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THE SPECTRUM OF AN INTERPOLATED OPERATOR
AND ANALYTIC MULTIVALUED FUNCTIONS

T. J. RANSFORD

Let [Bo, Bλ] be a complex interpolation pair and T: Bo + Bx -* Bo

+ B1 be a linear map whose restriction to each interpolation space
[BO,B1]S is a bounded operator on that space with spectrum SpsT. Under
mild conditions on T it is shown that the set-valued map λ -> Sp ( R e λ ) Γ
is an analytic multivalued function. This fact is used to unify and
generalise a number of previously known results about the spectrum of
an interpolated operator, and also to motivate some new ones.

Introduction. Let [Bo, Bx) be a complex interpolation pair and Bs =
[2?0, Bx]s (0 < s < 1) be the corresponding interpolation spaces. If T:
Bo + Bx -* Bo + Bx is a linear map whose restriction to each Bs is a
bounded operator on Bs, then its spectrum SpsT in L(BS) can vary with
s. This phenomenon has been investigated in a wide variety of special
cases. Examples include: certain sorts of matrices on /^-spaces [15, 16, 27,
47], Cesaro-type operators on Z^-spaces [10, 26, 35], multipliers on the
L^-spaces of a locally compact Abelian group [28, 36, 50, 51, 52], and
certain singular integral operators on Z^-spaces [29], and even if^-spaces
[14]. The main theoretical results have been of three kinds: conditions
ensuring that SpsT is independent of s [17, 21, 22, 36, 48], establishment
of bounds for SpsT in terms of Sp0Γ and SpλT [46, 48], and investigation
of the continuity properties of the set-valued map s -* SpsT [43, 44, 45,
52].

This last is the starting point for the present paper. Although the
upper semicontinuity of s -> SpsT for s e (0,1) is a purely topological
statement, its proof in [44] depends upon properties of analytic functions.
This state of affairs seems somewhat unsatisfactory: surely from such a
proof it should be possible to draw analytic conclusions. We do just that,
using the recently developed tools from the theory of analytic multivalued
functions. This theory was first applied by Z. Sίodkowski in [38] to
describe the spectrum of an analytically varying operator on a Banach
space; by contrast we keep the operator fixed and allow the space to vary.
One of our two main results (2.7) asserts that the map λ -> Sp ( R e λ )Γ is an
analytic multivalued function o n { λ ; 0 < R e λ < l } . Unfortunately, tech-
nical problems force us to impose a mild condition on T for the proof to
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go through (so mild, in fact, that the author knows of no operator which
fails to satisfy it!), and so we prove our other main theorem (2.4), which
works for any Γ, but has a slightly weaker conclusion.

Section 2, where these results are demonstrated, constitutes the core
of the paper. Section 1 summarises those parts of interpolation theory that
will be needed, as well as giving a brief introduction to analytic multival-
ued functions. In §3 we apply what has been proved to deduce a number
of consequences for the spectrum of an interpolated operator. Some of
these are generalisations of theorems already known, including the 'con-
stancy conditions' and 'spectral bounds' mentioned above, but one or two
seem to be original. Thus the theory of analytic multivalued functions
serves both to unify what has gone before, and also to motivate new ideas.
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for this paper was carried out through the funding of the Science and
Engineering Research Council, and the remainder whilst I was a research
fellow at Trinity College Cambridge. I wish to express my gratitude to
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1. Preliminaries. The purpose of this section is to sketch some
background from two areas of analysis: analytic multivalued functions,
and interpolation theory. We shall also take the opportunity to establish
some notation.

We begin with analytic multivalued functions. Let X and Y be
Hausdorff topological spaces and denote by κ(Y) the collection of non-
empty compact subsets of Y. A map K: X -» κ(Y) is said to be upper
semicontinuous (u.s.c.) if whenever U is open in Y, the set (JC e X;
K(x) c U) is open in X. The graph of K is defined as

graphic) = {(x,y)tΞXX 7; y^K(x)}.

Also if Xx c X, then K\Xλ denotes the restriction of K to Xv The
following fundamental result was proved by Z. Siodkowski in [38] (further
information on pseudoconvex sets and plurisubharmonic functions may
be found for example in [23]).

THEOREM 1.1. Let G be an open subset of C, and let K: G -> /c(C) be
u.s.c. The following are equivalent:

(a) the set (G X C)\grzph(K) is pseudoconvex in C2;
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(b) for each a,b&C, if

Gx = { λ e G; a + λb<£K(λ)},

φ: Gx —> [-00, oo) is subharmonic;
(c) for any Gx open in <?, and any plurisubharmonic function ψ defined

on a neighbourhood of graph^lG^), if

φ(λ) = sup{ψ(λ,z); z G ΛΓ(λ)} (λ e G J ,

φ: Gx -> [-00, oo) is subharmonic. D

Any u.s.c. map K: G -* κ(C) satisfying these conditions is called an
analytic multivalued function (or a.m.υ. function for short). Sίodkowski
showed that if A is a complex Banach algebra and /: G -» A is analytic,
then the spectrum of /(λ) is an a.m.v. function. Using an idea of B.
Aupetit, this breakthrough enabled him to solve the generalised Pelczyhski
conjecture (see [38]). Since then, a number of other applications have been
found, both in spectral theory [3, 4, 6, 7, 30, 31, 38, 39, 53], and in
uniform algebras [4,38,41,42]. Progress has also been made in investigat-
ing the abstract properties of a.m.v. functions (see [1, 2, 4, 5, 6, 8, 30, 32,
33, 34, 38, 40, 41, 53]), and we shall occasionally need to refer to some of
these papers.

Now we turn to interpolation theory. Almost everything in this
section is taken from the fundamental paper of A. P. Calderόn [12];
details may also be found in [9].

Let B = [BQy 2?J be an interpolation pair, that is, a pair of complex
Banach spaces (2?0, II IIo) a n ( i (^i>ll # Hi) continuously embedded in a
Hausdorff topological vector space R. We shall write

Δ = Δ(5) = B0ΠBι and Σ = Σ(B) = Bo + Bλ.

Both Δ and Σ become Banach spaces when endowed with the respective
norms

| |x | | Σ = inf{||jμ||0 + | |z | | i ; j / e j ( o , z € i 1 , x ^ + z } .

Henceforth we shall always assume that Δ is dense in both Bo and Bv

Let G be the open strip { λ e C O < R e λ < 1}. Define & to be the
class of all bounded continuous functions f:G-*Σ which are analytic on
G, such that for j = 0,1, the function / -» f(j + it) takes values in BJ9 is
|| 11 ̂ -continuous and tends to zero as |/| -» oo. On the vector space J^, we
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introduce the norm

| | / | U = max sup{||/(y + it)l; -oo < t < 00}

and this makes & a Banach space. For each λ ̂  G, the Banach space
[Bo, £ J λ is defined to be the quotient of & by the closed subspace

its norm || | | λ being just the quotient norm. Usually we shall abbreviate it
simply to Bλ. Of course, it depends on λ only through Re λ, but it will be
convenient for us to define Bλ for all A G G . Also it appears that we have
two definitions for the spaces 2?0, Bλ and their norms, but the density
assumption on Δ above ensures that these definitions coincide. It also
implies that Δ is dense in Bλ for every λ e G .

If (Z, II II) is a Banach space, let us write Z* for its dual, equipped
with the usual dual norm || ||*. Then [B£,Bf] (= 2?*, say) is also an
interpolation pair (take R = Δ(i?)*), and it is easy to check that

Δ(£*) = Σ(B)* and Σ(5*) = Δ(5)*,

with equality of norms. Define <9 to be the collection of all continuous
functions g: G -> Σ(B*) which are analytic on G, such that

for some constant c, and such that for j = 0,1,

g{j + ih) - g(J + i*i)

takes values in Bf whenever - o o < r 1 < r 2 < o o , with

= max sup (\\g(j + it2) - g(j + it^fjAh ' h)} < °°

Under this norm, the space ^ reduced modulo the constant functions
becomes a Banach space. For each λ e G, the Banach space [Bξ, 51*]λ is
defined to be the quotient of ̂  by the closed subspace

its norm || | | λ being just the quotient norm. The whole point of introduc-
ing ^ is that it can be shown that if λ ̂  G, then [2?<f, 5 f ] λ is isometri-
cally isomorphic to 2?*. Also, if

(x,y)-*(x,y)λ:BλXBΪ-*C

is the naturally induced pairing, then it agrees with the pairing

(x,y)^(x,y):Δ(B)

on their common domain of definition.
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Let / e J^, g e ^ and λ G G; we shall denote by [/]λ and [g] λ the
cosets in Bλ = &/Jf\ and if* = ̂ /Jΐ\ containing / and g resepec-
tively. We isolate the following simple lemma for future reference.

LEMMA 1.2. Letf"€/ andg e <3. The function

p(λ)-<[/]χ,[g]χ>λ

to bounded and analytic on G.

Proof. Boundedness is clear because

The inequality (1) also shows that it suffices to prove p is analytic
whenever / lies in some dense subset of &. Therefore, by [12, 7.92], we
may suppose without loss of generality that / is the product of a scalar
analytic function α(λ) with a constant vector x e Δ. Fixing an arbitrary
λ 0 e G, we know that g has a Taylor expansion

ί(λ)-Σβ. (λ-λor (aHeΣ(B*))
0

which converges in Σ(l?*) uniformly on some neighbourhood of λ0.
Thus,

p(λ)-«(λ) Σ>(λ-λ0Γ (*,<θ
0

oo

nan(λ - λ0)
N+l

and since the right-hand term converges to zero uniformly on some
neighbourhood of λ0, we deduce that p is analytic on a neighbourhood of
λ0. D

We shall also require a rather more recent result: this is the Reitera-
tion Theorem, which originally appeared as [12,12.3], but with a hypothe-
sis that has since been proved redundant (see [13]).

THEOREM 1.3. Let μ, σ, λ0, λλ e G, and suppose that

μ = (1 - σ) Reλ 0 + σ Reλ x.

Then Bμ = [Bλo, Bλι]σ, with equality of norms. Π
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Finally, suppose that T: Σ -> Σ is a linear map such that for j = 0,1,
the restriction Γ|5y belongs to L(Bj) (where L(Z) denotes the algebra of
bounded linear operators on a Banach space Z). In such a situation, we
shall say that T is an operator on the pair [Bo, 2ΪJ. The following standard
interpolation result is an abstract version of the Riesz-Thorin Theorem.

PROPOSITION 1.4. For every A G G , we have T\Bλ e L(Bλ), and
moreover if \\ | | λ denotes the operator norm on L(Bλ), then

where s = Reλ. D

2. The main results. We shall adopt the notation of §1: thus
[Bo, Bλ] is an interpolation pair such that Δ is dense in both Bo and Bv

the open strip { 0 < R e λ < l } is denoted by G, and T: Σ -> Σ is an
operator on the pair [2?0, Bx] as in (1.4). Also, if S is an operator on a
Banach space Z, we shall denote its spectrum in L(Z) by SpίS; Z); in
the case when Z = Bλ, this will often be abbreviated simply to Spλ*S. In
this section we shall investigate the properties of the set-valued map
λ -> SpλΓ: G -> fc(C).

In carrying out such investigations one must beware of the following
pitfall: the fact that T may be invertible in both L(B0) and L{Bλ) does
not imply that the two inverses of T must agree on Δ = Bo Π Bv An
example of this phenomenon will be outlined below. However, something
positive can be said. Define Wτ to be the set o f z G C such that (T — zl)
is invertible in both L(B0) and L(2?x) and such that the two inverses
agree on Δ = Bo Π Bλ; also set Eτ = C \ Wτ. The following result is due
to J. D. Stafney [48, Lemmas 1.7 and 1.6].

PROPOSITION 2.1. (a) The set Eτ consists of the union of Sρ0Γ U SpxΓ
with a subcollection of the bounded components of C \ (Sp0Γ U Sp^) .

(b) // z0 £ Eτ then T — zol is invertible on each Bλ, and all the
inverses agree on Δ. Hence, for all λ e G we have SpλΓ c Eτ. D

Consider the following example. For 1 < p < oo define T e
L(Lp(0, oo)) to be the Cesaro operator

Tf(x) = ~ I f ( ή dt ( f e L ) .
o

Fix any p0 and pλ with 1 < /?0 < px < oo, and take i?0 = Z^o and

Bλ = Lpι. Then for λ e G we have Bλ = Lp, where

\/p = Re((l - λ)/Po + λ / Λ )
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(see [9, Chapter 5]). Now it is shown in [10] that Sρ(Γ; Lp) is just the

circle with centre 2(p — \)/p and the same radius. Consequently, if Eτ

were equal to Sp0Γ U Sp^, then this example would violate (2.1)(b). This

justifies the assertion made prior to (2.1).

We are therefore led to make the following definitions.

(I) T satisfies the uniqueness-of-resolυent (U.R.) condition if whenever

0 < 5 < / < 1 and z ί Sps(Γ) U Sρ,(Γ), then the inverses of (T - zl) in

L(BS) and L(Bt) agree on Δ.

(II) T satisfies the local uniqueness-of-resolvent (U.R.) condition if

whenever 0 < s < 1 and z ί Sp,(Γ) for all t in some neighbourhood of s,

then the inverses of (T - zl) in L(Bt) agree on Δ for all / in some

(possibly smaller) neighbourhood of s.

The first definition was introduced in [52]. The second definition is

new: it is much milder than the first and may possibly be vacuous.

Certainly the author knows of no T which fails to satisfy it, though there

is a hint of a counterexample in [44]. However, it will be useful to assume

it later on.

Combining (1.3), (2.1) and the definition (I) above immediately yields

the following crude but useful corollary. (If Q e κ(C), then we shall write

Q for its polynomial hull, which equals the union of Q with all the

bounded components of C \ Q.)

COROLLARY 2.2. Let 0 < s < Reλ < t < 1.

( a ) S p λ Γ c ( S p , Γ u S p , Γ ) \
(b) If Tsatisfies the U.R. condition, then SpλΓ c SpsT U Sp,Γ. D

Now we give some simple criteria which are sufficient to ensure that

T satisfies the U.R. conditions. First we need another piece of terminol-

ogy. Let (X, μ) be a σ-finite measure space; a complex Banach space

(Z, || II) of measurable functions on X (with two functions being identi-

fied if they agree μ-almost everywhere) is a Banach lattice if whenever

/ e Z and g is measurable with \g\ < |/ | , then g & Z and ||g|| < | |/ | | .

Also Z is said to satisfy the dominated convergence condition if whenever

fn is a sequence of elements of Z converging pointwise to zero on X in

such a way that |/J < / for some / ^ Z, then | |/J| -> 0.

PROPOSITION 2.3. (I) Each of the following two conditions ensures that

Tsatisfies the U.R. condition:

(a) one of the spaces Bo, Bλ is contained inside the other,

(b) the set Sp0Γ U SpτThas empty interior and connected complement.
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(II) Each of the following two conditions ensures that T satisfies the local

U.R. condition:

(c) Tsatisfies the U.R. condition;

(d) the spaces Bo and Bλ are Banach lattices of measurable functions on

a o-finite measure space (X,μ>) which both satisfy the dominated conver-

gence condition.

Proof, (a) This becomes clear upon remarking that if say Bo c Bv

then Bs c Bt whenever s < t.

(b) Let 0 < s < t < 1, and set F = Sp0Γ U S p ^ . Since C \ F is

connected, from (2.2)(a) we deduce that SpsT U Sp,Γ c F. But F has

empty interior, so that any subset of it must also have connected comple-

ment. The result therefore follows by applying (1.3) and (2.1)(a) to the

interpolation pair [Bs9 Bt].

(c) This is obvious.

(d) This result is due to I. Ya. Sneiberg and lies rather deeper. We do

not give a proof, but refer the reader instead to [44, Theorem 4]. Note in

particular it implies that T will satisfy the local U.R. condition whenever

Bo and Bλ are Z^-spaces with respect to a σ-finite measure space. Thus

although the Cesaro operator T mentioned earlier fails to satisfy the U.R.

condition, it does obey the local version. D

We now state our first main theorem.

THEOREM 2.4. For λ e G define K(λ) to be the union of Sp λ Γ with

those components of C \ SpλT which are contained within Eτ.

(a) The map K: G -> κ(C) is u.s.c.

(b) The restriction K: G —> κ(C) is a.m.v.

In order to prove this result we require a lemma which is a variant of

a classical result of E. M. Stein [49].

LEMMA 2.5. Let H be an open subset of G and suppose that to each

λ ^ H is associated an operator Sλ e L(Bλ) such that:

(i) the map λ -> H^Hx is locally bounded on H;

(ϋ) for each/E/ and each g e 9, the map λ -> < S λ [ / ] λ , [g] λ > λ is

analytic on H.

Then log | |S λ | | λ : H —> [-oo, oo) is a continuous subharmonic function.

Proof. Let

9; \\fy< 1, ||g||,< 1}.
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From the Hahn-Banach Theorem, for each λ e / ί w e have

(2) | |S λ | | λ = sup{|<5λx,^>λ|; x e Bλ, y e 2?λ*, | |χ | λ < 1, \yf < l}

= sup{|ΛA g(λ)|;(/,g)ejf}

where f or / e J£* and g e ^

Now by assumption (ϋ), each A/sg is analytic on if, and by (2) and
assumption (i), the family {hf g; (/, g) e ^ } is locally uniformly bounded
on H. Using the standard Cauchy estimates, it follows that this family if
equicontinuous, whence (2) shows that \\Sλ\\λ is a continuous function of
λ on H. Since

log||Sλ | |λ = sup{log|*/ f,(λ)|;

is the pointwise supremum of a family of subharmonic functions, it is
itself subharmonic on H. D

Note in particular that if Sλ is taken to be the restriction of T to Bλ

for each λ e G, then the hypothesis (2.5)(i) holds by (1.4), and (2.5)(ii)
follows from (1.2) because if / e ^ then 7/ also belongs to J*\ Thus
log||7Ί|λ is a continuous subharmonic function on G.

Proof of (2.4). (a) Let us begin by noting that λ -> | |Γ | | λ is an u.s.c.
function on G: upper semicontinuity on 3G follows from (1.4), and on G
itself we even know that the function is continuous, by the remark
immediately above. Hence, if rλ(T) denotes the spectral radius of T in
L(Bλ), then λ -> rλ(T) is u.s.c. on G, since it is the pointwise infimum of
the u.s.c functions

Fix λ 0 E G , and let z0 £ jK"(λ0). We have to prove that there exist
neighbourhoods M of z0 and N oί λ0 such that

λ e J V Π G=* ίΓ(λ) Π M = 0 .

Let D be the component of C\lΓ(λ 0 ) which contains z0. By the
definition of K, the set D\EΓ is non-empty and open, and therefore
infinite. Pick zx e D\ET with zx # z0 and let Λf be a compact disc with
centre z0 such that M c D and zx ί M. By Runge's Theorem, there
exists a polynomial p(z) such that

(3)

(4)



454 T. J. RANSFORD

Now T — zλl is invertible in both L(B0) and L(Bι), and its inverses
agree on Δ, so (T — zxl)~ι is an operator on the pair [Bo, Bλ], and by
(1.4) it may be interpolated to define an inverse of T-zλI on each Bλ. If we
set

then the Spectral Mapping Theorem gives

(5) Spλ5 = {p(l/(z - z j ) ; z G S P λ Γ},

so that by (3),

S P λ o S c { z e C ; | z | < l } .

By the upper semicontinuity of rλ(S) proved at the beginning, there is a
neighbourhood N of λ 0 such that

λ e N Π G => SpλS c {z G C; | z | < 1}

=> SpλS Π{z G C; | z | > 1} = 0

=> SpλΓ DM = 0 ,

the last implication following from (4) and (5).
(b) We shall apply (l.l)(b). Let a,b^C and set

Gλ = {λ G G; α + λό £ # ( λ ) } ,

φ(λ) = sup{-log|z - α - λfe|; z G A'(λ)} (λ G Gx).

Our task is to prove that φ is subharmonic on Gv Note that for each
λ e Gl9 since z -» -log|z — α — λ6| is subharmonic on a neighbourhood
of K(λ), it attains its maximum over K(λ) on the boundary of K(λ),
which is contained in SpλΓ, which in turn is contained in K(λ). Thus if
λ G Gl9 then

(6) φ(λ) = sup{-log|z - a - λb\; z G Sp(Γ; Bλ)}.

Fix an arbitrary λ 0 G Gx: we shall prove that φ is subharmonic on a
neighbourhood of λ0.

Assertion. There exists δ > 0 such that T - {a + λob)I is invertible
in both L(BXQ_8) and L(2?λo+5), and the two inverses agree on (Bλo_δ)
Π ( 5 λ o + δ ) .

Assume this for the time being, and set
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so that by (1.3), if B'μ - [B(>, B[)μ then

B'μ = Bχ, where λ = λ 0 4-(2μ - l ) δ .

If we also set

a' = a + λob - 8b,

V = 28b,

φ'(μ) = sup{-log|z - a'- μb'\; z € Sp(Γ; 5;)} (μ e G(),

then by (6),

φ(λ) = φ'((λ - λ 0 + 8)/28) on {λ e (?x; |Re(λ - λ 0 ) | < δ}.

Therefore φ will be subharmonic on a neighbourhood of λ 0 if φ' is
subharmonic on a neighbourhood of 1/2. All this shows that we may
"delete the primes" and assume without loss of generality that λ 0 = δ =
1/2. Thus T - (α + λob)I is invertible both in L(B0) and L(B±), and its
inverses agree on Δ. Set

M - max(|(Γ -{a + λ ^ ) / ) - 1 ^ , | ( Γ - ( β + λob)l)-\).

It follows from (1.4) that T — (a -f λob)I is invertible in each L(Bλ), all
the inverses agree on Δ, and

l ίΓ-ί f l + λ o f c J / Γ ' I ^ Λ f (λ€=G).

Set r = min(δ,l/2M|6|). Then if |λ - λo | < r, the operator T -
{a 4- λb)I is invertible in L(Bλ). Since by (6)

φ(λ) = logr λ((Γ~(α + Xό)/)"1) (|λ - λ o | < r) ,

it follows that φ is the limit of the decreasing sequence of functions

It is therefore sufficient to prove that for each integer k > 1, the map

is subharmonic on the set H = {λ; |λ — λo | < r}, and we shall do this by
verifying that the family of operators Sλ& L(Bλ) defined by

satisfies the hypotheses (i) and (ii) of (2.5).
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(i) If |λ - λo| < r, then

= | (Γ-(a + λoδ)/)"1 -(i-ίT-ia + λo6)/)"16(λ - λo)ΓΊ|
II >> > \\>

-(a + λob)lΓbJ(λ-λoyu

J-o

<2M,

and hence

k
λeH=*\\Sλ\\λ<(2M)k.

(ii) Suppose |λ — λo | < r. In the space L(Bχ), we then have

Sλ = (Γ -(a + λob)iyk .(l-(T-{a + λoί>)/)Λ(λ - λo))~*

y = θ

say, where each Aj is an operator on the pair [Bo, Bx\, and

so that the series really does converge in L(Bλ). Therefore if / G J^ and
g G ^ , then

(7) (Sλ[fh, [g]χ)λ = Σ (Λj[f]λ9 [g]χ> λ -(λ - λ 0 ) ' ,

the convergence of the right-hand side being uniform on H. For each
j > 0, the function

is analytic on G, by (1.2). Hence the right-hand side of (7) is analytic on
H, whence so also is the left-hand side, as was to be proved.

It remains to justify the Assertion. Since λ 0 e Gl9 the point a + λob
lies in some component D of C\K(λ0) which is not contained in Eτ.
Choose z0 e D\ET and join a + λob to it by a continuous path σ in D.
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Now K(λ) depends on λ only through Reλ, and by part (a) it is u.s.c;
thus since [σ] (the image of σ) is a compact set disjoint from K(λ0), there
exists δ > 0 such that

(8) | R e ( λ - λ o ) | < δ = * ϋ : ( λ ) n [ σ ] = 0 .

Define Vτ to be the set of z e C such that T — zl is invertible in both
L(Bλ _g) and L(Bλ + δ ) , and such that the two inverses agree on (Bλo_δ)
Π (Bλ +δ). By (1.3) and (2.1), the set Vτ is a union of a subcollection of
the components of C\(Sp λ o_ 5(Γ) U Sρ λ o + δ(Γ)). By (8), the points a +
λob and z0 lie in the same component of the latter set. Also z0 £ Eτ,
which implies that z0 e Vτ. Therefore a 4- λQb e Vτ, as desired. D

COROLLARY 2.6. The map λ -> (SρλΓ)Λ is u.s.c. on G and a.m.v.
on G.

Proof. Since (SρλΓ)Λ= K(λ)\ the result is an immediate consequence
of (2.4) plus the easily proved fact that the polynomial hull of an u.s.c.
(respectively a.m.v.) function is u.s.c. (respectively a.m.v.). D

Unfortunately (2.4) asserts 'a.m.v.-ness' only for K(λ) rather than for
SpλΓ, which is the more natural object to consider. Our second main
result rectifies this situation, though at the cost of making an extra
assumption about the operator T.

THEOREM 2.7. For λ e G , define L(λ) = SρλΓ.
(a) The map L: G -» κ(C) is u.s.c.
(b) If Tsatisfies the local U.R. condition, then L: G -> κ(C) is a.m.v.

Proof, (a) This part is due to I. Ya. Sneiberg [44]; his ingenious
argument is repeated in the less obscure reference [52].

(b) The proof is almost identical to that of (2.4)(b) with K replaced
by L. The only difference is that the Assertion made in the middle of the
proof now follows directly from the local U.R. assumption on T. Π

REMARKS. (1) As already pointed out, it may well be the case that
every T satisfies the local U.R. condition: if this is true, then (2.7)(b) is
stronger than (2.4)(b) because dK(λ) c L(λ) c K(λ) for every λ e G .

(2) Sneiberg's proof of (2.7)(a) is completely different from that of
(2.4)(a). Though at first sight his result appears to be stronger, this is not
quite the case, for (2.4)(a) asserts the upper semicontinuity of K on the



458 T. J. RANSFORD

whole of G, whereas (2.7)(a) does not guarantee that L is u.s.c. on 3G.
Indeed, this can sometimes fail to be true, even if T satisfies the U.R.
condition. The following example is an adaptation of one due to Sneiberg
[44].

For each integer n and each s e [0,1] define

j lp(Z), if n < 0, where l/p = I - s/2,
En's = \ LjO, 1], if n > 1, where \/q = s/2.

Define Bλ to be the /2-direct sum of the spaces (EnRξtλ) (n e Z). Then Bo

is dense in Bv so by (2.3)(a) the spaces [Bo, Bλ] form an interpolation pair
on which any operator must satisfy the U.R. condition. Also, by standard
results in interpolation theory (see [9, Chapter 5]), we have Bλ = [Bo, 2?Jλ.
For j = 0,1, define T e L{Bj) by

where S is the operator given by
00

S( a a a \ = V fl e2πΐkt

- 0 0

mapping lλ to L^, and /2 to L2. By (1.4), T interpolates to an operator on
each Bλ which is also of the form (9). Now 0 £ SpλΓ if and only if
S' ^oReλ ~> ^iReλ *s iπvertible. For Reλ = 1 this is indeed the case,
since S: l2 -> L2 is well known to be an isomorphism (even an isometry),
but if Reλ < 1 then this cannot happen, because if p < 2 < q then lp

and Lq arc not even isomorphic Banach spaces. Thus SpλΓ fails to be
u.s.c. at λ = 1. In fact, it is easy to show that

\ { z ; | z | - l ) , if R e λ . 1.

Before going on to consider applications, we state one more general
result due to C. J. A. Halberg and A. E. Taylor. A partial proof, which
uses the ideas developed in this paper, will be given in the next section.
For the full proof the reader is referred to [17].

THEOREM 2.8. Suppose that T satisfies the U.R. condition. Let λo,λ1

e G and let C be a component of Spλ(Γ. Then C Π SpλiΓ Φ 0. D

COROLLARY 2.9. Suppose that Tsatisfies the U.R. condition. If SρλT
is totally disconnected for some λ 0 G G, then SpλoΓ c SpλΓ for all
λEG. D
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3. Applications. Throughout this section we shall maintain the
notation developed in §§1 and 2.

We begin with a spectral analogue of the Riesz-Thorin Theorem. It is
a generalisation of a result of J. D. Stafney [46, Theorem 1.9, and 48,
Theorem 5.5].

THEOREM 3.1. Let u be a subharmonic function defined on an open
neighbourhood UofEτ, and for α G [-oo, oo) set

Ea = [z^Eτ; u(z)<a).

If Sp0Γ c Ea and S p ^ c Eβ9 then for any λ e Gwe have

S ρ λ Γ c E(l_s)a+sβ,

where s = Reλ.

Proof. S u p p o s e i n i t i a l l y t h a t b o t h α , β > - o o . F o r λ e G a n d z e £/,
d e f i n e

and for A E 6 , set

φ(λ) = sup{ψ(λ,z); z G S P λ Γ } .

If ΛΓ: G -> ιc(C) is defined as in (2.4), then since

ΘA'(λ) c SpλΓ c ίΓ(λ) aEτaU (λ e G),

it follows from the maximum principle for subharmonic functions that

sup{u(z); z e SpλΓ} = sup{w(z); z e K(λ)} (λ e G),

whence

φ(λ) = sup{ψ(λ,z); z e K(λ)} (λ e G).

Now ψ is u.s.c. on G X U and plurisubharmonic on G X C7, a neighbour-
hood of graph^lG), so by (2.4)(b) and (l.l)(c), the last equation implies
that φ is u.s.c. and bounded on G, and subharmonic on G. Now by
assumption, if Reλ = 0 or 1 then φ(λ) < 0. Therefore, by the extended
maximum principle [19, Theorem 5.16], we have <p < 0 on the whole of G,
which yields the conclusion of the theorem.

Finally, if either a or β happens to be -oo, then the result follows
easily by applying what has already been proved to sequences an and βn

decreasing to a and /? respectively. D
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As a corollary, we deduce a simple 'constancy condition' for SpλΓ. It
is a generalisation of a theorem of P. Sarnak [36], who stated it for the
special case when T is a convolution operator on the Z^-spaces of a
locally compact Abelian group.

First we recall that a subset P of C is said to be polar if there exists a
subharmonic function u: C -» [-00, 00) which identically -00 on P but
not on C. A compact polar set is totally disconnected and so automati-
cally has empty interior and connected complement. A countable subset
of C is always polar. Details on polar sets may be found in [20].

COROLLARY 3.2. Suppose that SρλoΓ is a polar set for some λ 0 e G.
Then SpλT = SpλTfor all λ e G.

Proof. Using (1.3), we may assume without loss of generality that
λ 0 = 0. By the Evans-Selberg Theorem [19, Theorem 5.11] there is a
subharmonic function u: C -> [-00, 00) such that

{ZGEC; M ( Z ) = -OO} = Sp0Γ.

Applying (3.1) we deduce that for each λ e G

(10) S p λ Γ c S P o Γ .

To prove the reverse inclusion, note first that if λ e G then from (10) the
set Sp0Γ U SpλΓ is polar, so has empty interior and connected comple-
ment. Therefore by (2.3)(b), the operator T on the pair [Bo, Bλ] satisfies
the U.R. condition. Also, as Sp0Γ is polar it must be totally disconnected,
whence from (2.9) applied to Γon [Bo, Bλ], and then (1.3), we have

Sp0Γ c SpλΓ,

which completes the proof. D

REMARKS. (1) The constancy of SρλΓ need not extend to λ e 3G.
Indeed from [36, 11], if T is the operator on the L^-spaces of the circle
group defined as convolution with the Cantor-Lebesgue measure, then
Sp(T; L2) is a countable set of real numbers, whereas Sp(Γ; Lλ) is not
entirely real.

(2) An operator S is said to be quasi-algebraic if there exist monic
polynomials pn of degree n such that

n^0 a s « ^ 00.

By a result of P. Halmos [18], an operator S is quasi-algebraic if and only
if its spectrum is a polar set. Thus (3.2) shows that if T\Bλo is quasi-alge-
braic for some λ 0 e G, then T\Bλ is quasi-algebraic for all λ e G . This
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result is an analogue of a theorem of M. Krasnoselskii [24] which shows
that the same holds if 'quasi-algebraic' is replaced by 'compact', at least
provided that Bo and Bt satisfy certain conditions.

The proof of (3.2) made use of Halberg and Taylor's Theorem (2.8),
or rather, its corollary (2.9). It is interesting to note that the methods of
this paper can be used to prove at least the following partial form of (2.8)
(the only difference being that λ 0 is assumed to be in G rather than just
iπG).

THEOREM 3.3. Suppose that Tsatisfies the U.R. condition. Let λ 0 e G
and λx e G, and let C be a component of SpλT. Then C Π Sρλ iΓ Φ 0.

Proof. Suppose that the result is false. By (1.3), we may assume
without loss of generality that λλ = 1. Choose disjoint open sets Uo and
Ux such that

(11) C c Ul9

(12) S P l Γ c [ / 0 ,

(13) Spλ T c Uo U Uτ = U9 say.

By (13) and (2.7)(a), there exists t with 0 < t < Reλ 0 such that

t < Reλ < Reλ 0 => SρλΓ c U9

and since T satisfies the U.R. condition, (12) and (2.2)(b) imply that

t < Reλ < 1 =» SpλΓ c U.

Define u: U ~* [-oc, oo) by

U^Z' "" \ 1 , z e Uv

Applying (3.1) to T on the pair [1?,, Bλ] and then using (1.3), we deduce
that

S p λ / c [z e U; u(z) < (1 - Reλ o )/( l - 0} = U09

which is a contradiction. D

It is perhaps worth noting (as was done in [15] for the special case of
/^-spaces) that with almost no extra work we can deduce the following
strengthened form of (3.3).
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COROLLARY 3.4. Suppose that T satisfies the U.R. condition. Let

λ o e G and λv λ2 £ G be such that Reλ1 < Reλ 0 < Reλ2, and let C be

a component of Spλ T. Then

cnSpλτnSpλTΦ 0 .

Proof. From (3.3) we know C Π SpλiΓ and C Π Spλ2Γ are non-empty
closed subsets of C. By (2.2)(b) their union equals C, so if they were
disjoint then they would disconnect C, which is impossible. D

Theorems (2.4)(a) and (2.7)(a) were results about upper semicontinu-
ity. We also have a form of lower semicontinuity.

T H E O R E M 3.5. Let λ 0 e G and let Z O E 3 S p λ o Γ . Suppose that either
(a) Tsatisfies the local U.R. condition, or
(b) z0 belongs to the boundary of (SpλoΓ) .

Then dist(zo,SpλΓ) -> 0 as λ -^ λo.°

Proof, (a) Suppose the result is false, so there exist ε > 0 and
λn -> λ 0 such that

(14) d i s t (z o ,Sp λ j )>3ε (n > 1).

Since z0 e 3SpλoΓ, we may pick zx ί SpλoΓ with \zλ — zo\ < ε. By upper
semicontinuity, there exists δ > 0 such that

λ o ) | < δ ^ z 1 ί SP λΓ.

Define φ: {λ; |Re(λ - λ o ) | < 8} -^ [-oo, oo) by

φ(λ) = s u p { l / | z - z 1 | ; z e S P λ Γ } .

From (2.7)(b) and (l.l)(c), the function φ is subharmonic. Since φ(λ)
depends on λ only through Reλ, this means that φ(/) is a convex
function of t on {t; \t — Reλ o | < δ), and is therefore continuous at
/ = Reλ 0 . However,

φ(Reλ o )> l/\z0- zλ\> 1/ε,

whereas from (14) we have

φ ( R e λ J < l / 2 ε (n > 1),

which is a contradiction.
(b) The proof is just the same as for (a), but uses (2.6) in place of

(2.7). D
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Theorem (3.5) will now be used in the proof of a result guaranteeing

the 'permanence' of certain kinds of points in SpλΓ. We have already seen

an example of this phenomenon: as a consequence of (3.3), if T satisfies

the U.R. condition, if λ 0 e G and if {z0} is a component of SpλoΓ, then

z 0 e Sp λΓ for all λ e G . This will be generalised by the next result, but

first we need some terminology. A subset Q of C is said to be non-thin at

z 0 e C if (i) z0 belongs to the closure of Q and (ii) for every subharmonic

function u defined on some neighbourhood of z0, we have

limsup u(z) = u(z0).
z-*zo,zeQ\{zo}

It can be shown that any connected set is non-thin at each point of its

closure (see [20, Theorem 10.14]).

THEOREM 3.6. Suppose that T satisfies the U.R. condition, and let

λ o e G .

(a) Ifz0 is an element of SpχTsuch that C \ Spλ(T is non-thin at every

point of some neighbourhood of z0, then z0 e SpλTfor all λ e G .

(b) Suppose that C \ Spλ T is non-thin at every point of SpλoΓ. //

λv λ 2 e G and Reλx lies between Reλ 0 and Reλ 2, then Spλ iΓ c SρλzΓ.

Proof, (a) Suppose the result is false, say z0 £ SpλiΓ. By (1.3) we may

assume without loss of generality that \λ = 1. Choose an open disc N

with centre z 0 such that SpxΓ Π N = 0 and C \ SpλoΓ is non-thin at

each point of N. In particular, since z0 cannot he in the interior of SpλoΓ,

the set N is contained in a component of C \ SpxΓ which is not entirely

contained within Spλ T. Therefore, by (2.4)(a) applied to T on the pair

[2?λo, J9J, there exists t < 1 such that

(15) / < Reλ < 1 => SpλΓ Π N = 0 .

Now

SP λ oΓ U S P l Γ c S p λ / u(C\N) = F, say,

so if we set

Gλ= {λ e G; Reλ 0 < Reλ < 1},

then by (2.7)(b) and (2.2)(b) the restriction of SρλΓ to Gλ is an a.m.v.

function whose range is contained within F. Now C \ F is non-thin at

every point of N, so by [32, Corollary 2.4(a)] we deduce that for λ e Gv

the set SpλjΓ Π N is independent of λ. In fact, from (15) we have

SpλΓ ΠJV= 0 (λ e Gλ).

Since z0 e Spλ Γ, this contradicts (3.5).
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(b) By part (a),

S p λ / c S P λ 2 Γ .

By (2.2)(b), we therefore have

SP λ iΓ c S p λ / U SP λ 2Γ = SPλ2Γ. D

For example, this result will hold whenever Spλ T is a subset of the
real numbers. Thus in particular it will be true if Bλ is a Hubert space
and T\Bλo is self-adjoint; this special case is a theorem of M. G. Krein
and V. V. Sevcik [25,37].

As a final corollary, we deduce a second 'constancy condition' for
SpλΓ. Whereas (3.2) achieved this via a fairly strong condition on the
spectrum at one endpoint, the next result does so using a weaker condi-
tion but at both endpoints. It is related to some theorems of G. L. Krabbe
[21,22].

COROLLARY 3.7. Let F = Sp0Γ u SpJ1. Each of the following condi-
tions ensures that for λ ^ G, the set SpλT is independent of λ:

(a) T satisfies the U.R. condition, and C\F is non-thin at every point
ofF;

(b) the set F has empty interior and connected complement.

Proof. Take λ0, λλ e G: then by (2.2)(b)

S p λ / c F,

so that C \ Spλ T is non-thin at every point of SpλoΓ. By (3.6)(b) we have

S p λ / c SP λ iΓ.

and as λ0, λx e G were arbitrary, this proves the result.
(b) In fact, using (2.3)(b), the hypotheses of part (b) imply those of

part (a). D

Note added in proof. Some of the results above have been proved
independently by Z. Siodkowski in his recent paper [54]. In particular, his
work shows that the extra hypothesis in Theorem 2.7(b) may be omitted.
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