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ON A CONTINUOUS ANALOG OF
SPERNER'S PROBLEM

L. H. HARPER

In memory of Ernst Straus

An approach to Rota's question about the lattice of partitions is

presented. Calculations, based upon the assumption that the lattice of

partitions may be approximated by a Gaussian process, indicate that the

ratio of the cardinality of the largest set of incomparable partitions to the

largest rank is at least 1/ ]/l - 3/3/8 « 1.69 as « -• oo.

0. Introduction. In 1928 E. Sperner solved the following problem:
What is the largest size of any family, J, of subsets of an w-set such that no
member of the family contains any other member? Such a family has been
called "a family of incomparables" and Sperner's result was that max|/|
= ([rt/2])> ^ e largest binomial coefficient of order n.

The question which Sperner answered for the set of all subsets of an
j?-set, ordered by containment can easily be extended to any finite partial
order P having a rank function r. For subsets of an n-set the partial order
is given by containment and the rank function by cardinality. Clearly no
two elements of the same rank can be comparable in the partial order so
Pk = {x e P: r(x) = k) is a family of incomparables. Sperner showed
that in the case of subsets the lower bound max|/| > max|PΛ| is sharp. In
1970 G. C. Rota asked if this is also true for the set, Πr t, of all partitions
of an ft-set partially ordered by refinement. The rank of a partition is
again its cadinality, i.e. the number of nonempty subsets (blocks) which it
contains. Also Snk, the number of partitions of an «-set having k blocks,
is called a Stirling number of the second kind. As before, max / g Π |/| >
maxkSn k and Rota's question was whether the inequality is sharp. The
question was an appealing one and there was considerable evidence that
its answer was positive (e.g. it was shown to be true for n < 19 (see [7])) so
enthusiasts began calling it "The Rota Conjecture". In 1976 however,
E. R. Canfield found a counterexample to the Rota conjecture. Canfield
showed that for n > 6.5 X 1024 you could take the largest rank, cut a
relatively small piece out of it, replace that piece by a larger piece from
the next rank and still have a family of incomparables. G. W. Peck (see
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[11]) sharpened Canfield's result to give counterexamples for n > 5.5 X
106. However, none of these counterexamples gave a ratio of max|/| to
m a x ^ S ^ greater than 1 in the limit. The assertion that the limit was
indeed 1 became known, naturally, as "The Asymptotic Rota Conjecture".

The purpose of this paper is to present an insight into the lattice of
partitions and calculations based upon it which suggest that

(i) The Rota Conjecture is essentially true for n < 5.5 X 106 and
(ii) The asymptotic Rota conjecture is false, i.e. max|/|/max SnJc does

not go to 1 as n -> oo.
Because the argument is incomplete and takes some unexpected turns

it will be presented organically, i.e. in the way it grew from the original
insight.

I. Preliminaries. Our approach to the Asymptotic Rota Conjecture
is based upon two statements, one a proven fact and another which,
though a variant of published results, must still be regarded as a hypothe-
sis. The first statement, the proven one, has been used in every paper on
Rota's problem. It is that the action of Sn the symmetric group on the
underlying «-set, may be factored out of Tίn. Hn/Sn is the weighted
partial order whose elements are n-tuples, a = (σ l 5 . . . ,σj, of non-negative
integers such that Σ"==1iσι = n. σ represents the equivalence class of all
partitions having oi blocks of size i for i = 1 to n. For σ, T e ΠM/Sn,
σ < r iff there exists a function a > 0 such that

where δ is the «-tuple whose ith entry is 1 and all the rest are 0. Tln then
has a minimum element (0,0,... ,0,1) and maximum element (Λ, 0,... ,0).
The rank of σ is r(σ) = Σ"= 1 σf . The weight of σ is

which is the number of partitions in the equivalence class of σ. Precisely
speaking, the statement which we use is that the maximum weight of any
set of incomparables in ΐln/Sn is equal to the maximum cardinality of any
set of incomparables in ΐln. Rota himself suggested this means of reduc-
ing the problem; it was first given mathematical substance by R. L.
Graham and subsequently developed by the present author (see [8]).

In light of the above statement we need only solve the weighted
version of Sperner's problem on Hn/Sn. Now Bn =zΣn

k:=:1Snk is the
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number of partitions of an «-set, so if we divide the weight on σ by Bn we

get a probability measure on Π w / S n , P(o) = W(σ)/Bn. The second

statement, the hypothesis, is that this probability measure is asymptoti-

cally Gaussian (see [9]). To be more precise we mean that if i is trans-

formed to (/ — λ)/γ = s where λe λ = « , γ 2 = λ and σi is transformed to

(σ, — E(Όi))\/ yfΐt = u(

s

n\ then u\n) converges weakly to a Gaussian

process us having mean E(us) = 0 and the appropriate covariance (calcu-

lated in the following section).

II. A continuous analog of the lattice of partitions. Let us expand a

bit on the statement in the previous paragraph: As / is transformed to the

continuous variable s (in the limit as n -» oo) and σ to the function u, then

the rank of σ, r(σ) = ΣjLi^ , is transformed to r(u) = f^°QOusds and the

identity ΣjLi iof = n to j^{s + γ ) u s ds = 0. Actually γ -> oo as n -> oo,

but very slowly (about like /In «) and must be retained as a parameter.

The partial order on functions is characterized by u < w iff there exists a

function a > 0 such that

/

OO /.OO

-oo -oo

where 8X is a Dirac delta function.

Note that this partial order on the functions is given by a cone whose

extreme points are {8X + δy — 8x+y+Ύ: x9 y G R}. It is thus homogeneous

which contrasts sharply with the orders of Tίn and Tίn/Sn. Note also that

-OO - 0

r(w) = r(u) 4- / /
•^ r>^ * _ Λ

Gaussian distributions are characterized by their covariance functions

so we must calculate Cov(σr, oi) and estimate it as n -> 00:

LEMMA 1.

Bn

where

δ fi '/ί=Λ
ί y 10 otherwise.
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Proof. All moments of σ may be computed by the same trick we use
here to compute the mean:

n

c£(*,)= 4- Σ °M where5n= £ Sn,k

Σt X:Λ). where * < ^ ) . { J ** * ζ

B« \A\-i I £ Π , ^« \A\-i Xl> Bn« \A\-i I £ Π , ^« \A\-i

LEMMA 2.

where λn is the solution gfλeλ = n and i = O(λn).

Proof. Using
(i) Stirling's formula, n\ = y/lπn (n/e)n(l + O(l/n))9

(ii) Moser & Wyman's formula

Bn = (l//λ^Π>«< λ»+ 1/λ»-i>-i(l + O(λn/n)),

and
(iii) Maclaurin's expansion for λ about n,

K+J = K +(λB/(λΛ + I)*); + o(yV«2),

we have that

/i Bn j ! ( B - / ) ! i , i ! β \ U

But λ w β λ " = « so In n — λn = In λn, and therefore

LEMMA 3. / / / = ]/λs + λ

^ 4 + 27,2 - 6
72λ

Note that the first term of this series gives the classical approximation
of the Poisson distribution by the normal. Its proof uses a stronger version
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of Stirling's formula i\ = ]/2πϊ(i/eY(l + 1/12/ + O(l/i2)) plus the
series expansions for ex and ln(l + x ) .

THEOREM 1.

/$ίv /"ί 7 Γ v3 — If ?6 — 12v4 4- 27v2 - 6 /kl 9 \l

,

6γ ' 72γ2

s3 + 3s + t3 + 3?
6γ

- 9s2 + 2s3/3 + 6s3t + 6st3 + ISst - 84 - 9t2 + /2 ± , 6

Proof.

« 1 v

^ « >J

i\J\

X | l + 0 1 -
n

0

B n [ j ] B

by Lemma 1

by Lemma 2

- (λ
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By Maclaurin's expansion of λn_ ( and then letting λ = λn,

λ2

i \ I J i\j\\{\

,-s2/2

2 77

1

s3 - 3s s 6 - 12s4 + 27s2 - 6
1 + — + s

1 +

6γ 7 2 γ 2

s 3 + 3s2 + t3 + 3t

s6 - 9s2 + 2s3/3 + 6ί3/ + tst3 + 18Jί - 84 - 9t2 + t2

o

by Lemma 3.

COROLLARY. The distribution of the rank function τ(σ) = Σ, σ( is

asymptotically Gaussian with mean

and variance

is has already been proven by myself (in [6]) and E. Bender.

III. A continuous analog of Sperner's problem. The discussion in

the preceding section suggests that we consider the effect which asymp-

totic normality has on a weighted Sperner problem: Assume that the limit

Gaussian distribution on R" has mean 0 and covariance matrix C. The

weight then is the Gaussian density function

Assume also that the limit partial order P on R" is determined by a cone

K c R* with rank function r(x) = x e, e e K.

EXAMPLES, (i) If e is the unit vector in a direction which maximizes

the quadratic form xCx\ a little reflection shows that the hyperplane
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Po = {x: x - e = 0} is a set of incomparables and has the maximum
weight of any hyperplane. (ii) Suppose

C =

0

0

a diagonal matrix, and K = (Σ?=1 αyδ,-: aί > 0}, the positive orthant in R".
Then P is a product weighted poset, each factor being Gaussian and
therefore log convex. The continuous analog of the Product Theorem ([7])
would imply the strong Sperner property for P.

DEFINITION. Given a continuous (Gaussian) weighted partial order P
on R" determined by a covariance matrix C, cone K c R" and rank
function r(x) = x e, call d = Cet its direction.

THEOREM 2.1/d^K then P has the {strong) Sperner property.

Note. Looking at the preceding examples in the light of this theorem
we see that in

(i) d = Cet = λe since e is an eigenvector of C, and since e e K,
d e K, and in

(ii) d = CV > 0 so d e /C. In both examples then the hypothesis of
Theorem 2 is satisfied and so P has the Sperner property.

Proof. Again, this proof is the conjunction of two insights:
(i) If a weighted poset P can be partitioned into chains on each of

which the weights are arranged in the same relative order (maxi-
mum on Po, etc.) then P has the strong Sperner property, and

(ii) For x e R" such that x - e = r let x - (r/(d e))d = JC0. Then
x0 G Po and x = x0 4- (r/(d e))d so

since .

/(*)-

= x0 - e = 0. Therefore

_e-l/2(xC-ιx')

I e-l/2(xoC-ιx'o)

exp -
dC~

2(d-e)2
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Noting that the first factor inf(x) depends only upon x0 and the second
only upon r, we see that if d e K then (x 0 + {r/(d e))d: r e R} is a
chain and the condition of part /, is satisfied.

IV. Is d G K for Πw/Srt? Assuming that Theorem 2 for Gaussian
distributions on R" carries over to Gaussian processes, we calculate the
direction

dy(s)= Γ Cow{u^\u^)dt
- 0 0

= — e~s ' ~s 4- 4- O\ —

and we want to know if this function is in the cone

In order to answer this question we must introduce the notion of the dual
of a cone. If K c Rn is a cone then define

Γ = {j/E Rn\\/x G K, x >> > 0}.

EXAMPLES, (i) If K is a half-line then K* is a half-space and vice versa,
(ii) The positive orthant (R")+ is self-dual.

THE DUALITY THEOREM. (See [5].) IfK is a closed cone then (K*)* = K.

Note. The duality theorem may not hold in function spaces but
certainlyK c K**. AlsoKQJ=>J*CK*.

Extending this definition to our infinite dimensional space we have
f^K* iff f - (δx + δy - δx+y+y) > 0 V I J E R , i.e. f(x)+f(y)7>
f(x + y 4- γ). When γ = 0 these are called subadditive functions.

LEMMA 4./(JC) e iί γ *///(* + γ) e ί:0.

Proof. If g(*) = /(x + γ) then

g(*) + g(y) = / ( ^ + Y) + /(.y + γ) ̂  / ( * + ̂  + γ) = g(χ + J ) ?

so g G ί 0 and conversely.

. An obvious subclass of K$ to study is the additive functions
(those for which equality always holds). It is well known (see [1]) that the
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only measurable additive functions are the linear functionsy = ex. Another
subclass of K$ (in fact of any K*) is the functions / > 0 such that
limsup(/) < 21iminf(/). Then

fix) +f(y) ^ 21iminf(/) > limsup(/) > f(x + y 4- γ).

THEOREM 3. For n sufficiently large (6 X 106 should do it) dy £ Ky.

Proof. For any A QR, let

Y ( \ _ (1 if s ^ A,

By the note above 1 + XA e K*. If we can find an A such that

dγ-(l + XA) = Γ dy(s)(l + XA(s)) ds < 0
- 0 0

this would imply dy & Ky. Now with A = {s > 0} this holds for n

sufficiently large since /_°̂  dy(s) ds = 1/γ and /0°° se~s2/1 = 1. To get a

better estimate of the smallest n for which dy & Ky, we note that dy(s) < 0

for s sufficiently large. We thus let 4̂ = {s > s0} and find the simulta-

neous solution of

^γ(^θ) = 0> J dy(S) ds = -1/r

By Newton's method we find γ = 3.62 which gives n = γ 2 e γ 2 - 6 X 106.

Note. The preceding discussion does not demonstrate that dy ^ Ky

for n < 6 X 106, but strongly suggests it: If we had a good characteriza-

tion of the extreme points of K% and if Farka's Lemma extended to show

AT** = Ky, then the above computation could be sharp. Peck's improve-

ment (5.5 X 106) of Canfield's example is also close enough to provide

support for this idea.

V. The objective function. Since dy £ Ky for n sufficiently large

and we felt that this condition is essentially equivalent to the Sperner

property, we look for sets of incomparables larger (in weight) than Po. In

order to do this we must better understand the objective function of our

continuous Sperner problem. If we restrict our sets of incomparables in R"

to be smooth hypersurfaces (of dimension n - 1) then reflection shows

the objective function to be of the form F(ί) = jjf{x)gj(x) dAΊ{x)

where /is the Gaussian density function,

(V2τr)
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gr is a geometrical factor and the integration is with respect to the area of
/ near x. If / is further restricted to be a hypeφlane (and we may assume
0 E / ) then g7 is constant as is the local area. Therefore F(I) =
gjjjf{x)dA(x) and by direct calculation fίf(x)dA(x) = 1/ faπuCu*
where u is the unit normal to /, i.e. I = {x: x u = 0}, u - u = 1 and
u - e > 0.

LEMMA 5. A hyperplane H = {x u = 0} c R n (R" partially ordered by
a cone K) is a set of incomparables iffu is in the interior ofK*.

Proof. Suppose y Φ x then x, y^H=^y-x^H=>(y — x)-u =
0. Also x<y<=>y — x&K. Therefore, if H is not a set of incomparables
then u is not in the interior of K. Conversely, if H is a set of incompara-
bles and>> e K, y Φ 0 then y - u Φ 0. We assume that e e .ίΓand w e > 0.
If y - u < 0 then there would exist 0 < λ < 1 such that (λe + (1 - λ)y)
w = 0 so λe + ( l - λ ) j > G / / n J S T which is a contradiction. Therefore
y - u > 0 and w is in the interior of AT*.

Thus our modified Sperner problem is to find

The geometric factor g must be continuous as a function of w,
but Theorem 2 implies that its derivative is discontinuous at u = e.

In order to increase our undertanding of the geometric factor, let us
examine a specific example: Let n = 2, K be the positive quadrant in R2

and e = (1/2,1/2) but take 0 < Θ < ττ/4 to be the parameter de-
termining the hypeφlane H rather than u. (See Figure 1.) g(Θ) is then the
density of incomparable lattice points which lie on or near the hypeφlane
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(line) H. The density of candidate points near H is sin(7r/4 + Θ) but one

of these must be eliminated each time the rank increases (see Figure 2) so

we have

where m is determined by tanΘ = 1/(2w — 1). Therefore

1 cos Θ — sin Θ
m = l/2fl 4 ~ I and 1 -

tan Θ / m

Finally

cos Θ -f sin Θ '

cos Θ + sin Θ \ cos Θ — sin Θ cos Θ - sin Θ

cos Θ + sin Θ ^Γ

By symmetry g( —Θ) = g(Θ) and we see that g' is indeed discontinuous

at Θ = 0.

In general we have

LEMMA 6. g(u) = u)/(x e)

In order to derive this expression for g we extend the notion of a set

of incomparables: A fat hyperplane is the union of contiguous translates of

y

FIGURE 2
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a given hyperplane. The maximum distance between any point and its
orthogonal translate is the thickness of the fat hyperplane. A fat hyper-
plane for which the maximum difference in rank between two comparable
members is / is called l-Sperner. A O-Sperner set is then a set of incom-
parables.

Proof. Let a fat hyperplane H with unit normal u and thickness τ be
/-Sperner for some / > 0. We may assume that 0 is contained in the lower
boundary of H. Then for all x e H Π K if x is contained in the upper
boundary of H we have

x - u = r and x e < I.

Combining these we have

T = (x u) X 1 < /.
x e

But the r.h.s. is independent of the length of x so

T < (min((x u)/(x
This means that g < πήnx(ΞK((x u)/(x e)) and, since this is the only
restriction on g, equality holds.

VI. The asymptotic Rota conjecture. If we simplify the objective

function of the previous section by squaring and then deleting constant
factors we have G(u)/F(u) where G(u) = ( m i n ^ ^ x u)/(x e)))2

and F(u) = uCu*. This is to be maximized over all u e K* such that
||w|| = 1. This can be further simplified by noting that πήnx.e=lx&κ(x u)
is a linear program so we may assume that x is an extreme point of
K Π {x e = 1}. Also G(λu)/F(λu) = G(u)/F(u) so we may drop the
condition that ||w|| = 1.

Since G(e) = 1, the asymptotic Rota conjecture is equivalent to
F(e)maxuGK*(G(u)/F(u)) -> 1 for Hn/Sn as n -> oo. However, if we
take u = e — εd where ε > 0 and d = γdγ, then x - u = x - (e — εd) = 1
- e(x J) and G(e - εd) = ( m < e / , ; j c , = 1 (1 - ε( J ) ) 2 = (1 - εM(γ))2)
where M(y) = maxJceAr. ;c.e=1x J. Since x may be assumed an extreme
point of K Π {x e = 1},

M ( γ ) =

= max(J(5) + d(t) - J(^ -f / 4- γ)) -> 2 maxJ(^) as n -» oc
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By similar reasoning and the note after Lemma 4, if e < J2πe /3 then
e-εJe K*.

Now

F(e) = eCe'

F(e - εd) (e - εd)C(e - εd)'

1

1 - 2ε(d • d)/(e • d) + ε2ydCd'/(e d)

By direct computation

-\ and dCd' = —^=r + O\ -),
y) 6πJΪ \y]

so

F(e)

F(e - ed)

-3/3/8

Since ε = 0( l/γ), the geometric factor G(n - εd) = 14- O(l/γ) is ne-
gligable and the asymptotic Rota conjecture is false (though not by all
that much!).

VII. Comments and conclusions. Much remains to be done to bring
the material in §§I-VI of this paper up to twentieth century standards of
rigor, but I am fairly confident that the essentials of the argument are
correct. Primary among the logical gaps is the assumption that ΐln/Sn

may be approximated by a partially ordered Gaussian process. Clearly the
notion of convergence required will be a variant of weak convergence
from probability theory (see [3]), but there are a number of complicating
factors:

(i) The parameter 1/γ may either be considered an infinitesimal,
characteristic of the distribution of the limit process, us, or it may assume
finite values specifying the covariance of finite dimensional Gaussian
processes co-convergent with the seqeunce u(

s

n\
(ii) A strong type of weak convergence is required since we wish to

replace maximizing the weight of sets of incomparables in Hn/Sn by
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maximizing the integral jrf(x)gf(x)dA(x) over sets of incomparables, /
in a partially ordered vector space.

(iii) Difficulties (i) and (ii) are compounded by the subtlety of the
computations. In computing dy the lowest order term drops out and in the
counterexample to the asymptotic Rota conjecture letting ε approach 0 in
the prescribed way gives a different result from letting ε equal 0.

(iv) The convergence of partial orders must be justified. The way in
which we passed from discrete to continuous posets seems natural but
requires study.

Another logical gap apparently occurs when we assume that results
proven for finite dimensional continuous Sperner problems (e.g. Theorem
2) apply to infinite dimensional ones. This difficulty is avoided to a
certain extent if we choose to work with co-convergence in part (i) of the
preceding paragraph, but we must still wrestle with the relationship
between Ky, K* and their finite dimensional counterparts.

Besides these logical gaps there are some computational problems
which remain unsolved:

(i) We need a characterization of the extreme points of Kξ, the cone
of all subadditive functions. Subadditive functions have been studied by
functional analysts, but no information on their extreme points beyond
what is in the note after Lemma 4 seems to be available.

(ii) An exact solution of the continuous Sperner problem would be a
great help in pinning things down. Is the solution necessarily a surface
and if so does it have to be a hyperplane? Given that the answers to these
two questions are yes, I think that the asymptotic ratio of \/2.85 — 1.69 is
the best possible, but if not it could go considerably higher.
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