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ON SINGULARITY OF HARMONIC MEASURE
IN SPACE

JANG-MEI WU

We construct a topological ball D in R3, and a set E on dD lying on
a 2-diniensional hyperpiane so that E has Hausdorff dimension one and
has positive harmonic measure with respect to D. This shows that a
theorem of Θksendal on harmonic measure in R2 is not true in R3.
Suppose D is a bounded domain in Rm, m>2, Rm\D satisfies the
corkscrew condition at each point on dD; and E is a set on dD lying also
on a BMOχ surface, which is more general than a hyperpiane; then we
can prove that if E has m — 1 dimensional Hausdorff measure zero then
it must have harmonic measure zero with respect to D.

Lavrentiev (1936) found a simply-connected domain D in R2 and a
set E on dD which has zero linear measure and positive harmonic
measure with respect to D [5]. McMillan and Piranian subsequently
simplified the example [6]. See also [1] and [3].

In [7], Θksendal proved that if D is a simply-connected domain in R2,
and E is a set on dD with vanishing linear measure, and if E is situated
on a line, then E has vanishing harmonic measure ω(E, D) with respect
to D. In [3], Kaufman and Wu generalized this result and proved that the
theorem still holds if E is situated on a quasi-smooth curve, but no longer
holds if E is situated on a quasi-conformal circle. An interesting, perhaps
very difficult, question is whether the theorem is true if E lies on a
rectifiable curve.

Another question is the higher dimensional generalization: if D is a
topological ball in Rm, m > 3, and £ is a set on 3D, situated also on an
m — 1 dimensional hyperpiane, does the vanishing of the m — 1 dimen-
sional Hausdorff measure, Am~\E) = 0, imply that ω(E, D) = 0?

We answer this negatively by giving the following example.

EXAMPLE. There exists a topological ball D in R3, and a set E on 3D,
lying on a 2-dimensional hyperpiane so that E has Hausdorff dimension
one but has positive harmonic measure with respect to D.

We notice that dim E = 1 is much stronger than A2(E) = 0; and that
1 is best possible, because if dim E < 1 then E has zero capacity in R3,
hence E has zero harmonic measure with respect to D in R3.
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Also this example suggests that a question left open in [1] by Carleson

has no analogue in higher dimensions: if E is a set on the boundary of a

Jordan domain Z>, and Aβ(E) = 0 for some 1/2 < β < 1, is it true that

ω(E,D) = 0?
The real reason behind the example is that the Carleman-Milloux type

estimation of harmonic measure is no longer valid on the boundary of a

topological ball in R3. In order to obtain positive results we require the

complement of the domain to be "big" near each boundary point, and

allow E to lie on a surface more general than a hyperplane.

THEOREM. Suppose D is a bounded domain in Rm, m > 2, whose

complement Rm\D satisfies the corkscrew condition. Let Γ be a topological

sphere in Rw, whose interior Ωx and exterior Ω2 are both NTA domains,

and on Γ,

(0.1) Am~~1(E) = 0=> ω(£,Ω f.) = 0 for i = land 2.

Then a set on dD Π Γ having zero Λ"2"1 measure must have zero harmonic

measure with respect to D.

The definitions of corkscrew condition and NTA dbmain are intro-

duced by Jerison and Kenig in [2] and are given below.

Examples of Γ that satisfy the conditions in Theorem 2 are quasi-

smooth curves (m = 2) and boundaries of BMC^ domains (m > 3);

BMOX domains are domains whose boundaries are given locally as the

graph of a function φ with Vφ ^ BMO, see [2] for more discussions. In

these examples, the harmonic measures ω, on Γ and Am~ι are mutually

absolutely continuous, in fact, ωί e yloo(Λ/M~1).

When m = 2, the theorem by Kaufman and Wu [3] mentioned before

is not comparable to Theorem 2. There, D is only simple-connected;

however, Γ has a stronger property, namely, quasi-smooth.

From the Example, we see that the corkscrew condition on Rm \ D

cannot be discarded even when D is a topological ball. Also condition

(0.1) is necessasry as one can see in the case D = Ωx or Ω2. However, we

do not know whether the geometric condition on Γ: Ω, are NTA domains,

can be weakened, or whether Γ can be replaced by a simple rectifiable

curve in R2.

1. An example. We call D a topological ball in Rm if it is the image

of a ball under a homeomorphism of Rm. And the boundary of a

topological ball is called topological sphere. For A e Rw, r > 0, we let

B(A,r) = {P G Rm: \A - P\ < r}.
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For a domain D in Rm, E c 3D, we denote by ωx(E,D) the

harmonic measure of E at X with respect to D.

LEMMA 1. In R2, there exists a simply-connected Jordan domain Ω,

satisfying

(1) Ω Π {x: xλ>0} Q {x: \x\ < 2}

Ω Π {x: xλ < 0} = {x: xλ < 0, |JC| < 3};

(2) 32Ω has Hausdorff dimension 1;

(3) cap3(32Ω) > 0;

(4) cap3(Ωε) -> 0 as ε -> 0;

where Ωε = ( x Ξ Ω: dist(x, 3Ω) < ε}, 32Ω is the boundary of Ω relative to

R2, and cap3 w the capacity with respect to the kernel l/ |x | .

Lemma 1 is proved at the end of this section; some readers may

prefer to supply their own construction. The next lemma is the key to our

example.

LEMMA 2. Let SI be a domain in R2 with all the properties in Lemma 1.

We identify it with the set {(JC, 0): x e Ω} in R3. Then

ω(3 2 Ω,5(0,20)\Ω) > 0.

Proof. Choose ε0 > 0 so that

(1.1) c a p 3 ( Ω 2 ε o ) < I ^ c a p 3 ( 3 2 Ω ) .

Let Ωεo η = Ωεo \ Ωη, for 0 < η < ε0, let μ and v be the capacitary

measures corresponding to 32Ω and Ω , with respect to the kernel l/ |x |,

respectively. Let U and V be the corresponding equilibrium potentials:

(1.2) U{x)=( r-l—r
/ 3 2 Ω I x — y I

(1.3) V(x)=( —L-

We recall from [4] that U and V are positive superharmonic on R3

bounded by 1 and are harmonic off the supports of their respective

capacitary measures; moreover U = 1 on 32Ω except possibly on a set S

with cap3(5() = 0 and V = 1 on Ω except possibly on a set T with

cap 3 (Γ) = 0; μ(32Ω) = cap3(32Ω) and v(Ώε^) = cap3(ΩεoT?).
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Let u = ω(32Ω, £(0,20)\32Ω) and v = ω(Ωεo „, £(0,20)\Ωεo>1)). We
observe from the last paragraph that

(1.4) u(X) > U(X) - f U{Y) dωx(Y, 5(0,20))

for X e 5(0,20)\32Ω; and clearly U > u and V > v in their common
domains.

For 6 < \X\ £ 20 it follows from Lemma 1, (1.1), (1.2) and (1.3) that

(1.5) V(X) < I cap3(Ωε 0 )J < - ^ cap3(32Ω)

for |ΛΓ| == 6, it follows from (1.2), (1.4) and (1.5) that

(1.6) u(X) >\u{X) + \u{X) - YJ cap3(92Ω)

> y V(X) + ^ cap3(32Ω) - ^ r cap3(32Ω) > 3v(X).

From the maximum principle, it follows that for \X\ = 6 and 0 < η < ε0,

(1.7) (0^3^,5(0,20)\(Ω e o > η U 3 2ΩJ) > u - v(X) > ^u

^ cap3(32Ω) > 0,

by the estimation in (1.6).
From (1.7) and the maximum principle, we obtain for \X\ = 6,

,20) \ Ω j = inf ωx(Ωη U 32Ω, 5(0,20)\Ω ε o)
0 < η < εo

U 32(Ω)))

> - ^ cap3(32Ω) > 0.

Let a = sup{ω*(32Ω,£(0,20)\Ωεo): χ e β \ Ω e o } . Because Ω\Ω e o

has positive distance from 32Ω, we have 0 < α < 1. Choose β, a < β < 1,
and a point P in B(0,20) \Ω ε o so that ωp(d2Ώ, B(0,20) \Ωε o) > β. By the
maximum principle,

> ω ί>(32Ω,5(0,20)\Ωεo) -a>β-a>0.

This completes the proof.
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LEMMA 3. Let Ω be the domain in Lemma 1. Let g(x) be a strictly
positive continuous function on Ω, defined by

(1.8)

Let

G =

Then

co(32Ω,5(0,20)\G) > 0 .

Proof. Suppose otherwise, we have

(1.9) ω(32Ω,5(0,20)\G) = 0.

Let I G G \ Ω , Δ^ be the disk on {x3 = 0} with center (Xl9 X2,0) and
of radius \X3\ and Bx be the ball in R3 with center (Xv X2,0) and of
radius 2\X3\. By (1.8) and the maximum principle, we have for X <Ξ G \ Ω,

(1.10) ω*(92Ω,£(0,20)\Ω) < ωx(dBx, BX\Δ(X)) = C < 1,

where C is an absolute constant. Let v4 be any point in J?(0,20) \ G .
Because of (1.9) and (1.10) we have

= 0 4- C < 1.

From (1.10) and (1.11) we see that

ω(92Ω,£(0,20)\Ω) < C < 1

everywhere in 5(0,20) \ Ω. Therefore, ω(92Ω, J?(0,20) \ Ω) = 0. This con-
tradicts Lemma 2 and proves Lemma 3.

Finally, we let Ω and G be the domains in Lemma 1 and Lemma 3,

D = {(xl9x29x3): x\ + x\ < 8 and | x 3 | < 4}\G

and

E = 9 2 ΩΠ{JC: | x | < 2 } .

From the constructions of Ω and G, the domain D is a topological ball;
from properties (1) and (2) in Lemma 1, dim E = 1 and

cap3(92Ω n{x: \x\> 2}) = 0.
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Therefore by Lemma 3,

ω(E,B(0,20)\G) > 0.

Arguing as in the last paragraph of the proof of Lemma 2, we conclude

ω(E,D) > 0.

Consequently all the properties of D and E in our example are justified.

It remains to prove Lemma 1.

Proof of Lemma 1. All line segments considered below are closed. Let

/ 0 1 be the line segment with end points (0, —1) and (0,1). Let llm,

m = 1,2, be two horizontal line segments with left endpoints (0, — \) and

(0, \) respectively and of length 1.

Suppose {/M_lm: 1 < m < 2n(n~l)/2} have been selected for some

n > 2, so that length of ln-hm is 2~(n~1)(n~2)/2. Subdivide each ln_hm

into 2" equal subintervals, each of length 2~1~nin~1)/2. Let {lnJ: 1 <j <

2("+i)n/2j j - ^ horizontal (if n is odd) or vertical (if n is even) line

segments of length 2~n ( n~ 1 ) / 2, with left (if n is odd) or lower (if n is even)

endpoints coinciding with those of the subintervals of / n _ l m and disjoint

from any ln_2,m" We n ° t i c e that the distance between two disjoint line

segments lnm and /„, m, (n > n') is at least 2-1~n{n"1)/1.

Let 7? 0 1 be the semidisk {x: xλ < 0, |JC| < 3} in R2. We shall attach

a thin rectangle to each /„ m , n > 1. Let an = 2~23" and consider, for

n > 1, the rectangle with one side coinciding with ln m , two opposite sides

of length an, and interior disjoint from any ln,m,. Let Rnm be the interior

of this rectangle together with the open line segment Snm which is the side

of length an and lies on some / n _ l w '

Let

oo 2M<" + 1>/2 N 2 " ( n + 1>/2

0 = U U ΛΛ,m, Ω*= U U Rn,m
n=0 m=l n=0 m=l

We claim that Ω is simply-connected Jordan. Using induction and the fact

that

l'* + i , J = 2-<«+1>«/2 < 2-1-«<«-1>/2 = dist(ln^lnM) for m Φ m\

we see that Ώn is Jordan simply-connected for each n. Since the distance

between two disjoint lnm and /Λ,jm, (n > n') is at least 2~1'n(n~1)/2 and

it follows from the construction of Ω that Ω is simply connected Jordan.

Property (1) in Lemma 1 can be verified easily.
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We claim that 32Ω has Hausdorff dimension one. Let 8 > 0 and
r = 2 " 1 ~ " ( n " 1 ) / 2 , which is the distance between two disjoint lnm and lnm>.
From the construction, we see that 92Ω can be covered by a family of K
squares, each of side length r, and K no greater than

/ n-l 2<*+1>*/2 \

Q 2w(w + i)/2 + y y 1/ \/2~ι~n{n~1)/2\ < C2n{n+1)/2.

Therefore the (1 4- δ)-dimensional Hausdorff measure satisfies

Λ1+δ(32Ω) <

which approaches zero as n -> oo. Thus Λ1+δ(32Ω) = 0 for every δ > 0,
and 32Ω has dimension at most 1. It is clear 32Ω has dimension at least 1.

Next, we claim that cap3(32Ω) is positive. Recall that 32Ω is a Jordan
curve and Sn m is a particular side of Rn m that is situated on some /Λ_1>w/-
Let Anm and Bn m be the endpoints of Sn m; from the construction of Ω,
one sees that Anm and Bnm are on 32Ω. Let μ be the probability measure
on 32Ω satisfying, for n > 1,

(112) μ{EnJ = 2-«<«+1>/2,

where En m is the subarc of 32Ω with endpoints Anm and Bnm which
does not contain the point (— 3,0).

We shall prove that

(1.13) μ ( 3 2 Ω n Δ ( P , 0 ) < ( )

for every P E R 2 and 0 < t < t0. Once (1.13) is proved, we have for any
P <ER 2 ,

Q\P-X\

Therefore cap3(32Ω) > 0.
To prove (1.13), we assume

2-n(n-l)/2 ^ t < 2-(«-l)(«

For any P e R2, Δ(P, t) meets at most Ct2n{n~l)/1 arcs of the form Enm.
Therefore by (1.12),

μ(Δ(/M) Π 32Ω) < ct2n^-l)/22-n{n+1^2

< Ctl-n < ί )

if 0 < / < t0.
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Finally we prove that cap3(Ωε) -> 0 as ε -> 0 + . Because cap3(Ωε)

decreases as ε decreases, we need only to show that cap 3 (Ω^) -> 0 as

N -» oo. We observe, by the relative narrowness of aN to the distance

between Rnm and Rn,m, (n,n' < N), that

N - i 2"(« + i)/2 QQ 2 " < " + 1 > / 2

Qβ,e U U *,,-,,„ u U U Rn,m

where RnmaN = {xeRnm,dist(x,dRnym)<aN}. By a variation of

Lemma 4 below, we have the following estimation:

N-l 1/

< C

—

N-l ^n(nA

N-l

which approaches 0 as N -> oo. This completes the proof of Lemma 1.

LEMMA 4 [4; p. 165]. Let E be an elongated ellipsoid of revolution with

axes a,b (b < a). Then

cap3(£) = -
« log[(α

2. Proof of the Theorem. Following the definition in [2], we say a

domain Ω in Rm is a non-tangentially accessible (NTA) domain if there

exist fixed constants M = M(Ω) > 10 and r0 = ro(Ω) > 0 such that the

following conditions are satisfied.

(2.1) corkscrew condition: for any Q e 3Ω, r < r0, there exists A =

Ar(Q) G Ω such that M'ιr < \A - Q\ < r and dist(^, 3Ω) > M"ιr;

(2.2) Rm \ Ω satisfies the corkscrew condition;

(2.3) Harnack chain condition: if Xx and X2 e Ω, dist( Xi9 dD) > ε > 0,

i = 1,2, and \Xλ - X2\ < KB, then there exist balls Bj = B(Yj, ry), 1 <j

< L, L depending only on K, but not on ε, so that Yτ = Xλ and
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YL = X2; and the balls B} satisfy

(2.4) M'ιrj < dist(By.,3Q) < Mrj9 l<j<L;

and

(2.5) % r / 2 ) n % 0 + 1 / 2 ) # 0 , 1 < j < L - 1.

({Bj} is called a Harnack chain from JSfx to X2 of length L.)
Assuming F c β D π Γ a n d Am~\F) = 0, we want to show ω(i% D)

= 0.
We claim that it is enough to prove that there exists 0 < β < 1, so

that

(2.6) ωQ(F9 D) < β for every QGDDT.

In fact, f o Γ ί G ΰ Π Qi9 it follows from (0.1) that

ωx(F,D n Ω,) < ω*(F,Ω,) = 0;

hence

(2.7) ω*(is D) = ω^(F? D Π Q,.) + f ω%F, D) dx(Q, D Π Qf.)
JTDTΠD

= f
JTΠD

After (2.6) is proved, we may conclude

ωx(F, D) < β < 1 for every X e D.

This is possible only when ω(F,D) = 0. Therefore we need only to show
(2.6).

Since Ω,, i = 1,2, are NTA domains and Rm\2> satisfies the
corkscrew condition, we let

and

ro = min{ro(Ω1),ro(Ω2),ro(D)}

from their respective definitions.
For a fixed Q e D n Γ, let

r = min{ro,dist(ρ,a/))}.

From the corkscrew condition on Ωf , we can find

Ui = B(Ai9r/4M)QQi
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SO that

(2.8) \At - Q\ < r/2 and dist(£^, Γ) > r/AM.

Notice that Uλ U U2 c B(Q, r) c D. Therefore we can find α, 0 < a < 1,
depending on M only so that

(2.9) ω β ( i s D) < 1 - a + a sup ω*(F, D), for i = 1 or 2.

Because of (2.7) and (2.9), in order to prove (2.6), we need only to show
there exists η < 1 so that

(2.10) minf sup^ω*(Γ ΠD,D Π Q.): i = 1,2} < TJ.

We claim that there exists a ball

whose closure is completely in Ωx \ D or completely in Ω2 \ D, and

(2.11) \A- Q\<Kr and dist(F, Γ) > (4M)"2r,

where A: = 2 + (diam I>)/r0.
In fact, let P be a point on 3D so that \P - Q\ = dist(β, 3D). Since

Rw \ D satisfies the corkscrew condition, we can find a ball

W=B(Y,(2MY1r) c Rm\D

so that

| y - P | < r and dist(ίΓ,3D) > (2M)Λ.

If 5 (y , (4M)-V)ΠΓ= 0 then 5(7,(4M)"V) lies completely in
Ωx \ D or completely in Ω2 \ D; we let

^ = Y and F =

and can verify (2.11) easily.
If 5(y,(4M)"V)ΠΓ contains some point Z, by the corkscrew

condition on Ω1? we can find

V= B(A,(4M)~2r) c Ωx

so that

( 8 M 2 ) Λ < μ - Z | < (8M)"V and dist(F, Γ) > (4M)"2r.
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Because \A - Y\ < \A - Z\ + \Z - Y\ < 3r(SM)~1, we see VQWQ

Rw \ D. Therefore V c Ωx \ D. Again (2.11) can be verified easily. This

proves our claim.

From now on we assume V is contained in Ωx \ Z>, and shall prove

(2.12) sup ω*(Γ Π D, D Π Ωx) < η < 1.

When V is in Ω2 \ Z>, we argue similarly.

From (2.8) and (2.11) and the assumption that Ωx is an NTA domain,

we can find a Harnack chain {Bj}f=ι in Ω1? whose length L depends on

r0, Λf and diam D only, that connects A to ̂  moreover, we may choose

(2.13) Bλ = B(A,3r(32M2Yl) D B(A, r(4M)'2) = V,

(2.14) BL ^ B(A19 SriSMY1) D « ( ^ , K4M)"1) = Ul9

so that (2.4) is still satisfied with a bigger constant M' dependent only on

M, r0 and diam Zλ

Let 5 = Uy.i

(ω(Γ n ΰ , ΰ n J2J o n ΰ n Ω1?

\ 0 o n R m \ ( ΰ Π ΩJ.

Since {5y} is a Harnack chain, ί c ^ ; hence u> is subharmonic on B;

and because V Π Z) = 0, w = 0 on K Therefore by the maximum

principle, for X e t^ c Z> n Γx

/ ( Γ Π D , D n Q j < ωx(dB,B\V).

By (2.13), (2.14), properties (2.4) and (2.5) of the Harnack chain condi-

tion, and the Harnack principle, we can find η < 1, depending on r0, M,

diam D, so that

ωx(dD, B \ V) < η for every X G £/lβ

Therefore (2.12) is proved, and thus (2.6) follows.
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