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SOME PROPERTIES OF ALMOST RIMCOMPACT
SPACES

BEVERLY DIAMOND

A O-space is a completely regular Hausdorff space possessing a
compactification with zero-dimensional remainder. In a previous paper
the class of almost rimcompact spaces was introduced and shown to be
intermediate between the classes of rimcompact spaces and 0-spaces. In
this paper some properties of almost rimcompact spaces and of 0-spaces
are developed. If X is a space whose non-locally compact part has
compact boundary, then X is a O-space if and only if X is almost
rimcompact. Neither perfect images or perfect preimages of rimcompact
spaces need be O-spaces. However, if the perfect preimage of an almost
rimcompact space is a 0O-space, then that perfect preimage is almost
rimcompact. Subspaces and products are considered.

1. Introduction and known results. The characterization of those
completely regular Hausdorff spaces possessing a compactification with
zero-dimensional remainder has been considered by various researchers
(see for example [7], [8] and [10]). Such a compactification will be called
0-dimensional at infinity (denoted by O.1.); a 0-space is any space possess-
ing a O.1. compactification. Recall that a space is rimcompact if it has a
basis of open sets with compact boundaries ([7]). Each rimcompact space
X possesses a compactification which has a basis of open sets whose
boundaries are contained in X ([9], [10]), hence X is a O-space; the
converse is not true ([10]). In [2] we introduced a natural generalization of
rimcompactness called almost rimcompactness and obtained the following
characterization: a space X is almost rimcompact if and only if X
possesses a compactification KX in which each point of KX\ X has a
basis (in KX) of open sets whose boundaries are contained in X. (If KX is
such a compactification of X, we say that KX\ X is relatively 0-dimen-
sionally embedded in KX.) Hence each almost rimcompact space is a
0-space; we showed in [2] that the converse is not true.

In this paper we discuss the properties of almost rimcompact spaces
and of 0-spaces. In §2 we show that if the non-locally compact part of X
has compact boundary, then X is a O-space if and only if X is almost
rimcompact. Such a space need not be rimcompact. In §3 we show that
any closed subspace of a 0-space (respectively, almost rimcompact space)
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is a O-space (respectively, almost rimcompact). This statement does not
hold for open subspaces. In §4 we indicate that neither perfect images nor
perfect preimages of rimcompact spaces need be 0-spaces. However, if the
perfect preimage of an almost rimcompact space is a 0-space, then that
perfect preimage is almost rimcompact.

In the remainder of this section, we present our notation and
terminology and some known results. All spaces are assumed to be
completely regular and Hausdorff. The notions used from set theory are
standard. The symbol w, is used to denote the ath cardinal. For any set X,
| X| denotes the cardinality of X. A map is a continuous surjection. A
function f: X — Y is closed is whenever F is a closed subset of X, then
fIF]is a closed subset of Y. A closed function f: X — Y is perfect if for
eachy € Y, f < (y) is compact.

The family 2#°( X) of (equivalence classes of) compactifications of X is
partially ordered in the usual way: JX < KX if thereis a map f: KX — JX
such that f(x) = x for all x € X; KX is equivalent to JX if f is a
homeomorphism. For background information on compactifications the
reader is referred to [1] or [4]. The maximum element of K(X), the
Stone-Cech compactification of X, is denoted by BX. In the sequel, if
KX € X' ( X), the natural map from BX into KX is denoted by Kf.

The following is an easy consequence of 3.2.1 of [3].

1.1. PROPOSITION (Taimanov’s theorem). Let KX and KY be compacti-
fications of X and Y respectively, and f be a map from X into Y. There is a
map f’: KX — KY such that f'|y = fif and only if for A, B C Y, Clg,A N
ClgyB = @ implies Clgyf “[A]N Clgyf “[B]l= @.

The next result follows from 1.5 of [6].

1.2. PROPOSITION. Let X, Y, KX, KY and f be as in 1.1. If f is perfect,
and if f’ exists, then f'( KX\ X) = KY \ Y.

We often call KX\ X the remainder of KX. For any space X, the
residue of X (denoted by R( X)) is the set of points at which X is not
locally compact. If KX is any compactification of X, then Cl; (KX \ X)
= R(X) U (KX \ X).

The first of the following results combines Theorems 1 and 4 of [5];
the second is 6.7 of [4].
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1.3. PROPOSITION. Let { X,: a € A} be a set of pseudocompact spaces.
Then:

(1) If TI{ X,: a € A} is pseudocompact, then B[II{ X,: a € A}] =
[{BX,: a € A4}.

(1) If X is locally compact for all but one o € A, then [I{ X,: a € A}
is pseudocompact.

1.4. PROPOSITION. If X is any space, and X C T C BX, then BT = BX.

If U is an open subset of X, and § X € X'( X), then Ex;,U is defined
to be 6 X\ Cls (X \ U). The set Ex;,U is often called the extension of U
in 8X. It is an easy exercise to verify (i), (ii), and (ii1) of the following
proposition. Statement (iv) is implicit in the proof of Lemma 2 of [10].

1.5. PROPOSITION. Let 8 X € X'( X).
(1) If Wis open in 8 X, then W C Exg, (W N X).
(i) If U and V are open in X, then Exz; (U N V)= (ExsyU) N
(ExsxV).
(1) If U is open in X, then (ExzU) N X = U, hence Cls,U =
Cly Exg,U.
(iv) If U and V are open in X, then

Exs (U U V)\(ExsyU U Exg V) C Cly U N Clg, V.

If U is any open subset of X, then it follows from 1.5(i) that Ex,,U is
the largest open subset of § X whose intersection with X is the set U. The
collection { Ex;,U: U is an open subset of X } of open sets of §.X is easily
seen to be a basis for the topology of § X.

If B C X, the boundary of B in X, denoted by bd , B, is defined to be
the set Cl,B N Cl(X\ B). A compactification §X of X is a perfect
compactification of X if for each open subset of U of X, Cl; (bd,U) =
bd s ( Exs,U). According to the corollary to Lemma 1 of [10], SX is a
perfect compactification of X.

The equivalence of (i), (ii), and (iii) of the following proposition
appear in Theorems 1 and 2 of [10].

1.6. PROPOSITION. Let § X € X' ( X). The following are equivalent.
(1) 8 X is a perfect compactification of X.
(i) If U and V are disjoint open sets of X, then Exg, (U U V) =
Exg U U Exg, V.
(iit) For eachp € 8 X, (8f) ~( p) is a connected subset of B X.
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The connected component C, of x € X is the union of all connected
subspaces of X containing x. A space X is totally disconnected if C, = { x}
for each x € X. The quasi-component of x € X is the intersection of all
closed-and-open (denoted clopen) subsets of X containing x. A space X is
zero-dimensional (denoted 0-dimensional) if X has a basis of clopen sets. A
space X is strongly O-dimensional if any two disjoint zerosets of X are
contained in disjoint clopen subsets of X.

For a detailed discussion of the disconnectedness of remainders of
compactifictions see [2]. Any 0-space X has a maximum O.I. compactifica-
tion (which we denote by F,X) which is also a minimum perfect com-
pactification of X. For each p € F, X\ X, the set (F,f) “ (p) is the
connected compact quasi-component (in BX\ X) of each element of
(Fof) ~(p).

The maximum O.I. compactification of a rimcompact space X is
called the Freudenthal compactification of X, and is denoted by FX. If X
is O-dimensional then FX = B, X, where 8,X denotes the maximum 0-di-
mensional compactification of X.

Following the terminology of [9] and [10], we say that an open set U
of X is m-open in X if bd , U is compact. The intersection and union of
finitely many 7-open sets are 7-open, as is the complement of the closure
of a 7-open set.

1.7. DEFINITIONS. (1) If F}, F, C X, then F| and F, are 7-separated in
X if there is a m-open set U of X such that F;, C U, and C1, U N F, = &.
We shall often write “{x} and F are w-separated” as “x and F are
m-separated”. We say that F, is w-contained in X\ F, if F, and F, are
ar-separated.

(i) If Fis closed in X, U is open in X, and F C U, then F is nearly
a-contained in U if there is a compact subset K of F so that whenever F’ is
a closed subset of F, and F’ N K = &, F’is w-contained in U.

(1i1) A space X is nearly rimcompact if whenever U is open in X, and
x € U, there is an open set W of X such that x € W and Cl, W is nearly
a-contained in U.

(iv) A space X is quasi-rimcompact if for any x € X, there is a
compact set K of X, so that whenever F is a closed subset of X and
F N K, = &, then x and F are 7-separated.

(v) A space X is almost rimcompact if X is nearly rimcompact and
quasi-rimcompact.

The following is 2.18 of [2].
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1.8. THEOREM. For any space X, the following are equivalent.

(1) X is almost rimcompact.

(i1) X is a O-space, and FyX has relatively 0-dimensionally embedded
remainder.

(1)) X has a compactification with relatively 0-dimensionally embedded
remainder.

(iv) X is quasi-rimcompact, and has a compactification with totally
disconnected remainder.

The following is justified in 3.5 of [2].

1.9. ExamMpLE. Let Y be any O-dimensional non-strongly O-dimen-
sional space, and let KY be any perfect compactification of Y. If X =
(KY X (w; + ))\(Y X {w;}), then X is almost rimcompact. X is
rimcompact if and only if KY = §,Y.

2. (-spaces whose residues have compact boundary. We begin by
listing some straightforward results concerning 7-open subsets of X and
related open subsets of compactifications of X.

2.1. DEefFINITION. Let KX € X(X), and let W be open in KX. If
bdy, W C X, Wis said to be a small boundary (denoted by sb) subset of
KX.

2.2. LEMMA. Let KX € X' ( X).

(1) The intersection (union) of finitely many sb open subsets of KX is an
sb open subset of KX.
If W is an sb open subset of KX, then

(i) W N X is w-open in X.

(1) W = Exg (W N X).

(iv) KX\ Clg, Wis sb in KX.

(v) If U is m-open in X, and KX is a perfect compactification of X, then
Clgx UN (KX\ X) = ExgyU N (KX\ X); that is, Exg,U is an sb open
subset of KX.

The straightforward proof of 2.2 is left to the reader.

We consider separately the cases where X is nowhere locally compact,
and where X has compact residue.

2.3. LEMMA. Suppose that X is nowhere locally compact, and that KX is
a O.I1. compactification of X. Then KX\ X is relatively 0-dimensionally
embedded in KX.
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Proof. Suppose that p € KX\ X, and that p € W, where W is an
open subset of KX. Since KX\ X is 0-dimensional, there is a clopen
subset V of KX\ Xsuchthatp e VC WnN (KX\ X),and Cl,V C W.
Let U be any open subset of KX such that U N (KX \ X) = V. Since
KX\ Xisdensein KX, Cl;, U= Cl,(UN (KX\ X)) = Clgy V. Then

(Clgxy U) N(KX\ X) = Clgy V N (KX\ X) = Clgyn x V = V.

It follows that bd, U = Clg,, U\ U C X, hence U is an sb open subset
of KX. Since Cl,,U C W, p has a basis in KX of sb open sets of KX.
Thus KX\ X is relatively 0-dimensionally embedded in KX. O

We make the following easily proved result explicit.

2.4, LEMMA. Suppose that S, T are closed subsets of X, and that
SN(TUR(X))= @. If S is compact, then there is an open set U of X
such that Cl, U is compact, S C U,and TN Cl,, U = &.

2.5. LEMMA. Let X be a space, and let KX € X°( X). Suppose that T is a
closed subset of KX, that W is a compact clopen subset of Clg (KX \ X)
and that TN\ W = &. Then there is an sb open set U of KX such that
bdyyUC X\R(X), W=UNClg(KX\X),and TN Cly, U= &.

Proof. 1If W is a compact clopen subset of Clg(KX\ X), then
W’ = Clg(KX\ X)\ W is a compact clopen subset of Clg (KX \ X).
There are disjoint open sets U,, U, of KX such that Wc U, W’ c U/
and Cl, U, N Clg, U’ = @. Thenbd U, € X\ R(X), hence U, is an
sb open subset of KX. Also, U; N Clgy(KX\ X)= W. Since TN W =
@, it follows that T N Cl ;. ( KX\ X) N Clx (U, " X) = &, hence T N
Clx4(U; N X) is a compact set contained in X \ R(X). According to 2.4,
there is an open set V of X such that Cl, V is a compact subset of
X\ R(X), and TN Clg, (U, N X)C V. Let U, = KX\ Cl V. Then U,
is an sb open set of KX by 2.2 (iv), and W C U,. If U = U, N U,, then U
is an sb open set of KX by 2.2 (i), and W = U N Clg,(KX\ X). Also
bdg,y UC bdg, Uy UbdyyU, € X\ R(X). Since TNClg, UcCTnN
Clgx U, N Clg, U, = 3, the statement is proved. ]

Let X be a space. In the sequel, L(X) denotes the locally compact
part of X; that is L(X) = X\ R(X). Note that if KX € X (X), then
L(X)= KX\ Clgy(KX\ X), and that

L(KX\ X) = (KX\ X)\R(KX\ X) = KX\[X U clgxR(X)].
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The following is easy to prove.

2.6. LEMMA. If X is a space, KX € X' (X), and W is a compact clopen
subset of either L(KX\ X) or KX\ X, then W is a (compact) clopen subset
of Cl g (KX \ X).

2.7. LEMMA. Suppose that X is a space in which R( X) is compact. If KX
is a O.1. compactification of X, then KX\ X is relatively 0-dimensionally
embedded in KX.

Proof. Suppose that T is closed in KX, and that p € (KX \ X)\ T. As
R(X) is compact, there is an open set U of KX such that p € U, while
[TUR(X)NClgy U= . Since UN (KX \ X) is open in KX\ X, and
KX\ X is locally compact and 0-dimensional, there is a compact clopen
set Wof KX\ Xsuchthatp € Wc U. Then WN T = @, soby 2.5 and
2.6 there is an sb open set V' of KX such that V' N Clgx(KX\ X) =W
and TN Clgy V= @.Thenp € V,and VN T = &. Thus each point of
KX\ X has a basis in KX of open sets whose boundaries lie in X. That is,
KX\ X is relatively 0-dimensionally embedded in KX. O

2.8. THEOREM. If X is a space in which bd y R( X) is compact, then the
following are equivalent.

(i) X is a O-space.

(11) X is almost rimcompact.

(iii) X is a O-space, and Fy X \ X is relatively O-dimensionally embedded
in Fy X.

(iv) If KX is any O.1. compactification of X in which Clgx(int y R( X))
N Clgx(X\R(X)) C X, then KX\ X is relatively O-dimensionally em-
bedded in KX.

Proof. It follows from 1.8 that (iii) implies (ii) and (ii) implies (i).
(i) implies (iv). Suppose that KX is a O.1. compactification of X in
which Cl g, (int , R( X)) N Clgx( X\ R(X)) C X. We claim that

KX\ X C Exgy(int y R(X)) U Exg( X\ R(X)).

As X\ [int y R(X) U (X\ R(X))] = bd y R(X), which is a compact sub-
set of X,

KX\ X C Exgy|int R(X) U(X\ R(X))].
If U and V are open subsets of X, and
P € Exgy(UU V)\(ExgyUU ExgyV),
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then by 1.5 (iv), p € Clg, U N Clg, V. As
CIKX(ir)l(tR(X)) N Cley( X\ R(X)) C X,

it follows that KX\ X C Exy(int y R(X)) U Exg (X \ R(X)), and the
claim is proved.

Note that Cl yint , R(X) is a nowhere locally compact space. For if V
is any non-empty open subset of Cl yint , R( X), there is an open set U of
X such that

U N ClyintR(X) = V.

Then U N int , R( X)) is a non-empty open subset of X. Since int , R( X) is
nowhere locally compact, Cl,(U N int , R( X)) is not compact. Then
Cl  V, which is the closure in Cl yint y R(X) of V, is not compact. Thus
no point of Cl,int ,R(X) has a basis (in Clint ,R(X)) of compact
closed neighbourhoods, and Cl ,int , R( X') is nowhere locally compact.

As Clg,int ,R(X) is a O.I. compactification of Clint, R(X), it
follows from 2.3 that Cl,int,R(X)\ Clyint yR(X), which by our
claim is just [Exgyint , R(X)] N [KX\ X], is relatively 0-dimensionally
embedded in Clgint , R(X). Let p € [Exgyint , R(X)] N [KX\ X]. We
show that p has a basis in KX of open sets whose boundaries lie in X.
Suppose that p € KX\ T, where T is a closed subset of KX. Since
p & Clgy( X\ R(X)), there is an open subset U; of KX such that p € U
and Clg, U N [Clgx(X\R(X))UT]= @&. Then U, is open in
Exyint , R( X), and hence in Clg yint , R( X). It follows that there is an
sb (with respect to Cly yint , R( X)) open set U, of Clgyint y R(X) such
that p € U, C U,. As U, C Exyyint , R(X), it follows that U, is open in
KX. Since Cli, U, N Clgx(X\ R(X)) = &, U, is an sb open subset of
KX which contains p and has empty intersection with 7.

The subset Cl (X \ R(X)) of X is a space with compact residue, so
by 2.7, Clxx( X\ R(X)) is a O.I. compactification of X with a relatively
0-dimensionally embedded remainder. If

P € Clgy(X\ R(X))\ Cly(X\ R(X))

(which by our earlier claim equals Exg (X \ R(X)) N (KX\ X)), then
p & ClgyR(X). It follows from an argument similar to that in the
preceding paragraph that p has a basis in KX of sb open sets of KX. Thus
each point of KX\ X has a basis of sb open sets of KX, hence KX\ X is
relatively 0-dimensionally embedded in KX.
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(iv) implies (iii). Since F,X is a perfect compactification of X, and
bd , R(X) is compact, by 2.2 (v) and 1.5 (ii),

Cl x(int yR(X)) N Clg x(X\ R(X)) N(FX\ X)
= Exp xint y R(X) N Ex x(X\ R(X)) N(F{,X\ X) = &.

Thus FyX satisfies the condition imposed on KX in (iv) and hence
F, X\ X is relatively 0-dimensionally embedded in Fj X. O

The hypotheses of 2.8 do not imply that X is rimcompact. If in 1.9, ¥
is chosen to be a locally compact 0-dimensional space which is not
strongly O-dimensional, and BY is chosen as the perfect compactification
of Y, then X = (BY X (w; + 1))\ (Y X {w,}) is an almost rimcompact
non-rimcompact space in which R( X) is compact.

3. Subsets, supersets and products. We outline a construction that
we will use to produce many of our examples.

A collection of infinite subsets of A"is called almost disjoint if the
intersection of the two distinct members is finite. Zorn’s lemma implies
that there exists a maximal collection of almost disjoint infinite subsets of
A”. In the following # will denote a maximal such collection. The
following topology on A#"U Z is credited to Isbell in [4]. Each point of A~
is isolated, and A € # has as an open base {{A} U (A\ F): F is a finite
subset of A"}. It is noted in 51 of [4] that such spaces 4 U £ are first
countable, locally compact, 0-dimensional and pseudocompact. The fol-
lowing is 2.1 of [12].

3.1. PROPOSITION. Any compact metric space without isolated points is
homeomorphic to the remainder B(NU Y\ AU X for a suitably chosen
maximal almost disjoint collection X.

As indicated in [12], 3.1 holds for any first-countable, separable,
compact 7T, space. We do not make use of this more general statement.

In the sequel, when we choose a maximal almost disjoint collection #
such that B(A U R2)\ AU Z is homeomorphic to a compact metric
space X having no isolated points, we identify points of

B(NURI\ANU R

with points of X in the obvious manner, and consider S(A U Z)\ NS 'U X
to be the space X.
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The next example shows that, as might be expected, it is not true that
if a space X is rimcompact, and X C T C BX, then T is necessarily a
O-space.

3.2. ExaMpPLE. Choose Z so that B(A U Z)\ AU X = I, where [
denotes the unit interval. Let X = #/'U %, and T = /U 2 U {1}. Then
X is rimcompact. However, the single connected component of BT\ T =
BX\ Tis [0,1), which is not compact. Thus T is not a 0-space. 0O

It is clear that if X is a O-space, and X C T C F, X, then T is a
0-space. Recall that if X € Y C BX, then BY = BX. The following indi-
cates that the expected relationship between F, X and F,T holds.

3.3. THEOREM. If X is a O-space, and X C T C F, X, then T is a O-space
and F, X = F,T. If X is almost rimcompact (respectively, rimcompact) then
T is almost rimcompact (respectively, rimcompact).

Proof. Clearly F, X is a O.1. compactification of 7. Suppose that KT is
a O.1. compactification of T such that KT > F,X. Then KT is a com-
pactification 8 X of X. Recall that §f: X — 86X denotes the natural map.
Define g: § X — F, X to be the natural map. Then g (8f) = F,f. Suppose
that p € F, X\ T. Since F, X is a perfect compactification of X, by 1.6,
(Fof) “(p) =1(g°8f) “(p) is a connected subset of BX. Then
(ONI(Ff) “(p)I=g “(p) is a connected subset of KT contained in
KT\ T. Since KT\ T is O-dimensional, |g “(p)| = 1. It follows that
KT = F,X, and hence F, X = F,T.

If each point of F,X\ X has a basis of open sets of F,X whose
boundaries are contained in X, then each point of F, X'\ T has a basis of
open sets of F, X = F,T whose boundaries are contained in 7. Thus if X is
almost rimcompact, T is almost rimcompact. A similar statement holds if
X is rimcompact. O

It is tempting to attempt to shorten the proof of the preceding
theorem by immediately claiming that K7 as chosen is a O.1. compactifi-
cation of X. However, since the union of two O-dimensional spaces need
not be 0-dimensional, it is not immediately clear that K7\ X is 0-dimen-
sional, and further argument of the sort provided in the proof is necessary.

We note in passing the following special case for 3.3. If X is a 0-space,
and XU Clg yR(X) C T C FX, then since X U Clg yR(X) is almost
rimcompact by 2.7, T is almost rimcompact.
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We now consider subspaces of 0-spaces. It is an easy exercise to prove
that an open or a closed subspace of a rimcompact space is rimcompact.
This contrasts with the fact that while a closed subspace of an almost
rimcompact space is almost rimcompact, an open subspace of an almost
rimcompact space need not even be a 0-space.

3.4. THEOREM. If F is a closed subset of a 0O-space (respectively, an
almost rimcompact space) X, then F is a 0-space (respectively, almost
rimcompact).

Proof. If F is closed in a 0-space X, and KX is any O.I. compactifica-
tion of X, then Cl, Fis a O.1. compactification of F. Thus F'is a 0-space.

Suppose that KX\ X is relatively 0-dimensionally embedded in KX.
We show that Cl ., F\ Fis relatively 0-dimensionally embedded in Cl ¢ F.
Suppose that T is a closed subset of ClF and p € (Clg,F\ F)\ T.
Then T is closed in KX. Since KX\ X is relatively O-dimensionally
embedded in KX, there is an sb open set U of KX such that p € U and
(ClgxU)NT = @. Consider the open set U N ClgF of Cly,F. The
boundary in Cl ., Fof UN Clg, Fis

Cl (UN Cluy F)\UN Clgy F C [Clgy(UN Clgy FYNU] N Clgy F
C [(Clgy UNU] N Clgy F C bdgy UN Clgy F
C XNClgF=F.

Then U N Clgy F is an sb open subset of Clg, F and a neighbourhood
(in ClgyF) of p, while TN (Clg,F) N U= @. Thus each point of
ClgxF\ F has a basis of sb open sets of Clg,F. Hence Clg, F\ F is
relatively 0-dimensionally embedded in Cl, F. It follows from 1.8 that
F is almost rimcompact. O

3.5. ExaMPLE. Choose Z to be a maximal almost disjoint collection of
infinite subsets of A" such that S(A U Z)\ (AU Z) is homeomorphic
to I. Let Z=[B(NUZX) X (w; + DIN(AUR) X {w;}], and X =
Z\ {(3, w;)}. Then X is an open subset of Z. As demonstrated in 3.8 of
[2], X is not a O-space, while according to 1.9, Z is almost rimcompact. O

For completeness we include the following example which illustrates
that the product of two rimcompact spaces need not be a 0O-space. We
mention that it is straightforward to show that a space possessing a
compactification with countable remainder is rimcompact.
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3.6. ExaAMPLE. Choose £ to be a family such that B(AU Z)\ AN U Z
= [. Let P, Q denote the irrationals and rationals in I, respectively. If
Y=ANUZRU P, then BY\ Y = Q, hence Y is rimcompact. According to
1.3 B(ASUR)X(NUR) =B(NUYUR)XB(ANUZR), so by 14
B(YXY)=BYXBY LetZ=B(Y X Y)\(Y X Y).Ifge Q,letC, ,
denote the connected component of (g, ¢) in Z. We show that C, , is not
compact, hence Y X Y is not a 0-space. Now g X I is a connected subset
of Z. For each ¢’ € Q, I X q’ is a connected subset of Z which intersects
g X I, hence U . o(I X q') € C, - The smallest compact connected set
containing U ,(I X ¢') is I X I. However, (I X I) N (Y X Y) # &,

hence C, ,, is not compact. O

4. Images and preimages. Continuous images and preimages of
rimcompact spaces need not be rimcompact, even if the map is perfect. In
fact, since any completely regular space is the image of an extremally
disconnected space (i.e., a space in which disjoint open sets have disjoint
closures) under a perfect irreducible map (see [11]), the perfect image of a
rimcompact space need not even be a 0-space. The next example shows
that the perfect preimage of a rimcompact space need not be a 0-space.
However, we show in 4.3 that if the perfect preimage of an almost
rimcompact space is a 0-space, then that preimage is almost rimcompact.

4.1. ExampLE. Let Y = I X {0,1,1/2,1/3,...}, and
X =Y x(w, + D]\[I x{1,%,3%,...} x{w,}].
It is shown in 3.7 of [2] that X is not a 0-space. Let
f:1x{0,1,4,3,...} (0, +1) = {0,1,4,4,...} X(e, + 1)
be the projection map. Then f is closed, since I is compact. Let
§=1[{0,1,4,%,...} x(o + D]\[{1,},%,...} x{w}].
Since f“(y)=1X{y}, fory € §, fis a perfect map from X onto S. The

space S, being a subspace of {0,1,3,3%,...} X (w; + 1), is 0-dimensional
(and hence rimcompact). O

The following is 1.2 of [6].

4.2. LEMMA. Let f: X — Y be a perfect map. If S is a compact subset of
Y, then f < [S] is a compact subset of X.

4.3. THEOREM. Let f: X — Y be a perfect map. If X is a O-space, and Y
is almost rimcompact, then X is almost rimcompact.
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Proof. We show that X is quasi-rimcompact. It then follows from 1.8
that X is almost rimcompact. If x € R(X), let K, = f“ [K], where K is
the compact subset of Y witnessing the fact that Y is quasi-rimcompact at
f(x). According to 4.2, K is a compact subset of X. Suppose that Fis a
closed subset of X such that FN K = &.Then K N f[F]= &. Since fis
a closed map, it follows from our choice of K that there is a 7-open subset
W of Y such that f(x) € W Cl, WcC Y\ f[F]. As fis a perfect map,
and bd, W is compact, according to 4.2 f [bd, W] is compact. Since
bd,f [W]cC f [bd, W] f“[W]is ax-open subset of X. Also, x € f
[W],and FNCl,f“[W]= &. Thus x and F are m-separated. Hence X
is quasi-rimcompact, and the theorem is proved. O

In 4.3, X and Y can be chosen so that X is not rimcompact and Y is
rimcompact.

4.4. ExaMPLE. Choose Z to be a family such that B(A U Z)\ AN/ U X
is homeomorphic to I. Then F(A'U Z) = w(A'U Z), the one-point
compactification of /U Z. If

X = [B(#UZ)x(w; + DI\[(HUR) X{w}],

then according to 1.9, X is almost rimcompact but is not rimcompact. Let
f:B(ANUR)X(w0,+1) > 0(NUR) X(w, +1)

be the natural map, and let
Z=[w(HNUR) X (w0, + D]\[(#UR) x{w,}].

IfzeZ thenf“(z)={z}orf (z)=1X{p} forsomep € (w; + 1).
Also f “[Z] = X, so f|y is a perfect map from X into Z. The space Z is
0-dimensional (and hence rimcompact). a

It is well known that if f: X —» Y is a map, where X and Y are
0-dimensional, then f extends to g € C(FX, FY) = C(B,X, B,Y). The
following generalizes this fact.

4.5. THEOREM. Suppose that X is a space, Y is O-dimensional and KX is
a perfect compactification of X. If f- X = Y is a map, then f extends to
g € C(KX, B,Y).

Proof. Subsets C and D of Y have disjoint closures in §8,Y if and only
if C and D are contained in disjoint clopen subsets U and Y\ U of Y
respectively. Since f T [U], f “ [Y \ U] are then disjoint clopen subsets of
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X, and KX is a perfect compactification of X, it follows that Cl, f [U]
NClg,fT[Y\NU]l= Z.ThenClg,f “[C]IN Clg,f " [D] = &; thus by
1.1, fextends to g € C(KX, B,Y). a

4.6. DEFINITION. A map f: X — Y is monotone if f ~ (y) is connected
foreachy € Y.

The following answers a question communicated verbally to R. G.
Woods (Topology Conference, 1980) by D. Bellamy.

4.7. THEOREM. Let f: X — Y be a monotone quotient map, and let KX,
KY be perfect compactifications of X and Y respectively. If f extends to
g € C(KX, KY), then g is monotone.

Proof. Suppose that there is p € KY such that g “(p) is not con-
nected. Write g “(p) = G, U G,, where G; and G, are disjoint closed
subsets of g~ (p). Since g < (p) is compact, G; and G, are disjoint
compact subsets of KX; hence there are open sets U; and U, of X such
that G, C Ex, U, (i=1,2) and Cl ., U N Cly,U,= @. Since g is a
closed map, there is an open set V of Y such that g = (p)C g “[V]C
Exg U U Exg Uy Let W=g“[VINU=f"[VNnYINU((i=12).
Then W, and W, are disjoint open subsets of X, and W, U W, = f [V N
Y]. Since f“ (y) is connected for each y € Y, W, =~ [V,] for some
subset V, of Y (i =1,2). Since f is a quotient map, V, is open in Y
(i=1,2). Then ¥NY =V, UV, while ; NV, = &. It follows from
1.5 (1) and (ii), and 1.6 that p € Exy,V = Exg,V; U Ex,V,, while
Exg,V, N Exg,V, = &. Suppose without loss of generality that p €
Exy,V,. Since g ~ [ Exg,V;] is an open subset of KX containing f ~ [V;],

g (P) cg” [EXKYVI] C Exgxf”™ [Vl] = ExgxW, C ExgxU;,

which contradicts the fact that g = (p) N Exg, U, # @. Thus g “(p) is
connected for each p € KY. O

4.8. COROLLARY. Suppose that X is a O-space and Y is O-dimensional. If
there is a perfect monotone map from X into Y, then X is almost rimcompact
and Fy X \ X is homeomorphic to FY \ ' Y.

Proof. Let f: X — Y be a perfect monotone map. Then f extends to
g € C(F,X, FY) by 4.5. Since f is perfect, g “[FY\ Y] = F,X\ X. As f
is monotone, it follows from 4.7 that g =~ (y) is connected for each
y € FY\ Y. Since FyX\ X is O-dimensional, and g~ (y) € F,X\ X,
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18 “(»)| = 1. Thus glgx\x: FoX\ X = FY\Y is a closed continuous
one-to-one map, hence g is a homeomorphism. The fact that X is almost
rimcompact follows from 4.3. O

Example 4.1 shows that the perfect monotone preimage X of a
0-dimensional space need not be a 0-space, while Example 4.4 shows that
even if X is a 0-space, X need not be rimcompact.
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