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ON SINGULARITY OF HARMONIC MEASURE
IN SPACE

JANG-ME1I WU

We construct a topological ball D in R®, and a set E on 3D lying on
a 2-dimensional hyperplane so that £ has Hausdorff dimension one and
has positive harmonic measure with respect to D. This shows that a
theorem of @ksendal on harmonic measure in R> is not true in R°.
Suppose D is a bounded domain in R, m > 2, R™\ D satisfies the
corkscrew condition at each point on d.D; and E is a set on 3D lying also
on a BMO, surface, which is more general than a hyperplane; then we
can prove that if £ has m — 1 dimensional Hausdorff measure zero then
it must have harmonic measure zero with respect to D.

Lavrentiev (1936) found a simply-connected domain D in R? and a
set E on 9D which has zero linear measure and positive harmonic
measure with respect to D [5]. McMillan and Piranian subsequently
simplified the example [6]. See also [1] and [3].

In [7], Oksendal proved that if D is a simply-connected domain in R?,
and E is a set on 0D with vanishing linear measure, and if E is situated
on a line, then E has vanishing harmonic measure w(E, D) with respect
to D. In [3], Kaufman and Wu generalized this result and proved that the
theorem still holds if E is situated on a quasi-smooth curve, but no longer
holds if E is situated on a quasi-conformal circle. An interesting, perhaps
very difficult, question is whether the theorem is true if E lies on a
rectifiable curve.

Another question is the higher dimensional generalization: if D is a
topological ball in R”, m > 3, and E is a set on 3D, situated also on an
m — 1 dimensional hyperplane, does the vanishing of the m — 1 dimen-
sional Hausdorff measure, A"~ !(E) = 0, imply that w(E, D) = 0?

We answer this negatively by giving the following example.

ExAMPLE. There exists a topological ball D in R?, and a set E on 3D,
lying on a 2-dimensional hyperplane so that E has Hausdorff dimension
one but has positive harmonic measure with respect to D.

We notice that dim E = 1 is much stronger than A%(E) = 0; and that
1 is best possible, because if dim E < 1 then E has zero capacity in R,
hence E has zero harmonic measure with respect to D in R>,
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Also this example suggests that a question left open in [1] by Carleson
has no analogue in higher dimensions: if E is a set on the boundary of a
Jordan domain D, and A?(E) = 0 for some 1/2 < B8 < 1, is it true that
w(E,D)=0?

The real reason behind the example is that the Carleman-Milloux type
estimation of harmonic measure is no longer valid on the boundary of a
topological ball in R3. In order to obtain positive results we require the
complement of the domain to be “big” near each boundary point, and
allow E to lie on a surface more general than a hyperplane.

THEOREM. Suppose D is a bounded domain in R™, m > 2, whose
complement R™ \ D satisfies the corkscrew condition. Let I' be a topological
sphere in R™, whose interior @, and exterior Q, are both NTA domains,
andon T,

(0.1) A" Y E)=0= w(E,Q)=0 fori=1and?2.

Then a set on 0D N T having zero A™~! measure must have zero harmonic
measure with respect to D.

The definitions of corkscrew condition and NTA domain are intro-
duced by Jerison and Kenig in [2] and are given below.

Examples of I' that satisfy the conditions in Theorem 2 are quasi-
smooth curves (m = 2) and boundaries of BMO, domains (m > 3);
BMO, domains are domains whose boundaries are given locally as the
graph of a function ¢ with v¢ € BMO, see [2] for more discussions. In
these examples, the harmonic measures w;, on T and A” ™! are mutually
absolutely continuous, in fact, w; € 4 (A™ ).

When m = 2, the theorem by Kaufman and Wu [3] mentioned before
is not comparable to Theorem 2. There, D is only simple-connected;
however, I' has a stronger property, namely, quasi-smooth.

From the Example, we see that the corkscrew condition on R™\ D
cannot be discarded even when D is a topological ball. Also condition
(0.1) is necessasry as one can see in the case D = ), or {,. However, we
do not know whether the geometric condition on I':{2; are NTA domains,
can be weakened, or whether I' can be replaced by a simple rectifiable
curve in R?,

1. An example. We call D a topological ball in R™ if it is the image
of a ball under a homeomorphism of R™. And the boundary of a
topological ball is called topological sphere. For 4 € R”, r > 0, we let
B(A,r)y={P€R™ |4 - P|<r}.
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For a domain D in R™, E C 0D, we denote by w*(E, D) the
harmonic measure of E at X with respect to D.

LEMMA 1. In R?, there exists a simply-connected Jordan domain S,

satisfying

ML N{x: x>0} C{x:|x] <2}

QN {x:x; <0} ={x:x<0,]x|] <3};

(2) 0,92 has Hausdorff dimension 1;

(3) cap;(9,&) > 0;

(4) cap,(2,) > 0 as e > 0;
where Q, = {x € Q: dist(x,9Q) < &}, 0,9 is the boundary of Q relative to
R?, and caps, is the capacity with respect to the kernel 1/|x|.

Lemma 1 is proved at the end of this section; some readers may
prefer to supply their own construction. The next lemma is the key to our
example.

LEMMA 2. Let Q be a domain in R* with all the properties in Lemma 1.
We identify it with the set {(x,0): x € Q) in R®. Then

(9,92, B(0,20)\ ) > 0.
Proof. Choose ¢, > 0 so that
(1.1) cap,(€,, ) < Lcap (0,9)
. 3 2¢gg 100 3\F2 .
Let @ .= QSO\(Z,’, for 0 <m<eg, let p and » be the capacitary

measures corresponding to 9, and QEM, with respect to the kernel 1/|x]|,
respectively. Let U and V' be the corresponding equilibrium potentials:

(1.2) U(x) = /a du(y),

2 |x -yl

(1.3) V(x) = f_ dv(y).

9,, |x—yl

We recall from [4] that U and V are positive superharmonic on R
bounded by 1 and are harmonic off the supports of their respective
capacitary measures; moreover U = 1 on 0,{ except possibly on a set S
with capy(S)=0 and V=1 on S_ZSM except possibly on a set T with
capy(T) = 0; p(9,22) = cap;(9,82) and »(Q, ,) = cap;({

eo,n)’
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Let u = (9,2, B(0,20)\ 0,2) and v = w(Q
observe from the last paragraph that

B(0,200\ 2, ,). We

&9,M’

(1.4) u(X) = U(X) - j __U(Y)deX(Y, B(0,20))

|_
for X € B(0,20)\ 0,92; and clearly U > u and V' > v in their common

domains.
For 6 < |X| < 20 it follows from Lemma 1, (1.1), (1.2) and (1.3) that

1 — 1
(1.5) V(X) <3 capy(2,, ,) < 300 €aP:(3:2)
23
< WU(X) U(X)

for | X| = 6, it follows from (1.2), (1.4) and (1.5) that

(1.6) u(X)z%U(X)+ U(X) - 75 capy(3,9)

> LV(X) + 7= capy(8,2) — 75 capy(3,2) > 30(X).
From the maximum principle, it follows that for | X| = 6 and 0 < 5 < g,

1) o¥(3,9.B0,20\(8,,, U 3,8)) > u—v(X) > Fu(X)

1
> 700 cap,(9,92) > 0,
by the estimation in (1.6).

From (1.7) and the maximum principle, we obtain for | X| = 6,

«¥(3,2,B(0,20\8, ) = inf »¥(Q,U0,2,B(0,20\2,)

0<n<g

> inf (a Q, B(0,20)\(£,,.,,, U az(ﬂ)))

O<n<%

100 cap,(3,2) > 0.

Let a = sup{w*(3,2, B(0,20)\ £, ): x € 2\ €, }. Because 2\ @,
has positive distance from 9,2, we have 0 < a < 1. Choose 8, a < B < 1,
and a point P in B(0,20)\ &, so that ©"(3,2, B(0,20)\ &, ) > 8. By the
maximum principle,

w"(9,2, B(0,20)\ Q) > ©"(3,2, B(0,20)\2, ) —a > — a > 0.

This completes the proof.
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LEMMA 3. Let Q be the domain in Lemma 1. Let g(x) be a strictly
positive continuous function on Q, defined by
(1.8) g(x) = § dist(x,0,2).
Let

G= {(xvxzax3): (x1,%;) € Q and |x;| < g(xlaxz)}‘
Then
(9,92, B(0,20)\ G) > 0.

Proof. Suppose otherwise, we have
(1.9) (3,92, B(0,20)\ G) = 0.

Let X € G\ @, A, be the disk on {x; = 0} with center ( X;, X,,0) and
of radius | X;| and By be the ball in R® with center (X;, X,,0) and of
radius 2| X;|. By (1.8) and the maximum principle, we have for X € G\ @,

(1.10)  «*(9,2, B(0,20)\ 2) < w*(3By, Bx\A(X)) = C <1,

where C is an absolute constant. Let 4 be any point in B(0,20)\ G.
Because of (1.9) and (1.10) we have

«*(8,9, B(0,20)\ @)

= w*(3,9, B(0,20)\ G)
(1.11) _ _
+ «¥(9,2, B(0,20)\ &) dw”( X, B(0,20)\ G)
3G\3,2

=0+C<1.
From (1.10) and (1.11) we see that
«(3,2, B(0,200\Q) < C<1

everywhere in B(0, 20) \ Q. Therefore, w (3,2, B(0,20)\ Q) = 0. This con-
tradicts Lemma 2 and proves Lemma 3.
Finally, we let Q and G be the domains in Lemma 1 and Lemma 3,

D= {(xl’xzyx:;): x? + x5 < 8and |x;| < 4}\5
and
E=239n{x:|x|<2}.

From the constructions of  and G, the domain D is a topological ball;
from properties (1) and (2) in Lemma 1, dim E = 1 and

cap, (9,2 N{x: |x|> 2}) = 0.
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Therefore by Lemma 3,
w(E, B(0,20)\ G) > 0.
Arguing as in the last paragraph of the proof of Lemma 2, we conclude
»(E,D) > 0.

Consequently all the properties of D and E in our example are justified.
It remains to prove Lemma 1.

Proof of Lemma 1. All line segments considered below are closed. Let
ly; be the line segment with end points (0, —1) and (0,1). Let [ ,,
m = 1,2, be two horizontal line segments with left endpoints (0, — 3) and
(0, %) respectively and of length 1.

Suppose {/,_,: 1 <m <2""~D/2} have been selected for some
n > 2, so that length of /,_,, is 27*~D("=2/2_ Subdivide each /, , ,
into 2” equal subintervals, each of length 271 7"(*~D/2 Let (I, : 1<) <
2(n*Hn/23 be horizontal (if n is odd) or vertical (if n is even) line
segments of length 2-"("~V/2with left (if n is odd) or lower (if 7 is even)
endpoints coinciding with those of the subintervals of /,_; , and disjoint
from any /,_, . We notice that the distance between two disjoint line
segments /, ,, and [, . (n > n’) is at least 27! ~"(»~D/2,

Let R,, be the semidisk {x: x; < 0, |x| < 3} in R% We shall attach
a thin rectangle to each /,,,, n > 1. Let a, =2"%" and consider, for
n > 1, the rectangle with one side coinciding with /, ,,, two opposite sides
of length a,, and interior disjoint from any /,, .. Let R, , be the interior
of this rectangle together with the open line segment S, ,, which is the side
of length a, and lies on some /,_, ..

Let
00 2n(n+l)/2 N 2n(n+1)/2
Q = U U Rn,m’ 9N = U U Rn,m‘
n=0 m=1 n=0 m=1

We claim that Q is simply-connected Jordan. Using induction and the fact
that

Iln+1’m| = 2—(n+1)n/2 < 2—1—n(n—1)/2 = diSt(ln,m, ln,m’) for m # m/’

we see that , is Jordan simply-connected for each n. Since the distance
between two disjoint /, ,, and [, . (n > n’) is at least 271~ "("~1/2 and

o0

Y |Lal< 27t D2 — g o forn > 3,
k=n+1
it follows from the construction of € that € is simply connected Jordan.
Property (1) in Lemma 1 can be verified easily.



SINGULARITY OF HARMONIC MEASURE IN SPACE 491

We claim that 9,2 has Hausdorff dimension one. Let § > 0 and
r = 2717m("=1/2 which is the distance between two disjoint /, ,, and [, ,,..
From the construction, we see that 9,2 can be covered by a family of K

squares, each of side length r, and K no greater than
n—1 2(k+1)k/2

C 2n(n+1)/2 + Z Z llk,j |/2—1—n(n—1)/2 < C2n(n+1)/2.
k=0 j=1
Therefore the (1 + §)-dimensional Hausdorff measure satisfies
Al+8(829) < C lim sup2n(n+1)/2(2—1—n(n—l)/2)1+8,
n—oo

which approaches zero as n = co. Thus A'*%(9,2) = 0 for every § > 0,
and 0,9 has dimension at most 1. It is clear 9,9 has dimension at least 1.

Next, we claim that cap,(9,%2) is positive. Recall that 9, is a Jordan
curve and S, ,, is a particular side of R, ,, that is situated on some /, _; ,,..
Let 4, ,, and B, , be the endpoints of S, ,,; from the construction of £,
one sees that 4, , and B, , are on d,{. Let p be the probability measure
on 9, satisfying, for n > 1,

(1.12) p(E, ,) = 27072,
where E, ,, is the subarc of 9,0 with endpoints 4, , and B, , which
does not contain the point (— 3, 0).
We shall prove that
-2
(1.13) (0,2 NA(P, 1)) < Ct(log %)

for every P € R? and 0 < ¢ < t,,. Once (1.13) is proved, we have for any
P € R?,

1 e dr
j;zQI—P_:(T dM(X)—fO p(A(P,1) N3,Q) 2

1 dt to 1
sfto " +j; o (1/0) dt < C(t,) < oo.
Therefore cap,(9,{2) > 0.
To prove (1.13), we assume
2-n(n=1/2 < 4 < )= (n-D(n=2)/2
For any P € R?, A(P, t) meets at most Ct2"*~ /2 arcs of the form E, ,,.
Therefore by (1.12),

P'(A(p,t) N 829) < Ct2r(n—1/29-n(n+1)/2

1 -2
<Cr27" < Ct(log—t—)

if0 <t <t,
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Finally we prove that cap;(2,) » 0 as ¢ —» 0. Because cap,(Q,)
decreases as & decreases, we need only to show that cap;(2, ) — 0 as
N — oo. We observe, by the relative narrowness of a, to the distance
between R, , and R, . (n,n’ < N), that

N—1 2n(n+1)/2 0 2n(n+1)/2
QaN c U U Rn,m,aN U U U Rn,m
n=0 m=1 n=N m=1

where R, , ., ={x€R,,, dis(x,dR, ,) <ay}. By a variation of

Lemma 4 below, we have the following estimation:

cap3(QaN)
<C Nilzn(ﬂl)ﬂ__l_l&i___ + i yn(n+1)/2 |ln,1| )
n=0 103(“;.,1 [/an)  a=w log(]ln’1 |/a,)
N-1 2n(n+1)/22—n(n—1)/2 %) 2n(n+1)/22—n(n—1)/2
=cC 2N + 3n
n—o log(277("=D/222*") T log(2- """ 1/22")
N-1 o0
< Y24 Yy o
n=0 n=N

which approaches 0 as N — oo. This completes the proof of Lemma 1.

LeEMMA 4 [4; p. 165]). Let E be an elongated ellipsoid of revolution with
axes a,b (b < a). Then

2 Va*> — b?
m log[(a + Va? — b?)/(a — Va? - bz)] .

cap,(E) =

2. Proof of the Theorem. Following the definition in [2], we say a
domain £ in R™ is a non-tangentially accessible (NTA) domain if there
exist fixed constants M = M() > 10 and r, = r,() > 0 such that the
following conditions are satisfied.

(2.1) corkscrew condition: for any Q € 0%, r < r,, there exists 4 =
A, (Q) € Q such that M~'r < |4 — Q| < r and dist(4,092) > M'r;

(2.2) R™\ Q satisfies the corkscrew condition;
(2.3) Harnack chain condition: if X, and X, € Q, dist( X;,9D) > ¢ > 0,

i=1,2, and |X; — X,| < K¢, then there exist balls B, = B(Y,,r;), 1 <j
< L, L depending only on K, but not on ¢ so that ¥; = X; and
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Y, = X,; and the balls B; satisfy
(2.4) M7, < dist(B;,0Q) < Mr;,, 1<j<L;
and
(25)  B(Y,r/2)nB(Y,r,,/2)+ 2, 1<j<L-1

({ B;} is called a Harnack chain from X; to X, of length L.)

Assuming F € 9D N T and A" }(F) = 0, we want to show w(F, D)
= 0.

We claim that it is enough to prove that there exists 0 < 8 < 1, so
that

(2.6) wo(F,D)< B foreveryQe DNT.
In fact, for X € D N Q,, it follows from (0.1) that
w¥(F,DNQ,) < o*(F,Q,) =0;

hence

(2.7) &*(F,D)=w*(F,D N, +fr w2(F,D)d*(Q,D N Q,)

=f w?(F,D)dw*(Q,D N Q).
'nD

After (2.6) is proved, we may conclude
w*(F,D)<B <1 forevery X € D.

This is possible only when w(F, D) = 0. Therefore we need only to show
(2.6).

Since §;, i=1,2, are NTA domains and R™\ D satisfies the
corkscrew condition, we let

M = max{ M(L,), M(2,), M(D)}
and
ro = min{ro(Q,), r,(2,), (D)}

from their respective definitions.
Forafixed Qe D NT,let

r = min{r,, dist(Q,3D)}.

From the corkscrew condition on {;, we can find

U = B(4,,r/4M) C ©,
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so that
(2.8) |4, — Q|<r/2 and dist(U,,T) > r/4M.

Notice that U; U U, € B(Q, r) C D. Therefore we can find , 0 < a < 1,
depending on M only so that

(29) w9 F,D)<1-a+ asup w*(F,D), fori=1or2.
xel,

Because of (2.7) and (2.9), in order to prove (2.6), we need only to show
there exists n < 1 so that

(2.10) min{ sup (TN D,DNQ,):i= 1,2} <.
Xel,

We claim that there exists a ball
V= B(4,(4M)7"r)
whose closure is completely in 2, \ D or completely in £, \ D, and
(2.11) |A ~ Q|<Kr and dist(V,T)> (4M)7’r,

where K = 2 + (diam D) /r,.
In fact, let P be a point on 9D so that |P — Q| = dist(Q, 0D). Since
R™\ D satisfies the corkscrew condition, we can find a ball

w=B(Y,2M)"'r) S R"\ D
so that
|Y — P|<r and dist(W,dD) > (2M)'r.

If B(Y,(4M)'r)NT = & then B(Y,(4M)7'r) lies completely in
@, \ D or completely in 2, \ D; we let

A=Y and V=B(Y,(4M)7r),

and can verify (2.11) easily.
If B(Y,(4M)'r)NT contains some point Z, by the corkscrew
condition on {2, we can find

V=B(4,04M)7"r)c
so that

(8M2)'r<|4 - Z|< (8M)7'r and dist(V,T) > (4M)*r.
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Because |4 — Y|<|4A - Z|+|Z—-Y|<3r(8M)™', we see VC WC
R”\ D. Therefore V' C ©, \ D. Again (2.11) can be verified easily. This
proves our claim.

From now on we assume V is contained in {2, \ D, and shall prove
(2.12) sup @*(TND,DN Q) <n<1.

Xe Uy

When V is in 2, \ D, we argue similarly.

From (2.8) and (2.11) and the assumption that {; is an NTA domain,
we can find a Harnack chain { B;}]_, in ,, whose length L depends on
ry, M and diam D only, that connects 4 to A;; moreover, we may choose

(2.13) B, = B(4,3r(32M*)") 2 B(4,r(4M) ) = V,

(2.14) B, = B(4,,3r(8M)7) 2 B(4,,r(4M)7) = U,,
so that (2.4) is still satisfied with a bigger constant M’ dependent only on
M, r, and diam D.
Let B =U7J_, B, and
_[e(TNnD,DNQ) onDNQ,
YT 0 on R"\(D N Q,).

Since { B;} is a Harnack chain, BcC {;; hence w is subharmonic on B;
and because VN D= @, w=0 on V. Therefore by the maximum
principle, for X € U, c DN T

w*(TND,DNQ) < w¥(0B,B\ V).

By (2.13), (2.14), properties (2.4) and (2.5) of the Harnack chain condi-
tion, and the Harnack principle, we can find n < 1, depending on r,, M,
diam D, so that

w*(0D,B\ V) <n forevery X € U,.
Therefore (2.12) is proved, and thus (2.6) follows.
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