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ASYMPTOTICALLY GOOD COVERINGS

JOEL SPENCER

Dedicated to the memory of Ernst Straus

The Erdόs-Hanani conjecture is that for fixed r < k and n large
there exists a covering of all r-sets of an w-set by a family of &-sets
whose cardinality is asymptotic (in n) to the "counting" lower bound.
This conjecture was first proven by Rodl, here we give a more direct
argument. We use probabilistic methods, selecting Assets in large groups,
and showing that the hypergraph of uncovered r-sets retains a property
we call quasirandomness, meaning that it has the essential (for us)
properties of random hypergraph.

0. Introduction. Let r < k <n and set [n] = (1,...,«}, a generic

tt-set. The covering function M(n, k, r) is defined as the minimal cardinal-

ity of a family F of fc-sets of [n] such that every r-set of [n] is contained in

some K e F. The packing function m(n, k, r) is the maximal cardinality

of a family F of λ -sets of [n] such that no r-set of [n] is contained in more

than one K e F. Elementary counting arguments imply

(1) m(n,k,r)<>(n

r)/(k

r)<ϊM(n9k9r)

Equality holds if and only if there exists an (n, k, r) tactical configuration

—i.e., a collection F of &-sets containing every r-set exactly once. The

existance of tactical configurations for various r, k, n (e.g. for k = 3, r = 2

—Steiner Triple Systems) is a central question of Combinatorial Analysis

to which we here do not directly contribute.

In 1963 Paul Erdδs and Haim Hanani [1] conjectured that for all

r < k the inequalities (1) are asymptotically equalities—more precisely,

that

(2) U m m ( Λ > * , ' ) ( * ) / ( ; ) = 1 = Lim M(n9 k9 r)(k

r)/(n

r).

This was proven for r = 2, all k and for r = 3, k = p orp 4- 1 where/? is a

prime power. They also showed that either of the equalities (2) imply the

other. These inequalities became known as the Erdόs-Hanani Conjecture.

In 1983 this conjecture was resolved affirmatively by Vojtech Rodl [2] for

all values r < k. In this paper we present a more direct proof of the
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Erdδs-Hanani Conjecture. Our argument is based on RodΓs original proof

and on personal discussions with Rodl which we gratefully acknowledge.

1. An intuitive view. In this section we present an informal discus-

sion of our proof of the Erdδs-Hanani Conjecture. The formal proof is

given in the next section.

Let r < k be fixed and let n be very large. Let Go be the complete

r-graph on vertex set [n]. Let δ be a very small positive real, (δ is fixed

first and then n is made very large.) Let Fo be a random collection of

δ( " )/(*) Λ>cliques from Go and let Gx be the family of r-sets not

contained in any K e Fo. As Fo is δ times the size of a perfect covering of

Go (if one existed) it would, if there were no overlap, cover a proportion δ

of the r-sets in Go. In fact, overlap is the critical consideration. The typical

r-set is covered an average of δ times by Fo. There are many fc-sets

covering a given r-set and each has only a small chance of being placed in

Fo. "Thus" the number of Λ>sets of Fo covering a given r-set is given by a

Poisson distribution with mean δ. That is, δe~8 of the r-sets are covered

exactly once, (82/2)e~8 are covered exactly twice, {8l/i\)e~8 are covered

exactly i times and e'8 are not covered at all and "remain" in Gv When δ

is very small the proportion of r-sets covered twice or more, roughtly

δ 2 / 2 , is a negligible proportion of the proportion of r-sets, roughly δ, that

are covered once. That is, Fo is an excellent, though not perfect, cover of

Go - Gv

We continue the procedure with Gv We choose Fλ from among the

Λ>cliques of Gv This is essential as we do not want any of the (f) r-sets

covered by a K e Fλ already covered by Fo. We pick Fλ randomly,

choosing the cardinality so that if there were no overlap a proportion δ of

Gx would be covered. We let G2 be the remaining r-sets—those covered by

no K e Fv Once again (but see below) the number of fc-sets covering an

r-set of Gλ is given by a Poisson distribution with mean δ and Fλ is an

excellent covering of Gλ — G2.

We iterate this procedure—given Gt we find Fi and set Gi+ι equal to

the remaining r-sets—until we reach a Gt with a negligible proportion of

r-sets. As each \Gi+1\ ~ e~8\G-\ we let / be large enough so that e~t8 is very

small. At this point the remaining r-sets are covered one by one. Though

this is very wasteful (we want fc-sets K to cover (*) new r-sets but here we

use one A:-set to cover one r-set) it is acceptible since \Gt\ is small. With δ

and e~t8 very small the total covering has a very small proportion of

waste.

To employ this method it is necessary that the Gt retain certain

regularity properties. (To illustrate with an extreme case, if a Gt was
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created that had no Λ -cliques we could not continue.) Let G be an r-graph

with density p. We call G quasirandom if for every edge e e G the

proportion of k-scts covering e that are cliques in G is roughly p ^ " 1 .

(Note that this would be the appropriate proportion for a random graph

of density p.) The central lemma of §3 states, roughly, that if G is

quasirandom then the above method may be employed to find a family of

λ -sets F so that the remaining graph G* is also quasirandom. The initial

graph—the complete Go—is certainly quasirandom with unit density. We

may thus iterate our procedure—finding a descending sequence of hyper-

graphs <?,, all of which are quasirandom. One final parameter—to quan-

tify the word "roughly" we say G is quasirandom with tolerance ε if the

quasirandom properties hold within a factor of 1 ± ε. When G is quasi-

random with tolerance ε the tolerance of the "remaining" G* will be some

higher ε*. Our lemma allow us to insure that the tolerance remains

arbitrarily small even after our procedure has been applied a fixed number

/ times.

3. The proof. Throughout this section 2 < r < k shall be fixed in-

tegers. The term graph shall refer to r-graph (i.e. a collection of r-sets) and

edge shall refer to an r-set in the collection. A &-set K is a clique in graph

G if e e G for every edge e c K. All graphs shall have n vertices.

Special Notation. The term 1 ± ε refers to a number x satisfying

l - ε < x < l + ε .
Thus a = b(l ± ε) means

b{\ - ε) < a < b{\ 4- ε).

In the Lemma below, ε < .01. Thus, for example,

(3) (1 ± ε)(l ± ε) = (l ± 3ε)

since if t < 1 4- ε and y < 1 -f ε then xy < (1 4- ε)2 < 1 + 3ε and simi-

larly JC, y > 1 - ε imply xy > 1 - 3ε. More generally

(4) (1 ± aε)(l ± bε) = 1 ±{a + b + l)ε

for any 1 < α, b < 10. Also

(5) e±aε= 1 ±(a + l )ε

if a < 5 as 1 - (a + l)ε < e~"ε and ea€ < 1 4- {a -f l)ε with a so small.

These " tolerance estimates" shall often be used tacitly in the proof of the

lemma.

DEFINITION. G is quasirandom with density p and tolerance ε if

(a) G has ρ(?)(l ± ε) edges

(b) Every edge of G lies in p ^ " 1 ^ ! ^ ! + ε) cliques of size k.
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LEMMA. Let p, ε*, δ > 0. Then there exist ε > 0 and n0 so that for

n > n0 the following holds. Let G be quasirandom with density p and

tolerance ε. The ther exists a family F of k-cliques of G such that

( i ) | ^ | = δ[p(^)/(ίf)](l ± E * )
and so that, letting G* be the subgraph of G remaining after the deletion of

all k-cliques K e F9 G* is quasirandom with density pe~8 and tolerance ε*.

In particular

(ii) G * has pe~\n

r){l ± ε*) edges.

(iii) Every edge of G* lies in ( p ^ - δ ) ( ί ) ~ 1 ( Γ r ) ( 1 ± ε * ) k-cliques ofG*.

Proof. Set

<«> p

Let F be a random collection of ^-cliques of G given by placing each

/^-clique K of G into F with independent probabil i ty p. T h a t is,

F] =p

and the events " K e F " are mutually independent over all λ -cliques K of

G.

For definiteness we fix ε > 0 satisfying

(7) 1 O β ( ί ) < ε*> {k

r)e<10~4.

(We may think, however, of the tolerance ε of G as being "much much

smaller" than the tolerance ε* required of G*.)

As G is quasirandom the number of Λ>cliques of G is

± .)][pβ»-(;: ;)(i ± 4/(«r) - ^{"kγi ±
Thus \F\ has a binomial distribution with mean

(9) ^

Chebychev's inequality implies that for any c > 0 the probability that

| F | = i^ΠZ7!] (1 ± c) approaches unity with n. Hence

(10)

and so (i) is satisfied, with probability approaching unity with n.

We now consider (ii). For each edge e e G let cov(e) denote the

number of ^-cliques K of G which contain e. Then

(11)
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as e "survives" if and only if none of these K are selected for F. As p
approaches zero with n we may bound

(12) 1 -p =

so that

(13) (1 - />r«> « exp[-p(l ± e)p^-γk _ r^{\ ± ε)]

= exp[-δ(l ± 3e)] = e~\\ ± 4ε)

and the expected number of edges in G* is

(14) e-s(l ± 4ε)p(n

r)(l ± ε) = pe-'(n

r)(l ± 6ε).

To show that |G*| is nearly always nearly equal to its expectation we
bound its variance. For each e e G let Xe be the indicator random
variable for the event "e e G*" and set

(15) X'ΣXe

so that X = |G*|. Any two distinct e, ef e G contain at least r + 1 vertices
and therefore there are at most

\k-(r+l)

A:-cliques of G containing both of them. We bound

(16) E[XeXA * (1 -

where c depends only on k, r, δ and p. Using general probability methods

(17) Var(JT) = £Var( JTj + Σ ™v(Xe, X,),
eΦe

\2
n'ιE{X)\

^X,)^[^)ΣE{Xe)E{Xe,)<cn-\
eΦe' eΦe'

SO

Var(*) < (c + l)n~ιE(X)\

(These arguments are quite rough but we only really need Var( X) =
o(E(X)2).)
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Applying Chebychev's inequality

(18) X = p ,

and thus (ii) is satisfied, with probability approaching unity in n.
We now consider (iii). Let e be an edge of G and let s/e denote the

family of λ:-cliques K of G that contain e. For each K e sίe let 5fκ denote
the family of Λ -cliques L of G which contain at least one edge of K but do
not contain e. We define indicator random variables Xκ by

1, if FnS?κ= 0,

, 0, otherwise.

Then Xκ is the indicator random variable for "K is a fc-clique of G*"
conditional on "e G G*". (Conditioning on "e G G*" is equivalent to
assuming that no /̂ -clique L of G which contains e has been placed in F.)
Set

(19) X- Σ XK

so that, conditional on e e G*, X is the number of /c-cliques of G*
containing e.

A /c-clique K ^ s/e contains (k

r) - 1 edges other than e, each of which
lie in p{r)~ι{n

kZ
r

r)(l ± ε) ^-cliques L. At most nk~r~ι ^-cliques (in fact,
/c-sets) L contain two given distinct edges e, e' (as e, e' have at least r -f 1
points between them) and there are less than k2r such pairs β, e'. Thus

( 2 0 )

2 [ ( ϊ ) - i ]
We absorb the overlap term k2rnk~r~1 into the main term and deduce

thus

(22) £[* , ] - (1 - p)m = exp[-t[(*) " l](l ± 3.)]

Here we have approximated (1 - p) by exp( —/>) and exp( ± 3εδ( *)) as
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Summing over all K e stfe.

(23) E(X) - p<;>-'(J I ;)(1 ±

Once again we must show X is nearly always nearly equal to its
expectation. Our requirements this time are far more stringent since there
are cnr variables X(one for each edge) each of which must be nearly equal
its expectation. In fact we shall show that the probability X Φ E{ X)(l ± ε)
is exponentially small. To do this we shall require a strong sense of mutual
independence of the Xκ, K e s/e. Note, however, that when K\K" G.s4e

intersect in more than e the corresponding Xκ,9 Xκ» are highly correlated.
Our first task, then, is to break ste into classes in which that does not
occur.

We call a subfamily ^ c i e neardisjoint if K' Π K" = e for all
distinct K\ K" e <β. For each K' e sίe there are at most k

(k-r-l)
< n k r l

cliques K" e j * e with K' Π K" = e (k choices for x <E K' - e,
choices for jSΓr/ containing e, x). We partition j / β into

(24) s/e = U ^ U S

( / a n index set) where each |#J = « 3, each ^ Λ is neardisjoint, and
1̂ 1 < nk~r~π. To do this we pull ^ α from sfe as long as possible until we
get stuck. At that point we have a family 2) of remaining sets and a near-
disjoint family ^ c 2, \<g\ < n3, which cannot be extended. There are at
most \^\nk~r~ι < nk"r"J sets K" e 3> which intersect some AT' e ^ i n
more than e. As this must be all of 3)y \3)\ < nk~r~J.

Let *% c j / e , 1̂ 1 = /ι 3 be neardisjoint and set

(25) X<g— 2^ ^A-

Suppose K', K" are distinct elements of ^and L e ^ / Π 5^^. Then L
contains edges e' e ϋ:7. e" ε AT", ef Φ e Φ e". As IT Π ϋ:7 ' = e, e' Φ e"
so L contains at least r + 1 points from AΓr U AT". Thus

(26) K'Π^"l

where c depends only on k, r. Set

(27) JΓ= U s
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so that

(28) \y]<\<£\2cnk-r-1 <nk~r-39.

For K e ^define random variables Yκ by

10, otherwise,

and define

(30)

Since the sets Sfκ — 2Γ are mutually disjoint the variables Yκ are
mutually independent. We require a classic result (for explicit reference
see the appendix of [3]) on the sum of independent random variables.

Fact. If Z 1 ? . . . ,ZW are mutually independent zero-one random varia-
bles, Z = Σ,"li Z, , and a > 0 then

(31) ?r[\Z-E(Z)\>a]<2e-«2^.

Applying this result with m = | ^ | = n 3, α = « 2

ί̂ ?^ PrίlY — FίY M > w2l < ?^>"wl

(This was the critical step as we have the probability exponentially small.)
Now we need show that ^provides a good approximation to X^. Set

(33) W = \Fn&\.

For all K9 Yκ < Xκ and thus Y^ < X«. If Yκ = 0 and Xκ= I then
F nyκn SΓΦ 0. Each L e F Π y lies in at most A: families^, K <^ tf.
(L must have at least one point in K — e, \L\ = k, and the sets K — e,
K e ^, are disjoint.) Thus

(34) Jfv- fcPΓ< 7^< X?.

Therefore

(35) £ [ | A » - y»|] < kE[W] < knk-r-39p < «"38.

Moreover, Whas binomial distribution B(\^~\,p) so

(36) P r [ X ^ - Ύ<g> n2] < Pr[w > n2/k] 2

< [n-3*]n-2/k <

(37) \X9- E{XV)\Z\XV- YV\ + \Y9
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we combine (32), (35), (36) to derive

(38) Pr[ | *y- E(X«)\ > 3/r2] < 2e~n\

From the decomposition (24) we decompose X into

(39) X= ΣX*. + X*.

Thus

(40) I* - E(X)\ < Σ K ~ E{X*a)\ + \X* ~ E{XB)\.
a<=I

As 0 < X^ < \Q\ < nk-r-J always,

(41) \X9-E(X9)\<nk-r-π

with probability one. Now assume

(42) \Xκ-E(X^)\<3n-2

for every a e /. Summing over a e /, and noting |/ | < \s/e\/n3 < nk~r~3

(43) Σ
αe/

SO

(44) \X- E(X)\< 4nk-r-\

The probability that this does not occur is at most \I\(2e'nl) < nke~n\
We know from (23) that E(X) > cnk~r where c is a constant dependent
on k, r, p, 8 and ε but not on n. Thus 4nk~r~ι < εE(X) and so

(45) Pr[ J\f Φ E(X)(1 ± ε)] < nke~n'1 < e'n'm

by the dominance of the exponential term. Combining (23) and (45)

(46)

Recall that X represents the number of Λ -ciiques of G* containing e,
conditional o n e s G*, for a given e. There are less than nr different e.
Thus the probability that some e e G* does not lie in the appropriate
number, i.e.

of ^-cliques of G* is bounded from above by nre n°9. Once again the
exponential term dominates. The probability of (iii) holding approaches
infinity.
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We return to the beginning of the proof. Having fixed ε we let n0 be

such that for n > n0 conditions (i), (ii), (iii) all hold with probability at

least .9. Then with probability at least .7 all three conditions hold

simultaneously. Thus there exists a specific F for which all three condi-

tions hold. This completes the proof of the Lemma.

THEOREM. Let 2 < r < k and a > 0 be fixed. Then for n sufficiently

large

(47)

Proof. We first select a > 0 so that

(48) < 1 + a.

\ — e
This may be done as Limδ_^oδ/(1 — e~δ) = 1. We then select ε > 0 so

that

which may be done as

δ(l + ε)
Lim
c-o 1 - e~δ - 2ε 1 - e~8 '

We then select a positive integer / so that

<50>

which may be done as

Um(k)e-'s(l + ε) = 0.

Set ε, = ε. By reverse induction on i we find ε, > et_1 > > ε0 so

that the Lemma applies with p = e~i8, ε* = ε, , δ as itself, and εi_1 as the

" ε " given by the Lemma. Now let n be sufficiently large so that the

Lemma holds in all / cases. Set Go equal the complete r-graph on n

vertices. Then Go is quasirandom with density 1 and tolerance εo-in fact,

with tolerance zero. Applying the Lemma we find, for 0 < / < /, families

JF) and graphs Gi+ι so that

®\Fi\<8[e-i\"r)Ak

r)](l + ef.)
(ii) Gi+ι is G, with all cliques of Ft deleted.

(iii) Gi+1 is quasirandom with density ρe~8 and tolerance ε / + 1
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As all εi < ε we simplify (i), (iii) to

y
(iii') Gi+1 is quasirandom with density pe~8 and tolerance ε.

For each i, 0 < i < t

| j >e-

so

(52) \Gi\-\Gi+1\>e-iS(n

r)(l-e-s-2ε)

and

l^il ~ l^/+il 1 - e'δ - 2ε

The families Fθ9 Fv...9Ft_x cover all r-sets except Gr For each e e Gt

let Ke be an arbitrary A:-set containing e (not necessarily a clique in Gt)

and let F^ denote the family of those Ke. Then

(54) \Fj<\Gt\<e-'\n

r){l + e).

Now the set

(55) F=F0UFτU . . . U ^ U J ;

covers all r-sets on n vertices. Summing (53) for 0 < i < t

(56) [ l l f

\-e-s-2ε

Adding Fx;

(57)

by our propitious choices of δ, ε and t—completing the proof.
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