(x)] < ¢p(1 + |x])°. Moreover, for some subse-
quence {n,} and all x €R, £, (x) = f(x), f,(x) = f(x) as k = co.
Therefore as k — oo,

g (£, = 1]

P 0, “g22(fnk "f)“p -0

and

“f,:,: + gulfy, t g21fnk + gnf' + g22f”p - 0.

Therefore all x, y € R,

fr;k(x) —fp:k()’) + f (gllfn,k + g21fnk + g/ + gzzf) -0 (k- o),
y

which implies that f’ € AC and f” + g,f"+ g,f/=0. Hence f is a

constant and since g, # 0, we have f = 0. C1 implies that |||, = O,

contradiction.

Case 4. Define h,(x) = [ f,. By Ascoli’s Theorem there exist z € C,
a continuous function f and a subsequence {n,} such that f; (0) — z and
h, (x) = f(x) for all x. Since for all x, n,

1(x) = £2(0) + g (x)h, (x) — fo gih,

1
<——'3
n
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we have that f € AC, f’ € AC and f” + g, f’ = 0. Since f(0) = 0 we have
that f = 0 and hence f; (x) — 0. Therefore || f;’ + g, /, |l = 0 and since
a, = B, = 0, Cl1 leads to a contradiction.

Appendix 1. In this appendix we present a precise definition of the
fractional powers, some of their properties and a (possibly) new result
(Theorem Al.2). A very thorough analysis of fractional powers was done
by H. Komatsu in a series of papers [5,6...]. Details omitted here can be
found in [5, 6].

Throughout this appendix it will be assumed that 4 is a generator of a
strongly continuous semi-group on a (real or complex) Banach space X
and that|le || < M < oo for all ¢ > 0.

For A > 0, a > 0 define (4 + A\) * by

(4 +A) °x= F—(l—)—/oo t* e Memxdt, x€X.
a) Jo

Hence ||(4 + A\) 7| < MA™%, (A4 + A)™“ is one-to-one and its range is
dense in X. (4 + A)* is defined to be the inverse of (4 + A)™* and
(A + A)°is the identity map.

Let a > 0. It was shown in [5, 6] that D((A + A)?) is independent
of A >0 and that lim,_ {4 + A)% exists (in norm) for all x €
D((A + 1)*). Define A% = lim,_ {4 + A)°x for x € D(A%) =
D((A + 1)*).

THEOREM Al.1. Suppose that either a, B, y ERand A >0 or a, B, vy
€[0, 0) and A = 0. Then:
(1) If a is an integer then (A + A)“ agrees with the usual definition.
(2) (A + X)“is closed and densely defined.
(3)Ifx € D(A + N)*andt > O then
(A+N)%eMx=e"(4+N)x.
(4) If 0 < a < Bthen D(AP) c D(A%).
(5) If x € D(A + M)A) N D((A + N)**P) then
(A+A)%(4+1)Px=(4+N1)"%.
6) If a<B<vyand 8 =(B— a)/(y — a) then there exists ¢ such
that
(4 + 2] < ellCa + 2l + )]
forall x € D(A + N).
N Ifae[0,1],t = 0, x € D(A*), then
[x — e Me x| < 2(M + 1)*r%[(4 + A)“x|.
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() If A > 0 and a €[0,1] then there exist c,, c, such that for all
x € D(A4),
laox]| +llxll < erf] (4 + X) x|l < ey (1% +1lx])).

(9) If a € (0,1) then the limit (in norm) of
1 ® a1 A Al _
I‘(—a)j; t (e Me 1)x dt
as € = 07" exists if and only if x € D(A®). The limit is (A + \)*x.

The following theorem is very useful in getting control over nonlinear
terms in semilinear parabolic equations and it is well known when |je /||
decays exponentially in ¢ [7, 4, 5, 1, 2].

THEOREM Al.2. Suppose that
(1) Y is a Banach space with the same scalar field as X.

(i) B: X = Y, D(A) C D(B) and B is a closable linear operator. Let
B be a closed extension of B.

(iii) B €(0,1)] and ¢ > 0 are such that || Bx||y < c||Ax|B||x||*~# for all
x € D(A).

V0<a<B<yandd=(B-a)/(y — a).

Then D(AY) C D(B) and there exists c, such that for all x € D(A"),

- 0 1-0
I1Bxlly < e [lAx|] [l 4] "

Proof. If B =1 then the conclusion is obvious. Assume that 8 < 1.
Choose § sothat $ < § < (B — a + aB)/f and § < y. Choose A > 0 and
x € D(A®). Then

_ 1-8 5-1_ 1 ®©
x=(A4+N) ""(4+N)" x TG-1) 1)f0 f(z) dt,

where f(t) = t?72(e e~ — 1)(4 — A)®"x. Note that f and Bf are
continuous on (0, o0) and

IBF(1)lly < c(M + 1)*-7(4 + A) x|

x[(eMe= 4t = 1)(4 + )| .
Two bounds on the last term lead to
IBF()lly < cpt®#71(4 + A) ],

I

-

IBF(y < ept™=2(4 + M) x| (4 + A)°x
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where ¢, = 2¢(M + 1)? and p= B — a + af — 8B. Therefore for all
e >0,

[ £ (o) || yar

< e g2 A+ 0%+ e+ 2l + )

2

hence x € D(B) and,

D c2 1 1 s 1" a 1-9
IBx|ly < TG -1 (6 —5 " F)H(A + M) x| I (4 + ) x|,
where = (B8 — «)/(8 — «). Now, let A\ = 0* and bound || 4°x|| by || 4°x]|
and || A7x||.

Appendix 2. Our approach to semilinear parabolic equations is
similar to the one used by D. Henry [2]. However, Henry’s definition of a
solution [2; 3.3.1] needs a minor modification (see a counterexample in
§3), otherwise one does not need to have uniqueness of solutions, which in
turn messes up many other theorems (e.g., stability). Almost all of his
proofs apply unchanged under the new definition of a solution. Here we
shall present theorems needed in the main part of the paper.

A linear operator 4 in a complex Banach space is said to be a
sectorial operator if it is a closed densely defined operator and if there
exista € R, M > 0and 0 < ¢ < 7/2 such that z & o(A4) and

|4 =27 < M/la -2

wheneverz € C,z # aand ¢ < |arg(z — a)| < 7.

A linear operator 4 on a real Banach space X is said to be sectorial if
the natural extension of 4 on the complexification of X is sectorial.

Assume that A4 is a sectorial operator on a Banach space X. Fix an
a € R so that |le || < Me™“*® for some M > 0, § > 0 and all ¢ > 0.
For B > 0 define X* = D((A4 — a)®) and ||x||; = |(4 — a)?x| for x € X~

Fix0 <a <1, —o0 <t, <t < oo and assume that V' is open in X*
Assume that f: [2,,¢,) X V — X is such that for every t, <t <t,x € V
there exist 8, M € (0, c0) and v €(0, 1] such that

I Cs1s x0) = fs2, x5)| < M(|51 - Sz]V +llx; - lela)

whenever 7, < s, < t,x,€ Vand|s, — t| + ||x;, — x||, <6 fori=1,2.
For every t, < 7 < t;, let S(7) denote the set of continuous functions
x: [£5,7) = X such that
() x([25,7)) € Vand f(-, x(+)) € C([14,7), X)
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(ii) x'(¢) exists (in X), x(t) € D(A) and x'(¢) + Ax(t) = f(1, x(1))
forty <t <.

THEOREM A2.1. Suppose that t, < 7 < t,. Then x € S(7) if and only if
() x([25, 7)) € Vand f(-, x(+)) € C([1,7), X)

(i1)

x(t) = e 1 0x(1,) + f’ e A 9f(s,x(s))ds forty<t<r.

fo

THEOREM A2.2. Suppose that ty < 7 < t, and x € S(). Then

@ f(-, x(+)), Ax, x, x": (ty, 7) = X are locally Holder continuous
functions.

(b) If a < B < 1and x(t,) € XP then x € C([t,,7), XP).

THEOREM A2.3. Suppose that x, € V. Then there exists ty <1 < 1
such that

(a) There is an x € S(1) such that x(t,) = x,.

d) If ty <t*<t,y € S(t*) and y(t,) = x, then t* < 7 and y(t) =
x(t) forty <t <t

THEOREM A2.4. Suppose that t, <t < t, x € S(r) and
sup{ || f(s, x(s))|||to < s <7} < 0. Then there exists y € X* such that
lim, , |x(¢) — yllg =0 for all 0 < B < 1. Moreover, if y € V then there
exist T < 7 < t; and z € S(1,) such that z(t,) = x(t,).

THEOREM A2.5. Suppose that t, < 1* <71 <t, and x € S(7). Then
there exist p. > 0, ¢ > 0 such that if y, € X* and ||x(t,) — Yoll, < 1 then
there exists t > 7*,y € S(t) for which y(t,) = y, and

Ix(s) = y(s)la < cllyo = x(20)].,

forty <s <7t*
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