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ON SPARSELY TOTIENT NUMBERS

D. W. MASSER AND P. SHIU

Let φ(n) denote Euler's totient function, defined forn> 1 by

p\n

Let F be the set of integers n > 1 with the property that φ(m) > φ(n)
whenever m > «. The purpose of this paper is to establish a number of
results about the set F. For example, we shall prove that each prime
divides all sufficiently large elements of F, each positive integer divides
some element of F, and that the ratio of successive elements of F
approaches 1.

1. Introduction. Similar studies have been carried out in the past,
initially by Ramanujan [7] for the divisor function d(n), and then by
Alaoglu and Erdδs [1] for d(n) and the divisor sum function σ(n), and by
Erdos and Nicolas [2] for the prime divisor function ω(n) = Σplnl (see
also the last paper for additional references). In particular, Ramanujan
considered the set of integers n such that d(m) < d(n) whenever 1 < m
< n. He called such integers highly composite, and by analogy it seems
appropriate to refer to the elements of our set F as sparsely totient
numbers.

Since φ(n) -* oo as « -> oo, it is obvious that F is infinite. Our first
result shows how to construct many elements of F explicitly. Let pλ = 2,
p2 = 3,... denote the primes in ascending order of magnitude.

THEOREM 1. Suppose k > 2, d > 1, / > 0 and

Thendpι - pk.λpk+ιis in F.

COROLLARY. Let n, n' be consecutive elements of F. Then nf/n -» 1 as
n -» oo.

For n > 1 denote by P(n) the greatest prime factor of n and by Q(n)
the smallest prime not dividing n. Already Theorem 1 above provides
some information about large values of P(n) and Q(n) for n in F, as well
as showing that there are elements of F divisible by any given integer d.
Also, the statement that each prime divides all sufficiently large elements
of F is equivalent to Q(n) -* oo as n -> oo in F. We shall prove this in
much more precise form in our next result.
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Now we observe that since φ(2m) = φ(m) for m odd, it follows that
every element of F is even. Also, since φ(2k~ι 3) = φ(2k) for k > 2, we
see that the only power of 2 in F is 2 itself. Hence every n > 2 in F has a
well-defined second greatest prime factor, which we denote by P'(n). As
this function turns out to be of special significance in the study of F, we
also give some of its properties in the result below.

THEOREM 2. For n in F we have

(a) liminf - = 1, limsup Λ > 2,v ' n-+^ \ogn w^oo logn

(b) liminf , > ft — 1, limsup , = 1,
n-*oo lOgn n-+σo 1 ° S W

(c) liminf Λ

 v ) = 1, limsup Λ

 v ) < ft + 1,

(d) lim sup -—^- < 1.
n-+oo logλn

Many of the problems concerning sparsely totient numbers are related
to the distribution of primes. For example, we shall see that it follows
easily from Bertrand's Postulate that (P(n))4 never divides n in F. Using a
deeper result on primes in short intervals we sharpen this as follows.

THEOREM 3. For all sufficiently large n in F, the power (P(n))3 does not
divide n.

We see by taking d = pk, / = 0 in Theorem 1 that px pk-Xp\ is
sparsely totient for all k > 2, and consequently the exponent in Theorem
3 is best possible.

Finally let F(x) denote the counting function of F\ that is, the
number of sparsely totient numbers n with 1 < n < x. It is not difficult to
verify that the explicit constructions in Theorem 1 give the lower bound

F(x) » log 2x/logl°g*

for x > 2. In our last result we give the following somewhat larger upper
bound.

THEOREM 4. We have

logF{x) <

for all x>2.
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We also include in this paper an Appendix which contains a brief
account of further work on the set F. Glyn Harman very kindly showed us
a method of improving (d) in Theorem 2 to P(n) <c log 2" 5n for some
8 > 0. In addition we describe a plausible gap hypothesis which enables
us to obtain best possible versions of all the statements of Theorem 2,
thereby considerably illuminating the structure of sparsely totient num-
bers. Finally we include a table of the 150 elements of F not exceeding
106, together with their factorizations.

We end this introduction with a word about the related set F* of
highly totient numbers n > 1 with the property that φ(m) < φ(n)
whenever 1 < m < n. Clearly F* contains all primes, and it is very
probable that there are no other elements in F*; furthermore this can in
fact be established with the help of a suitable gap hypothesis (see also (3)
of [1], p. 465). So the set F* seems comparatively uninteresting.

2. Proof of Theorem 1. We start with the following lemma.

LEMMA 1. For r > 1 let xly...9xr9 yl9...,yr, X,Y be real numbers
satisfying

m&x(xl9...,xr) < Y, 1 <xi<yi(l < i < r).

Then if also

(2.1) Λ .~yrY>xλ xrX

we have

(2.2) ( Λ - 1) (y, - 1)(Y - 1) > (xx - 1) - (x, - 1)(X - 1).

Proof. We note first that (2.2) is trivial if X < 1, since the left-hand
side is positive. Similarly if 1 < X < yr then

G v - i ) ( y - i) > (x- i ) ( y - 1) > ( * , - i)(x- 1)

and again (2.2) follows immediately. Next, if X > yr we have

(X-yr)(yr-xr)>0,

and on adding yrxrX + yr to both sides, rearranging, and dividing by j>r we
get

(2.3) U

where X' = Xxr/yr Note that all this proves the lemma for r = 1, as
X' < Y.
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We can now argue by induction on r. Suppose the lemma has been

proved with r replaced by r — 1 for some r > 2. From the above, it

suffices to establish (2.2) when X > yr, so that (2.3) holds. We can write

(2.1) as

with X' = Xxr/yr as before, and now the inductive hypothesis shows that

( * - ! ) • • • U - i - i ) ( r - i) > (*χ - i) (χr-i - ϊ)(x' - 1).

Multiplying by yr — 1 and using (2.3) completes the inductive step. This

proves the lemma.

Now we start on the proof of Theorem 1. Let

(2.4) n = dpλ ••• pk-xpk+ι

satisfy the conditions (a) and (b) of the theorem. Then

(2.5) φ(n) < d(Pι - 1) . . . (pk_λ - l)(pk+ι - 1)

and so by (b)

(2.6) φ(n)<(d+l)(Pι-l)---(pk-l).

To prove that n is in F we pick any m > n and we eventually show that

(2.7) φ(m)>φ(n).

There is a unique integer t > 1 such that

Pi ••• pt<m<p1 . pί+1.

Then the number of distinct prime divisors co(m) of m satisfies ω(m) < /.

We deduce that

φ(m)/m M 1 - . P Γ 1 ) •••(!- Pi1)

and so

φ ( m ) > ( ^ - 1 ) ( Λ - 1).

If now / > k 4- 1, then

φ(m) > ( ^ - 1) ( p Λ + 1 - 1) > (d + l)(Pι - 1) . . . ( ^ - 1)

by (a), and therefore (2.7) holds because of (2.6).

Hence we may assume t < k. Thus ω(m) < k. If now ω(m) < k — 1

then

ψ(m)/m> {\ - pll) •••{!- pl

But (2.4), (2.5) give



ON SPARSELY TOTIENT NUMBERS 411

so that

φ(m) > (m/n)φ(n) > φ(n)

and again (2.7) holds.
Thus we may henceforth assume that ω(m) = k, so that

™ = eclι ' ' 9k

for primes ql9...9qk with #χ < < ̂  a n c * a n integer e > 1 composed
only of primes from qv...,qk.So

(2.8) qx >Pι, ,qk>Pk

and

(2.9) φ(m) = e(qι-ϊ) (qk-l).

Suppose now that e > d + 1. Then (2.6) gives

ψ(n)<e(Pι- ΐ) -{pk- 1 ) ,

whence (2.7) follows from (2.8) and (2.9). Finally if e < d then we write
m > n in the form

0 i ' " <lk-ιγ> Pi ••' / ^ - I *

with y = qk,X= dpk+ι/e. Using (2.8), we apply Lemma 1 with r = k — 1
to deduce that

(<7i " 1) {qk-χ ~ l ) ( r - 1) > ( A - 1) ( P t . ! -1)(AΓ- 1).

Multiplying by e and recalling (2.9) we get

φ(m) > ( / > i - 1) (/>Λ_i

and since e < d this gives (2.7) by virtue of (2.5). This completes the proof
of Theorem 1.

We pause here to note that Theorem 1 would become false if either of
the strict inequalities (a) or (b) were relaxed. In fact if

the number n = dpλ - pk-ιPk+i is never in F if condition (b) is satis-
fied. For (b) implies in this case

pk+ι-l <{l+Pϊ\i)(pk-ϊ)<Pk

so / = 0; also for k > 2 the number pk+ι — 1 is divisible only by primes
?!,... ,pk. Thus
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But now

™=Pi ••• PkPk+i > n

and φ(m) = φ(n). Hence condition (a) is sharp.
Next, SchinzeΓs Hypothesis H (see for example [3] p. 2) applied to the

polynomials

shows that for each d > 1 there are infinitely many k > 2 such that
({d 4- l)pk — l)/d is integral and prime (moreover for any fixed d such as
d = 1 we can find plenty of examples in practice). Denoting this prime by
Pk+ιwe s e e t h a t ' ^ 0 a n d d(pk+/ — 1) = (d + 1)( j ^ — 1). Clearly also/^
does not divide d. But then the number n = dpλ - - - pk_ιpk+1 cannot be
in F if condition (a) is satisfied. For (a) implies that d is divisible only by
primes ίrompv... ,pk-V so

But now

m = (d + l)pλ ••• pk> n

and

φ(m) <(d+ l)(Pl - 1) (pk - 1) = φ(n).

Hence condition (b) is also shaφ.

3. Proof of Corollary. The idea of this can be explained very easily.
We observe that the elements of F given by Theorem 1 form blocks that
neatly fit together. For, putting d = 1, we see that the numbers

Pi ••• Pk-ιPk+ι 0^0)

lie in F as long as pk+I — 1 < 2(pk — 1); so this takes us from pλ pk

to roughly 2px pk. Then, putting d = 2, we see that the numbers

2Pi ••• Pk-ιPk+ι U^O)

lie in F as long as pk+ι — 1 < 3(pk— 1); so these take us roughly up to
3Pi Pk- Then we put d = 3,4,... and so on, up to d = pk+1 — 2. By
then the elements of F have reached roughly pλ - pkpk+v and so we
can begin again with d = 1.

The details are as follows. Let 0 < ε < 1. We have to show that for
every sufficiently large n in F there exists nf in F with

(3.1) « < « ' < ( ! + e)/ι.
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Let k be the integer satisfying

(3-2) p λ ••• p k < n <px ••• p k + 1

Since n is large, k is also large, and in particular we may assume k > 2

and

(3.3) pk - 2 > 2/β

as well as

(3.4) / > * + / * ( ! +i*)/>*+/-i

for all / > 1.

Next define the integer m by

(3.5) mp1 />Λ < /i < (m + 1)/?! />Λ,

so that

\<m <pk+ι.

Our construction of n' depends on the size of ra, and we consider four

cases in turn:

(})Pk+i ~ 2 <m <pk+ι

(ii)ε-1 <m<pk+1-2

(ϋi) 1 < m < ε"1; (1 + ε)n > (m + 1)/?! •••/>*

(iv) 1 < m < β"1; (1 + e)n < (m + 1 ) Λ pk.

In case (i) we choose n' = px p Λ + 1 . By Theorem 1 this lies in F,

and nf > n from (3.5). Also

"V* ^Pk+i/m^Pk+i/(Pk+i ~ 2) < 1 + ε

by (3.3). Thus (3.1) holds.

In cases (ϋ) and (in) we choose n' = (m + 1)/^ pk. In both cases

we have m < pk+ι — 2 by (3.3), and so by Theorem 1 with d = m 4- 1,

/ = 0 we see that «' lies in i7. Again from (3.5) we have n' > n. And in

case (ϋ)

n'/n < (m + l)/m < 1 4- ε

while in case (ϋi) this inequaϋty is immediate. Thus (3.1) holds once more.

Finally, in case (iv) let/?' be the least prime satisfying

(3.6) p ' > n/(mp1 ••- p k - X ) .

By (3.5) we see that pr > pk, and so p' = pk+ι for some / > 1. Also we

have

(3.7) pk+ι_λ < n/(mPι - • pk_λ) < (m + \)pk/{m{\ + ε)).
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Then from (3.4)

which does not exceed (m 4- l)(pk - ΐ)/m, by (3.3). It follows now from
Theorem 1 with d = m that the number n' = mpι pk-ιPk+ι lies in F.
By (3.6) we have n' > n, and from (3.7)

n > mpι -' pk-lpk+ί-1

which gives using (3.4)

n'/n < 1 + \ε.

Thus (3.1) holds, and this completes the proof of the Corollary.
Let us note that standard results on gaps between primes enable the

Corollary to be strengthened to

n'/n = I + O{\og~δn)

for some δ > 0. But the conditional results of the Appendix show that
n, n' probably have a very large common factor, and in particular the
relation

n'/n = 1 + O(n-£)

is probably false for every ε > 0. In practice the convergence does seem
rather slow; for example when n = 810810 we get nf > 870870 so n'/n >
1.074....

Finally we remark that the result of this Corollary is mentioned by
Alaoglu and Erdόs in [1] (p. 465). However, the simple proof they give of
the corresponding property of highly abundant numbers (p. 463) does not
immediately seem to generalize to sparsely totient numbers, because it
could happen (and indeed probably will) that φ(n(p - l)/p) = φ(n).
Even so, it does lead to a quick proof of the corresponding property for
the larger set F of numbers n such that φ(m) > φ(n) whenever m > n.

4. Proof of Theorem 2. For positive integers h and k we write

f(k,h) = h([k/h]+l)

for the unique integer x satisfying k < x < k + h which is a multiple of h.
Given n in F9 our basic strategy is to replace a suitable divisor k of n by
f(k, h) for some h, and thereby obtain the number

m = nf(k, h)/k > n.
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Thus φ(m) > φ(w). But if h is small and prime to «, for example, then m
will have acquired all the prime factors of h in exchange for those of k. So
on the other hand φ(m)/m might be expected to be quite small compared
with φ(n)/n. We note that

1 <m/n =f(k,h)/k = 1 +(h/k)(l -{k/h}) <1 + h/k,

where { JC} = x — [x] denotes the fractional part of x. Here the presence
of the term { k/h} sometimes leads to interesting problems of diophantine
approximation.

We shall need the following lemmas.

LEMMA 2. Suppose n is in F and

Pι- pk<n<p1 -" pk+1

for some k > 1. Then ω(n) is either k—lork.

Proof. It is clear from the upper bound for n that ω(n) < k. This
proves the lemma if k < 2, so we may assume k > 3, and, if possible,
ω(π) < k — 2. Then

(4.1) φ(n)/n > (l - p?) (l - pil2).

Now put m = f(n, />χ Pk-\) s o that

(4.2) l<m/n<l+Pι pk_x/n < 1 + p~k\

Moreover, since/?! pk_x divides m we have

φ(m)/m < (l - ^Γ1) • • (l - plU) < (l - pl\2)φ{n)/n

using (4.1). This together with (4.2) yields

φ(m) < (l -plU)(l +PZ1)<p(n) < φ(n)9

and so contradicts the fact that n is in i% proving the lemma.
We remark that the conclusion of this lemma cannot be strengthened.

For by Theorem 1 the number n = pλ pk lies in F for all k, and it can
be shown that n = px pk-2Pk ^ e s ̂ n F f°Γ infinitely many k.

LEMMA 3. For n in F we have

P{n) < (Q(n))2.

Proof. Suppose not. Then P = P(n) and Q = Q(n) satisfy Q2 < P.
Put m == nf(P, Q)/P, so that

(4.3) 1 < m/n < 1 + Q/P <1 + Q~\
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Since m has acquired the factor Q but possibly lost the factor P, we have

φ(m)/m < (1 - Q-ι){\ - p-ιγ\{n)/n

< (1 - β-'Xl - Q-2Y\(n)/n.

Hence (4.3) gives

φ(m) < (1 + β " 1 ) ^ - ( T ^ l - Q-2Y\(n) = φ(»),

again a contradiction. This proves the lemma.

LEMMA 4. For n > 2 in F we have

Proof. Suppose not, and put λ = y/ϊ - 1. Then with Pr = P\ή) we
have

β < λP ' < λP.

Put m = «/(PT,β)/P r P, so that

(4.4) 1 < m/n < 1 + β / P T < 1 + λ2^-1.

Also

(4.5) φ(m)/m < (l - β-^ίl - P '" 1 )"^ - P ^ Γ V ί ^ A

But because 1 - λ2 = 2λ we see that

(1 - Q~ι)(l + λ2^-1) < 1 - ( 1 - λ 2 ) ^ - 1 = 1 - 2λQ-1 < (1 - λβ" 1 ) 2 ,

and so (4.4), (4.5) lead to φ(m) < φ(«), again a contradiction. This proves
the lemma.

Now let us establish Theorem 2 by examining each of the limits in
turn. First, to prove (a) and (c) we start by observing that

(4.6) P(n) > P'(n) > (1 + o(l))\ogn

as n -> oo in F. For let k be the integer defined by

(4.7) p x ••• pk<n <pλ - p k + 1 .

By the Prime Number Theorem pk = (1 + o(l))log n, and by Lemma 2
we see that h = ω(n) satisfies h > k - 1. Hence
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Next we know from Theorem 1 that n = px - pk is in F for all
k > 2. Hence for these n we have

(4.8) P\n) < P(n)=pk = (1 + o(l))logn.

Comparing (4.6) and (4.8), we obtain the first limits in (a) and (c).
Now the second limit in (a) also follows from Theorem 1, which

shows that n = px pk-ιPk+iis in ^whenever k > 2 and

(4.9) Pk<Pk+i

This n satisfies (4.7) and so pk = (1 + o(l))log n. But also the largest /
satisfying (4.9) is such that pk+ι = (2 4- o(l))log n. Hence for these n we
have

P ( Λ ) = (2 + o(l)) log*.

This proves the second limit in (a).
Next, the first limit in (b) follows immediately from Lemma 4 and the

first limit in (c). Also for n satisfying (4.7) we have Q{n) <pk+x and
therefore

for any n whatsoever; and for the numbers n = px pk in F we see on
the other hand that Q(n) = pk+1. These together establish the second
limit in (b).

Now the second limit in (c) is a consequence of Lemma 4 and the
second limit in (b). Finally the limit in (d) follows from Lemma 3 together
with the second limit in (b). This completes the proof of Theorem 2.

2. Proof of Theorem 3. We first record the following simple result
about the repeated factors

p\n

of a sparsely totient number n.

LEMMA 5. Let n in F let r be any factor of R(n), and let q be any prime
not dividing n. Then

r<{\-{r/q))q\

Proof, Suppose not. We put m = nf(r, q)/r, so that

1< m/n = 1 +(q/r)(l-{r/q}) < 1 + q~\
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Also since m has all the prime factors of n together with q, we have

φ(m)/m < (l - q~ι)ψ(n)/n,

and therefore

φ(m) < (1 - q-ι)(l + q-ι)ψ(n) < φ(n)

a contradiction. This proves the lemma.

COROLLARY. For n in F we have

R(n)<(Q(n))2.

Using this corollary, we see quite quickly that P 4 = (P(n))4 never

divides n in F. For otherwise R = R(n) > P3 and we would deduce

(5.1) P 3 < Q2

for Q = Q(n). Now Q can be at most the smallest prime exceeding P, and

so Bertrand's Postulate implies Q < 2P - 1. Hence by (5.1) we see that

P 3 < (2P - I) 2 , which forces P = 2, Q = 3. But we have already noted

that the only power of 2 in F is n = 2, and this is certainly not divisible by

24.

To make further progress we have to take into account the curly

brackets in Lemma 5. The solution of the corresponding diophantine

approximation problem is given in the next lemma.

LEMMA 6. For all sufficiently large integers m there exists a prime

q > m with

{m2/q}>l-m2/q\

Proof. Let ε = 1/40. It suffices to prove that there exists q with

(5.2) {™2/q} >ε, m < q< m m
2 / 3;

this is because when m is large

1 - m2/q2 = (q + m)(q - m)/q2 < 2m2/2/q < ε.

For any interval I = (x, x + y] we write π(I) = π(x + y) — π{x) for

the number of primes in /. It is well-known ([5]) that for any # with

7/12 < & < 1, the number π(I) is asymptotic to^/log x provided x^ < y

< x\ hence there exists x0 = xo(ε) such that

(5.3) *(/).;>
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whenever x > x0 and x& < y < x. Our proof actually requires d < 2/3. It
is also known (see for example [4] p. 523) that ττ(/) is asymptotically at
most 2y/logy (and indeed according to [6] the inequality π(I) <
2y/log y holds for all x > 1, y > 1); at any rate

(5.4) π(l)<3y/logy

for all x > 1 and all sufficiently large y.
We take # = 5/8 and R = [m1 / 4]. The interval

has length exceeding m5 / 8, so that (5.3) gives

(5.5) τ r (/)>im 5 / 8 logm.

We next claim that at least one of the intervals

Ir=(m+(r + 2ε)1/V/2, m +(r + l)1/2m^2} (0 < r < R)

contains a prime q. For if this were not so, then all the primes in / would
lie in the complementary intervals

Jr=(m + rWm1'2, m + ( r + 2ε)1 / 2m1/2]? (0 < r < R)

and we would then have

(5.6) π(J)< Σ I Γ U ) .

But the length Lr of Jr satisfies

m1/3 < iεm1/2/--1/2 <Lr< εm1/2r-^2 (1 < r < R)

and

m1/3 < Lo = (2ε)1/2m1/2 < m1/2.

Hence by (5.4)

-n(Jr) < 9εmι/2r-^2/log m (1 < r < R)

and

π(J0) < 9m1/2/\ogm < m1/2.

Therefore

Σ *U) * ™1/2

r=0
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Since Σf = 1 r" 1 / 2 < IR1'2 we conclude that
R

Σ *{Jr) < 20εm5/8/logm = |m 5 / 8 /logm.
r=0

From (5.5) and (5.6) we see that this is impossible. Hence indeed there
exists r with 0 < r < R such that Ir contains a prime q, and we can write
q = m + d with d > 0 and

(5.7) (r + 2ε)m < rf2 < (r + l)m.

Thus the integer N = d2 — rq satisfies

(5.8) 7V<tf.

On the other hand

N > (r + 2ε)m - rq = 2ε# - ( r + 2ε)d9

and since

(r + 2ε)d < (R + 1 ) 3 / V / 2 < 3m7/8 < 3 9

7 / 8

we see that

(5.9) N>εq.

So by (5.8) and (5.9) we have

as required by (5.2). Also d > 0 and (5.7) gives d < 2m5 / 8, so the other
inequalities of (5.2) foτq = m + d are obvious. This proves the lemma.

Now Theorem 3 is immediate. Suppose P3 = (P(n))3 divides n for
some sufficiently large n in F. By Lemma 6 with m = P, there exists a
prime q > P with

Since q > P, the prime # does not divide n\ on the other hand r = P2 does
divide R(n), so Lemma 5 gives the contradictory

This establishes Theorem 3.

6. Proof of Theorem 4. For any positive integers n, k we may
define β^(«) as the fcth smallest prime not dividing n. If further k < ω(n)
we may define Pk{n) as the fcth greatest prime factor of n. We shall need
to consider the equation

(6.1) xk + kx = k- 1;
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it is easily seen that this has a unique positive root λ^ satisfying

(6.2) 1 - 2/k < λk < 1.

We have already noted that ω(n) > 2 for all n > 2'mF.

LEMMA 7. For n > 2inFand 2 < k < ω(n) we have

Qk.1(n)>λk(Pk(n)-l).

Proof. We write Pt = Pt{ή)9 Qt = Q^n) for 1 < i < k. Put

r-P,-. Pk, s = QX'- Qk_v

and m = nf(r, s)/r, so that

1 < m/n < 1 + s/r < 1 + Qk

kZ\/P£.

We also have

Ψ(m)/m < (1 - βΓ1) •••(!- Gί ί i ) ( l " Λ"1)"1

•••(I-P 'ΓVWA

which does not exceed

Using φ(m) > φ(/i)we deduce that

(6.3) (1 + Qϊl\/Pt)(\ ~ Qϊ

We now note the inequalities

l + t<e', 1 - t < e'% (t > 0)

and

(1 - 0" 1 < etAX~^ (0 < t < 1).

These transform (6.3) into

Thus x = Qk-ι/(Pk - 1) satisfies

xk + kx> k -\,

which implies from (6.1) that x > λk. This proves the lemma.
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COROLLARY. For n in F and fixed k > 2 we have

t \ f CPM , f Pkin) Λ 1

(a) hmmf -= = 1, limsup -Λ < λk

n^oo logn n_>J logtt
(b)

logn n->oo l°gw

Proof. The equalities in (a) and (b) are estabhshed exactly as in the
proof of Theorem 2. We omit the details. The inequalities then both
follow immediately from Lemma 7.

We now prove Theorem 4. It clearly suffices to show that for all x
sufficiently large, the number Fλ(x) = F(x) — F(x/2) of elements n of F
with x/2 < n < x satisfies

We can suppose that

k = [(logx)1/2/loglogx] > 2 .

Since by Theorem 2 we have Q(n) >^ log n, we deduce ω(n)
> \ log π/loglog n, and so 2 < k < ω(n) for all n in F with n > x/2. We
now note that each n in F with x/2 < n < x is specified uniquely by
giving successively the following pieces of information:

(a) R = R(n)

(d) the prime factors of n in the interval

I={λk(Pk-l),Pk).

For n/R is squarefree, and it has no prime factors to the right of this
interval except Pv...,Pk. Further by Lemma 7 it has every prime to the
left of this interval as a factor except those of Ql9... ,Qk-X which do not
exceedλk(Pk - 1).

Now by Theorem 2 and the Corollary to Lemma 5 there are at most
2 log2 x possibilities for R in (a). Since Pk < Pk_λ < < Pv Theorem 2
also shows that there are at most (2log2 x)k possibilities for Pl9... ,Pk in
(b). Next, writing Pλ = pr for some r > 1, we see that r < log2 x9 and
since

β i < < Qk-ι * Pr+k-ι <{r + k- I ) 2 ,

we find that there at at most (2log2 x)1{k~l) possibilities for Qλ,... , β Λ _ x

in (c). Finally, once Pk has been specified in (b), the length y of the
interval / is

y = (1 - λk)Pk + λk < 2Pk/k + 1
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by (6.2). Since k > 2, we have Pk < 31og x from Theorem 2, and using the
definition of k we find that

y < 7(logx)1/2loglogx.

Hence from the inequality (5.4) of the preceding section, the number N of
primes in / satisfies

iV<43(logx)1 / 2.

Since the number of possibilities for (d) is at most 2N

9 we conclude from
all the estimates above that

Fλ(x) < 21og 2x(21og 2x)'(21og 2x) 2 ( / :-V < ( l o g 3 x ) 3 V

which does not exceed exρ(40(log x)ι/2) This leads at once to the desired
estimate for F(x), and so completes the proof of Theorem 4.

Appendix. We discuss here some improvements on our results that
can be obtained using deeper methods. The most interesting of these
concerns possibly large values of the greatest prime factor P(n) of n. In
Theorem 2 we saw that P(n) < (1 4- ε) log2 n for all sufficiently large n in
F\ and indeed, it appears from the table that occasionally P(n) can be of
this order of magnitude. An extreme example occurs for

n = 5735730 = 2 3 5 7 11 13 191

withP(w) = 191, so

P{n)/\ogn = 12.273..., P(n)/log2n = .78866....

Nevertheless Glyn Harman has substantially improved our upper bound
for P(n). He first uses the latest techniques from the theory of exponen-
tial sums to prove the following result on diophantine approximation with
primes.

THEOREM (HARMAN). There is an absolute constant δ > 0 with the
following property. For any N > 1 and ε, x with

N-8 < ε < 1 - N-8, N2'8 <x< N2+δ

we have

Σ 1 = (1 - e)(π(2N) - v(N))(l + 0(ΛTδ))
{x/p}>ε
N<p<2N

He then observes (compare the proof of Lemma 3) that this leads to

(A.I) P(n)<^ log2-8n

for all n in F. In particular, he can prove (A.I) for any δ < 1/10.
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On the other hand, one can consider products of two primes. The
following hypothesis seems plausible.

HYPOTHESIS. For any fixed α, β with 0 < a < β, there is a function
ψ(x) = o(xι/2) such that for every x > 1 we can find primes p, q with
ap < q < βp and

x < pq < x + ψ( c).

Assuming this hypothesis it can be proved that for n in F we have

limsup^-^-^ < 2,

which is best possible in view of Theorem 2. Likewise the Hypothesis
implies that for n in F

logw n^oo \o%n

both of which are again best possible by Theorem 2.
We can even refine some of these results to take account of the

repeated factors R(n) of n. From the Hypothesis it follows that for n in F

(A.2) limsup T - ^ — = 1

and, for fixed d>l,

(A3) limsup . = 14- d~ι.

d\R(n)

All this delineates the structure of sparsely totient numbers rather
clearly. For any ε > 0 and sufficiently large n in F, the number n, apart
from a repeated factor d < (1 4- ε) log n, is squarefree and divisible by all
primes up to (1 — ε)\ogn. Moreover, it is divisible by no prime larger
than (1 + ε) log n except possibly its largest prime factor p. Finally,
for fixed d at any rate, the prime p lies between (1 — ε) log n and
(1 4- d~ι 4- ε)log«. Everything here fits neatly in with the explicit con-
structions used in Theorem 1, the relations (A.2) and (A.3) corresponding
to the inequalities (a) and (b) respectively.

But we should emphasize that all these conclusions depend on the
above Hypothesis, which, if true, unfortunately seems well beyond the
reach of present techniques in analytic number theory.
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Sparsely totient numbers not exceeding 10 6, with factorizations

2

6
12
18

30
42
60

66

90
120
126
150

210
240

270
330
420

462
510
630

660
690

840
870

1050

1260

1320
1470

1680
1890
2310
2730

2940
3150

3570
3990

4620
4830
5460
5610
5670
6090
6930
7140

7350
8190

9240
9660
9870
10920

2

2.3
253
2.3

2

2.3.5

2.3.7
253.5
2.3.11

2.355
253.5
2.357
2.3.5

2

2.3.5.7
213.5
2.3

3
.5

2.3.5.11
253.5.7
2.3.7.11

2.3.5.17
2.355.7
253.5.11
2.3.5.23

2
3
.3.5.7

2.3.5.29
2.3.5*7

25355.7
2
3
.3.5.11

2.3.5.7
2

2*3.5.7
2.3

3
.5.7

2.3.5.7.11
2.3.5.7.13

253.5.7
2

2.35557
2.3.5.7.17

2.3.5.7.19
253.5.7.11
2.3.5.7.23
253.5.7.13

2.3.5.11.17
2.3*5.7
2.3.5.7.29

2-355-7.11
2*3.5.7.17
2.3.557

2

2.355.7.13

2
3
.3.5.7.11

253.5.7.23

2.3.5.7.47
213.5.7.13

11550
11970
12180
12390
13860
14280
14490
16170

16380

16590
18480
19110
19320
20790
21840
23100
24570
25410
30030
32340
32760
34650
35490
39270
43890

46410
48510
51870

53130
60060
62790

66990
67830
71610
78540
79170
80850
82110
90090
92820
94710
99330
103740
106260
108570
120120

122430
125580
131670
133980

2.3.557-Π
2.355.7.19
253.5.7.29

2.3.5.7.59
2! 3! 5.7.11

223.5.7.17
2.355.7.23

2.3.5.7511
25355.7.13

2.3.5.7.79
2^3.5.7.11
2.3.5.7513

2
3
.3.5.7.23

2.325.7.11
2*3.5.7.13

253.557.11
2.3

3
.5.7.13

2.3.5.7.11
2

2.3.5.7.11.13

2!3.5.7!11
22355.7.13

2.35557.11
2.3.5.7.13

2

2.3.5.7.11.17

2.3.5.7.11.19

2.3.5.7.13.17
2.355.7511

2.3.5.7.13.19
2.3.5.7.11.23

253.5.7.11.13
2.3.5.7.13.23

2.3.5.7.11.29

2.3.5.7.17.19
2.3.5.7.11.31

253.5.7.11 .17
2.3.5.7.13.29
2.3.557511

2.3.5.7.17.23
2.355.7.11.13

253.5.7.13.17
2.3.5.7.11.41

2.3.5.7.11.43

253.5.7.13.19
253.5.7.11.23
2.3.5.7.11.47

223.5.7.11.13
2.3.5.7.11.53
253.5.7.13.23

2.355.7.11.19
253.5.7.11.29

139230
150150
157080
159390
161070
164010
164220
180180
185640

188370
196350
210210
212520
219450
240240
244860
251160
270270
274890
278460
300300
307230
314160

330330
334950

360360
363090
371280
371910
390390

392700
395010
420420
431970
450450
510510
570570
600600
603330
630630
690690
746130
750750
780780
735400
810810
870870
881790
903210
930930

2.355.7.13.17
2.3.557.11.13

223.5.7.11.17
2.3

2
.5.7.11.23

2.3.5.7.13.59
2.3.5.7.11.71
253.5.7.17.23

25355.7.11 .13

223.5.7.13.17
2.355.7.13.23

2.3.557.11.17
2.3.5.7511 .13

2
3
.3.5.7.11.23

2.3.557.11 .19
2*3.5.7.11 .13
253.5.7.11.53
223.5.7.13.23

2.3
3
.5.7.11 .13

2.3.5.7511.17

25355.7.13.17
253.557.11 .13

2.3.5.7511.19
2*3.5.7.11 .17
2.3.5.7.11513

2.3.557.11.29

22355.7.11.13

2.3.5.7513.19
2^3.5.7.13.17
2.3.5.7511.23

2.3.5.7.11.13
2

253.557.11 .17
2.325.7.11 .19
253.5.7511 .13

2.3.5.7.11517
2.35557.11 .13
2.3.5.7.11.13.
2.3.5.7.11.13.
223.557.11.13

2.3.5.7.13517
2.355.7511.13
2.3.5.7.11.13.
2.3.5.7.11.17.

2.3.527.1" .13
253.5.7.11 .13'

223.557.11.17

2.3U5-7-11-13
2.3.5.7.11.13.
2.3.5.7.13.17.

2.3.5.7.11.17.
2.3.5.7.11.13.

17
19

23

19

29
19

23
31
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