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COMPOSITION ALGEBRAS OF POLYNOMIALS

J. L. BRENNER

Dedicated to the memory of Ernst G. Straus

Briefly, a composition algebra A involves two operations: addition
and composition (substitution of polynomials). Let C be an arbitrary
commutative ring, and C[x, v,...] the ring of polynomials in the inde-
terminates x, y9... with coefficients from C. Addition of polynomials is
commutative; composition is associative, and is distributive (on one side)
over addition. (Notice that if the number of indeterminates is greater
than 1, the operation of composition is not a binary operation.) We find
the ideal structure of A in some special cases. In particular, the ideals of
A are all principal (generated by a single element) if C is a principal ideal
ring (e.g. Z) and the number of variables is 1: A = (C[x], +, °),
provided further that for all c e C, 2\c + c1. [An example is the alge-
braic integers in Q{f—ΐ).]

We start in a general context. An ideal / in A is the kernel of a
homomorphism. Thus / enjoys these three properties:

1.01. / is a module over C: If cv c2 ^ C, tl9t2 ^ /, then cιtι + c2t2

1.02. I f / e / a n d n v n 2 , . . . < Ξ A , t h e n t ( x , y 9 . . . ) ° [ n l 9 « 2 , . . . ] =
t(nl9 n2,...) lies in J.

1.03. I f t2,t39...&J a n d if n l 9 n 2 , . . . G A , t h e n n t ( x 9 y 9 . . . ) °
[ n 2 4- t29 n 3 + t3,...] - ( n ^ x , y , . . . ) o [ n 2 , w 3 , . . . ] ) l ies i n / .

Since nλ is a sum of monomials, it follows from 1.01 that 1.03 can be
replaced by the simpler requirement

1.04. Π ^ K + *,)"• ~ nf. 2 Λf lies in/.

1.05. DEFINITION. An ideal / = (a) in A is principal if / is the
smallest ideal containing a. A is a principal ideal composition algebra (in
short, 4̂ is principal) if every ideal is principal.
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282 J. L. BRENNER

Even if C is a principal ideal ring (say C = Z) it can be seen that A is
not necessarily principal, so the property of being principal is not in-
herited. Recall the same situation in ordinary ring theory: Z[x, y] is not a
principal ideal ring.

When the number of indeterminates is 1, the situation is more
tractable.

2. Ideals in the composition algebra A = (Z[x], + , °). In this sec-
tion, all ideals in A are described, in case the number of variables is 1, and
in case C = Z. "Described" means that the additive basis for / is given, /
being taken as a module over C. It turns out that A is principal in this
case. At bottom, the proof depends on a result in [1]. The present paper,
by its dedication, recalls the contribution of E. G. Straus as referee of [1].

Note that if the number of variables is 1, A is a near ring. The
characterization of an ideal / in A specializes as follows.

2.01. If tv t2&J then tx + t2 e /.

2.02. If tx e / and n e A, then tx ° n e /.

2.03. If α > 1, ί e /, H €Ξ 4, then

(« + / ) α - Hα lies in/.

2.04. LEMMA. 1ft lies in the ideal J, a > 1, then ta lies in /.

Proof. Take « = 0 in 2.03.

2.05. COROLLARY (n + t)a - na - ta lies in J.

2.06. LEMMA. // nγ is any polynomial, and if t lies in the ideal /, then
nx{t) — n^O) lies in /.

Proof. If nx(x) = Σ£ aax
a, then nx{t) - /ιx(0) = Σίtfα/α. Use 2.04.

The next series of lemmas is directed to finding the smallest ideal /(I)
that contains 1.

2.07. LEMMA. /(I) contains 2xv for v = 1,2,....

Proo/. Use 2.05 with n = x", ί = 1, a = 2: (x1' + I ) 2 - (x*)2 - 1 =
2x\
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2.08. LEMMA. /(I) contains x2 4- x.

Proof. Use 2.05 with a = 3, / = 1, n = x, together with 2.07.

2.09. LEMMA. Λfoώifo /(I), x" = x 2" = x 4" = . . . = x

2*\ s = 1,2,...;

Proof, (x 4- X 2)OJC" = x" 4- x2".

2.10. COROLLARY. /(I) contains x - h x 4 , x + x8, x 2 + x8, x 2 0 4 - x 5 ,

4 x 6 , x 1 9 - f x 3 8 .

2.11. LEMMA. /(I) contains x5 4- x, x 3 5 4- x7, x 2 5 + x5, x 2 5 4- x.

Proof, (x 4- x 2 ) 3 s χ3 4- x 4 4- x 5 4- x 6 = x 4- x5.

2.12. LEMMA. /(I) contains x 4- x17.

Proof, (x 4- x 4 ) 5 - (x 4- x 4 ) o χ 5 = χs 4- x17.

2.13. LEMMA. /(I) contains x 4- x19.

ίVw/. ( x 4 + x 1 7 ) 3 - ( x 4 4- x 1 7 ) o χ 3 = χ 2 5 4- x 3 8. Use 2.11.

2.14. LEMMA. /(I) contains x1 4- x19.

Proof, (x 4- x 1 7 ) 3 - (x 4- X 1 7 )OJC 3 = JC19 4- x3 5.

2.15. LEMMA. /(I) contains x 4- x7.

Proof. Combine 2.13, 2.14.

2.16. THEOREM. For v = 1,2,..., /(I) contains x3v+ι 4- x, x3"""1 4- x.

όy induction. For ^ = 1,2 Theorem 2.16 is already proved.

Suppose μ > 3. Then

( x 4 4- x 3 ^ - 4 ) 3 - ( x 4 4- x 3 ^ 4 ) o JC3 EE χ 3 ^ + 4 4- x 6 ^- 4 .

By induction hypothesis, x 4- x 3 μ~ 2 lies in /(I), so also does

(x 4- x 3 ^ ~ 2 ) o χ 2 = χ2 4- x6^"4. Hence x 3^+ 4 -f x 2 lies in/(I ) . Similarly,

( x 2 + x 3 " - 2 ) 3 - ( x 2 4 x 3 ^~ 2 )oχ 3 == χ^+2 + X 6 M- 2 lies i n / ( I ) ;
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2.17. THEOREM./(I) containsx3v + x3 for v = 1,2....

Proof, x 3 4 x 6 = (x 4 x2)oχ3; χ3 4 x 9 = (x 4- x 4 ) 3

- ( x 4- X 2 )OJC 6 . If 3J> is a power of 3, then x3v 4 x9 = (x* 4- x 3 ) o χ 3 .

This gives an inductive proof, since x > 4 x 3 = x 3 z ' 4 x 9 4 ( x 9 4 x 3 ) .

Suppose 3P is not a power of 3, say 3*> = μp with μ a power of 3

(μ > 3) and p prime to 3, p > 1. Then xμp 4 x 3 s x ^ 4 x^ = (x p 4 x)o

xμ. Π

2.18. THEOREM. ΓÂ  module /(I) vwYλ

( l , 2 x % x > + 1 + x,x3*-1
 + X , J C H X > = 1,2,...)

w an ideal in (Z[x], 4 , °).

Proof. Under the natural mapping Z[x] -» Z2[x], the module /(I) is

mapped into the ideal / of [1]. Thus /(I) is the full inverse image of an

ideal, so /(I) is an ideal. (A second proof is given in §4.)

2.19. REMARK. 2.18 can be used to derive certain properties of

binomial and multinomial coefficients.

2.20. REMARK. It turns out that /(I) is multiplicatively closed.

2.21. THEOREM. Each of the modules

= ( l,2x\x3p+1 + x,x3p-χ 4 x , x 3 > = 1,2,...)

is an ideal.

See [1].

The proofs of 2.22-2.25 are left to the reader.

2.22. THEOREM. // c is any integer, c/(l), cΓ(l), cV(l) are ideals.

cJ{\) = J(c) is the smallest ideal that contains c. If c, d are constants, c\d,

then J(d) c J(c), dV{l) = V(d) c V(c\ dT(l) - T(d) c T(c) (just as,

in ring theory, (d) c (c)).
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2.23. THEOREM. CZ[X], T(C), V(C), J(C) are the only ideals in
(Z[JC], 4-, °), with inclusion relations given in 2.22, and in the diagram

cZ[x]

2.24. THEOREM. Every ideal J in A is closed under multiplication, that
is, iftl9t2<= J then tλt2 e /.

2.25. THEOREM. (Z[X], -f, °) is a principal-ideal composition algebra,
that is, a principal ideal near ring.

3. Ideals in the composition algebra Am = (Zm[x], +, °) when m is
odd. If m is an odd prime, the ideals in Am were given in [2]. If m is odd
and composite, the results are similar but not identical. The proof of
Lemma 3.01 appears in [2].

3.01. LEMMA. Every {near-ring) ideal in Am is a ring ideal in the
polynomial ring Zm[x].

Proof. Let / be an ideal in Am, / e /. It has to be proved that if
g e Am, then fg e /. First, (/ + g)2 - g2 - f2 = 2fg e /, because of
2.03, 2.04. Next, 2 is invertible, and by 2.06, (jx)°(2fg) - ^0 = fg lies in
/. D

If the ideal / contains a nonzero constant c, §2 describes /. If the
ideal / contains a polynomial that is not 0 at every place in Zm, then /
contains a nonzero constant, by 2.02. Hence the only interesting ideals in
Am consist of polynomials that take only the value 0; because of 3.01, each
such ideal has a single "basis." Note that the (single polynomial) basis is
the generator of a module with coefficients from Zw[x] (not from Zm as in
§2).

We first examine the case m = pr,p an odd prime, r > 1. If the ideal
/ contains a (nonzero) constant c, then / contains cZm[x]. Otherwise,
every polynomial in / is 0 at every place in Zm. Every such polynomial is
a multiple of a distinguished onc,fpr(x), of lowest degree:

This assertion follows from the fact that if two polynomials vanish at a
place, so also does their gcd. We have to consider the ring ideals
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3.02. LEMMA. Ifnλ{x) is an arbitrary polynomial in Zm[x], then the ring

ideal (n1(x)fpr(x)) is an ideal in the composition algebra Am.

Proof. The properties to check are 2.01, 2.02, 2.03. 2.01 is obviously

satisfied. As for 2.02, note that

{ni(x)fp,r(x))on(x) = nι(n(

It can be checked that the last factor is a multiple of xφ(pΓ) - 1, so that

2.02 is satisfied. This leaves 2.03. Here, the binomial theorem shows that

is a multiple of nλ(x)fp r(x), and Lemma 3.02 is verified. D

If m is odd but not a prime power, criteria 2.01-2.03 must be

adjusted. 2.01 must be changed to read

3.021. If cl9 c2 e Z m and tv t2 e /, then c1t1 + c2t2 e /. The condi-

tions 3.021, 2.02, 2.03 characterize ideals inAm.

If m is odd, there are ideals in Am that contain nonzero constants.

Such an ideal can be a homomorphic image of J(c), or can be the union of

such images (since Z m is not necessarily a principal ideal ring).

The interesting ideals in Am are a little more complicated to describe

when m is divisible by several primes. The difficulty lies just in finding the

polynomials of lowest degree that are zero at every place in Z m . Suppose

m = K(1) Pΐk)-
Then a polynomial/of lowest degree that is zero at every place in Z m is

fjx) = LCM[fpiM1)(x),...,fPkMk)(x)}.

The rest of the theory is unaltered.

If m is even, it is not true that every ideal in the composition algebra

Am is a ring ideal in Z m [x]. See [2], where the case m = 2 (among others)

is fully discussed.

3.03. Problem. Describe the ideals in Am if m is even.

4. Ideals in the composition algebra A = (C[x], + , °) if C is a
principal ideal ring. Even if C is a principal ideal ring, the ideals in

A = (C[x], + , ° ) can be hard to describe. The task is much simplified in

the presence of the additional condition 4.01.
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4.01. Condition. If c e C, then c -f c2 is a multiple of 2.

Note that this condition is trivially satisfied if 2 is invertible; but
there are many rings in which 4.01 is satisfied, but 2 is not invertible. For
instance, let C be the ring of algebraic integers in Q()fm), m squarefree. If
m is odd, the ring C is the set

{ \(a + bλfm)\a, b of the same parity}.

The condition 2|c -f c2 requires that m satisfy the further condition m Ξ= 1
mod 4.

In the lemmas and theorems of this section, 4.01 is assumed to hold.
We try to characterize the smallest ideal J(c) that contains c.

4.02. LEMMA. // an ideal J in A contains /, and if c £ C, then J
contains cf.

Proof, (ex)o f - (ex)oO - cf. See 3.01.

4.03. LEMMA. // the ideal J(c) in A contains the constant c, then J(c)
contains 2cxp, v = 1,2,

Proof. (xv + c)2 - x2v - c2 = 2cx\

4.04. LEMMA. J(C) contains ex2 + c2x.

Proof, (x + c)3 - x3 - c3 s= ex2 -f c2*.

4.05. COROLLARY./(c) contains c(x2 4- x).

Proof. c(x2 + JC) s CJC2 + c2x + (c + c2)x.

4.06. REMARK. J(C) contains (cμ 4- cp)xσ, μ > v > 1, σ > 1.

4.07. THEOREM, /(C) contains cJ(l).

The proof is parallel to the proof of the corresponding result in §2.
It is not obvious that J(ΐ) is an ideal in the present context; this has

to be proved. A direct argument follows, based on several lemmas.

4.08. LEMMA. /(I) is multiplicatiυely closed. Moreover,

x3°{x3p+ι + x,x3v~ι + x,x3v 4- x3)
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4.09. REMARK. None of F(l), Γ(l), /(I) is an ordinary ring ideal.

4.10. LEMMA. // n(x) is any polynomial, then each of x3v+ι 4- x9

x3""1 + x, x3v 4- x3 admits multiplication by (n(x))3.

Proof. Take n(x) = Σ^oc ' . Then (n(x))2 = L^afx2' mod2, that is,
the two sides of the congruence differ by twice some polynomial. Hence

since by hypothesis, 21a,. 4- a]. The product can be computed. Some of the
terms are afx3i (0 < i < k); see second assertion of Lemma 4.08. The
remaining terms in the product occur in pairs: ap^x11*3 4- x2J+ι). The
two exponents are either both prime to 3 or both divisible by 3, since their
sum is (2/ 4- j) + (2j 4- /) = 3(/ + j). The lemma is proved. D

4.11. LEMMA. If n is an arbitrary polynomial, then (x2 4- x)°n(x) =
(n(x))2 4- n(x) lies in J(l) and its constant term is divisible by 2.

Proof. Take n{x) = ΣQ atx\ Then

(n(x))2 + n(x) s Σ ( ^ 2 / + ̂ V) Ξ Σ«/(^2/ + ̂ "). Π
0 0

4.12. LEMMA, (X 4 + x2)° n(x) lies in /(I).

Proof, (x4 + x2)on(x) = (x2 + x)oχ2on{x).

4.13. LEMMA, (X5 4- x 4)o«(x) HesinJ(l).

Proof. (n(x))5 4- («(x))4 = («(^))3[(«(x))2 4- Λ(JC)]. According to

4.11, the [ ] lies in /(I) and has zero constant term. Apply 4.10.

4.14. COROLLARY, (X5 4- x)<>n(x) lies in /(I).

Proof, x5 + JC = (JC5 4- x4) 4- (JC4 4- x2) + (x 2 + x). Apply 4.11,

4.12, 4.13.
The last four lemmas can be generalized.

4.15. LEMMA. // m is composite and not divisible by 3, then
(xm 4- x)on(x)liesinJ(l).
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Proof. Set m = uv, 1 < u < v < m. Then

(xm + JC) o n(x) = (xuυ + JCM + JC" + JC) o Λ(JC)

= ( J C " H J C " ) O « ( X ) 4-(xw4-x)°n(jc)

= (xv + x)oχuon(x) + (*« 4. χ)on(x).

The terms lie separately in /(I) by an obvious induction hypothesis, based
on 4.16.

4.16. LEMMA. (X3V+1 + x) ° n{x\ (x3v+2 + x) ° Λ(JC) /ie I/I /(I).

n(x) - ( « ( X ) ) 3 ( ( I I ( J C ) ) 3 F - 2 + II(JC));

Apply a suitable induction hypothesis, together with 4.10. D

4.17. LEMMA, (X6 4- JC3) o n(x) lies in /(I).

Proof, (x6 + x > φ ) = (x2 -f x ) o j c 3 o φ ) , , Apply 4.11.

4.18. LEMMA, (X9 + xβ) ° n(x) lies in /(I).

Proof, (x9 -f x 6)o«(χ) = (n(x))3[n(x)6 + Λ(X) 3 ]. Apply 4.17, 4.10.

4.19. LEMMA. Ifv > 3, (x3v + JC6) O Λ (χ) to i/i /(I).

Apply 4.10 together with a suitable induction hypothesis.

Lemmas 4.11-4.19 show that/(I) satisfies conditions 2.01-2.02. Now
we turn to condition 2.03.

4.20. LEMMA. The cosets ofJ(l) in A are represented by 1, JC, x 3 ,1 4- JC,

1 4- JC3, x 4- x3, 1 + x + x3.

4.21. LEMMA. For α = 1,2,3, if n{x) is any polynomial and if t e /(I),
(/! 4- 0 α - na - ta is in /(I).



290 J. L. BRENNER

Proof. For a = 1,2 this is obvious. For a = 3, note that mod 2,

(,2 + t)3 Ξ ft3 + n2t 4- ̂ 2 + /3, so that (n 4- ί ) 3 - n3 - t3 = n2t 4- «/2.

Since (n1 + n2)
2 = n\ + n\ mod2, and since {tγ 4- t2)

2 = /2 4- t\ mod2,

the form n2t 4- «/2 is additive:

Thus the lemma has to be checked only for the atoms. D

4.22. LEMMA. For a > 4, if n(x) is any polynomial and if t e /(I), then

(n 4- / ) α - « α - ί α

Proof. The inductive argument proceeds in steps of 3. Modulo 2, note

t h a t O 4- t)3 = n3 + n2t 4- ̂ 2 + ί3. Thus, mod2,

( 4 . 2 3 ) ( Λ 4- t ) a - n a - ta = ( n 3 4- n 2 t + n t 2 + i 3 ) ( « a " 3 4- ta~3 + s ) 9

s

This uses the inductive hypothesis that (n + t)a~3 — na~3 — ta~3 is a

polynomial s in /(I) . There are three cases: a = 0,1, - 1 mod 3.

If α Ξ 0 mod 3, then also a — 3 = 0 mod 3. Complete the proof by

referring to 4.10, 4.21.

If α = 1 mod 3, we assume wolg that the constant term in t is 0. The

terms in the expansion of (4.23) that are not taken care of by 4.10 are

(n2t 4- nt2)s + ί3s +(n2t + nt2)ta~3 + na~4(n3t + n2t2 4- nt3).

Of these four terms, the first three are in /(I) by 4.21, 4.08. It remains to

prove that n3t 4- n2t2 + nt3 is in/(I) . As to «3/, see 4.10. Write n2t2 + nt3

= (ft2/ + nt2)t to complete the proof.

If α = — 1 mod 3, again assume wolg that the constant term in /

is 0. The terms in the expansion of (4.23) that require argument are

na~5(n4t + n3t2 + n2t3). It has to be proved that n4t 4- n2t3 is in /(I) .

By 4.21, n4t = n2t2 mod/(I) , and both n2t2, n2t3 have zero constant

term. So it has to be proved that n2(t2 4- t3) e /(I) . This last assertion

follows from Lemma 4.24, with the application cited afterwards.

4.24. LEMMA. Ift(x) is in J(l) [and ift(O) = 0] then p(x) = t + t2 is a

polynomial in x with /?(0) = 0 and such that the number of terms with

exponent = 0 mod 3 is even; the number of terms with exponent = 1 mod 3

is even; the number of terms with exponent = — 1 mod 3 is even.
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Proof. tx + t2 + (t1 + t2)
2 = (tτ + ^2) + ( ί 2 + ^ ) mod2. Also the

assertion of the lemma is valid for each atom (each generator) in /(I) . D

Application of the lemma. If p(x) has the properties stated, then so

also does m(x)p(x), where m(x) is any polynomial, provided p(0) = 0.

Set m{x) = n2t. D

4.25. THEOREM. // C is a principal ideal ring such that for every c e C,

c + c 2 is a multiple of 2, then the only ideals in the {near ring or)

composition algebra (C[x], + , °) are cC[x], cT(ΐ)9 cV(ΐ), α/(l), w/Y/z /(I),

F(l), 7"(1) defined as in 2.18, 2.21. 7Άe ^e/ of inclusion relations is the

obvious set, together with those in the diagram below.

cC[x]

The near-ring (composition algebra) ideals are all principal in this

case.

4.26. COROLLARY. Theorem 4.25 holds if C is the ring of algebraic

integers in Q{y/— Δ)9 where — Δ is any one of - 3 , —7, - 1 1 , -19, —43,

- 6 7 , - 1 6 3 .

4.27. REMARK. If the hypotheses of 4.08 do not hold, then the smallest

ideal J(c) containing c contains also
/ n v ( 3 i 4\ v ( 2 i 3\ Ίv 3/ 3I>+1 ι \

\c92cx 9 (c 4 c )x , (c 4 cό)x 9c (x* L 4 x),

r 3/ r 3^-l , \ r3(χ3v , χ3\ c2(χ6v + 3 , 3\

_ 2 / v 6 ^ + 5 , V 5 \ 2 / 6 ^ + 7 , 7 \

(c2 + c3) (x2v + 3 4- JC3>)I^ = 1 2

However, the module with these generators need not be an ideal. (The

assertion in 4.27 has a lengthy proof.)

4.28. Problem. Characterize the ideal J(c) in a simple manner.

4.29. Problem. If C is the ring of Gaussian integers, is /(I) the module
(over C)

( 1 , 2 J C " , ( 1 4 / ) * " , jc3y + 1 4 J C , * 3 " - 1 4 x, x3v 4 x3|*> = 1,2,...)?

What are the other ideals in (C[x]9 4 , <>)?
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5. Properties of the binomial coefficients. The first two properties

are easy.

5.01. LEMMA. C\k is even.

5.02. LEMMA. If two of the lower suffixes of a multinomial coefficient are

equal and positive, the coefficient is even.

More generally if there are r pairs of positive and equal suffixes,

C ij^j... is divisible by 2r. [Cftiχi9 Cl2χ2, C\\t5^ = 2 4 3 3 7 11 are all

divisible by 4.]

The next lemmas all follow from 2.03. A direct proof of 5.03 is

immediate; without using 2.03, the others seem less obvious.

5.03. LEMMA. Among the Λ + 1 binomial coefficients C£9 an even

number are odd.

5.04. LEMMA. Among those binomial coefficients C"v with v an integer

and with 0 < 3v < n, an even number are odd.

(5.04 is immediate if n is a multiple of 3; 5.04 is true without this

restriction.) R. J. Evans showed me a direct proof of 5.04.

5.05. LEMMA. Let S be the collection of those multinomial coefficients

C"Jklm that are odd, and in which 0 < i < n, subject to the further restriction

j + m = k mod 3. Then S has odd cardinality.

5.06. LEMMA. The cardinality of the set

. J° < 'o < *> h + 2*2 + + rir = 0 mod3,

C? ι ,. is odd}

is even.

5.07. THEOREM. The assertion of the preceding number remains true if

the congruence Σ j if = 0 mod 3 is replaced by the congruence Σa(j)ij = 0

mod 3, where a (j) are arbitrary integers.

This conclusion is obtained by noting that the polynomial

(1 + ΣJ>ox
aU))n - I" - ( Σ x β ( y ) ) Λ m u s t l i e i n / ( l ) .
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