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ISOMETRIES BETWEEN INJECTIVE TENSOR
PRODUCTS OF BANACH SPACES

KRZYSZTOF JAROSZ

Let K, H be real Banach spaces with strictly convex duals, and let
X, Y be any real Banach spaces. In this paper we find a general form of
isometries between the Banach spaces X ® K and Y έ H. As a conse-
quence we obtain that X <έ K and Y ® K are isometric if and only if X
and Y are isometric. We also derive a theorem characterizing Banach
spaces with a trivial centralizer.

0. Introduction. Let X, Y, K, H be real Banach spaces. The purpose
of this note is to study the isometries between the injective tensor products
X έ K and Y έ H. We find a general form of such isometries provided
K and H have strictly convex duals, and using this characterization we
investigate the following problems.

Problem 1. Under what conditions on K, H or on X, Y, K, H are the
spaces X ® K and Y έ H isometric if and only if either the spaces X, Y
and K, H or X, H and K, Y are isometric?

Problem 2. Under what conditions on X, K is every isometry from
X Θ K onto itself canonical?

We call an isometry T from X έ K onto Y έ H canonical if one of
the following possibilities holds:

(A) T is of the form

(1) T(x ® k) = Tλ(x) ® T2(k) for all x G l a n d i t G ί ,

where 7\: Jf -» Y, Γ2: K -> H are onto isometries.
(B) There is a Banach space Z such that X is isometric to Z έ H and

Y is isometric to Z ® K, and under this identification T is of the form

(2) T(z ® h ® k) = z ® k ® h for all z e Z, Λ e if, it e i£.

Notice that, in general, the implications in the problems do not hold.
For example, take four compact Hausdorff spaces Sl9...,S4 which are
pairwise non-homeomorphic but Sτ X S2 and Ŝ  X S4 are homeomorphic,
and put Xi = C(S,.) for / = 1,...,4, where C(5) is the space of all
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continuous functions on S with sup-norm. We have

X1QX2~ C(Sι X S2) = C(S2 X S4) = X3 β ΛΓ4,

but any two of the spaces -X), i = 1,..., 4, are not isometric.
The special case of the above problems—X = C(S), Y = C(S')—has

been studied by many authors, the most important of which, for our
purposes, is the monograph by Behrends ([1]), who proved, among other
things, that if the centralizers Z(K) and Z(H) of Banach spaces K and
H, respectively, are both trivial and if the spaces C(S) έ K and C(S') ® H
are isometric, then K and H, and also C(S) and C(S'), are isometric.

All fundamental results on centralizers and function module represen-
tations that we use are found in [1]. We use standard Banach space
terminology. The set of extreme points of a convex set C is denoted by
extC. For a Banach space Z, B(Z) denotes the closed unit ball of Z. For
Banach spaces U, V9 we denote by L(ί/, V) (K(U, V)) the Banach space of
all continuous (compact) linear operators from U into V, and by U - V
we mean that U and V are isometric. Throughout the paper we frequently
view a Banach space V as a subspace of C(exti?(F*)) or C(5(F*)),
where extB(V*) c B(V*) are equipped with the weak-*-topology. The
space X ό K is regarded as a subspace of C(ext B{X*) X ext B(K*)).

1. The results.

THEOREM 1. Let X, Y9 H, K be real Banach spaces and assume H* and
K * are strictly convex. If T is an isometry from X 0 K onto Y έ H, then
there are Banach spaces Z and X2 such that

M X2 and Y = ( Z ό K) θ ^ X29

and, up to the above isometries, the operator T is of the form

T(z ® h <S> k, x2 ® k2) = (z ® k <S> Λ, Γ 2 ( x 2 ® fc2)),

(3) Γ2(x2 (8) * 2 ) (* (8) A ) =

Φ: ext B(X£) -* L(K, H) is an operator from extB(X*) into the set
of isometries from K onto H.

Before proving Theorem 1 we formulate the following two theorems
as corollaries.
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THEOREM 2. Let X, Y, K be real Banach spaces and assume K * is
strictly convex. Then

(a) X ® K = Y ® K if and only if X ~ Y. If K has the approximation
property, then

(b) K(X, K) « K(Y, K) if and only ifX* « Γ*.

Proof. Point (a) is an immediate consequence of Theorem 1, and to
get (b) it is sufficient to notice that if K has the approximation property,
thenK(X,K)~ X* ό K.

The next theorem characterizes Banach spaces with a trivial central-
izer.

THEOREM 3. For any real Banach space X the following are equivalent:
(i) dimZ(X) = 1;

(ii) for any real Banach space K with K * strictly convex, every isometry
from X ® K onto itself is canonical,

(in) for any real Hubert space H every isometry from X ® H onto itself
is canonical,

(iv) for the two-dimensional real Hubert space H2 every isometry from
X ® H2 onto itself is canonical.

Proof. To prove (i) => (ii), assume dimZ(X) = 1, let K be a real
Banach space with a strictly convex dual, and let T be an isometry from
X S K onto itself. Notice that if X were a direct sum, with the sup-norm,
of two Banach spaces, then the orthogonal projections onto both compo-
nents would be in the centralizer of X. Thus by Theorem 1 and our
assumption we have two possibilities.

(1) There is a Banach space Z such that X =* Z έ K, and up to this
isometry T is of the form (2), so it is canonical.

(2) There is a linear isometry 7\ from X onto itself and an operator
T2: ext B(X*)-+ Isom(ϋ:, K) such that T is of the form

T(x 9*)(x* Θ k*) = JKXKJC XΓ^X KΛJKA:*)

for any λ;* in K* and any k in K. Then the operator S^*: X -* X,
defined by

is a multiplier on X. So by assumption Ŝ * k is just the multiplication by a
constant, for any A:*^^*, k & K. Hence T2 is a one-dimensional
operator, and this means that T is canonical of the form (1).
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The implications (ii) => (iii) => (iv) are trivial.
To prove (iv) => (i), assume Z( X) is not one-dimensional. Then there

is a continuous, non-constant function φ: exti?(^f*) -> [0,2ττ) such that
the operator Mφ: C(extB(X*)) -* C(ext£(ΛΓ*)): Mφ(f) = φ •/ leaves
X invariant. It is easy to check that the operator

T: X® H2-+ X® H2: T(x 0 h)(x* <8> A*) = X*(JC)Φ(JC*)(Λ),

where Φ(x*): H2 -* H2 is the operator of rotation through angle φ(x*),
is a well-defined, non-canonical onto isometry.

2. Proof of Theorem 1. The theorem is trivial when one of the spaces
K or H is one dimensional, so we assume dim K > 2, dim H > 2. We
start the proof with two propositions. The first is a special case of the
theorem of Ruess and Stegall (it can also be found in Tseitlin's paper
([3])), and the second is a very easy, strictly algebraic fact.

THEOREM ([2], [3]). Let X and K be real Banach spaces. Then
extB((X® K)*) = ext£(X*) ® extB(K*).

PROPOSITION 1. Let U and Vbe linear spaces and assume uλ <8> υλ 4- u2

® v2 = u3 <8> ϋ 3 , where ut e U, vt e F, / = 1,2,3. ΓΛeπ ίAe vectors

ul9 u2, u3 or vv υ29 v3 are proportional.

Proof. Let υ* be any linear functional on V. We have

Hence, if υ*(v3) Φ 0, then u3 is a linear combination of ux and w2; if
ul9 u2, u3 were not proportional, then the coefficients of this linear
combination would be uniquely determined, and this would mean

v*(v1) = const v*(v3), v*(v2) = const y*(u3) for any v* e V*.

Hence, vι\\v2 and ^ l l^

Now let X, Y, H, K, T be as in Theorem 1. Fix yg e ext B(Y*), and
let Λf, h\,h% be any linearly independent elements of ext B(H*). By the
Ruess-Stegall theorem

(4) Γ*(ext£(7*) Θ e x t £ ( # * ) ) = ext

so there are xf,x$,xξ e ext#(AΓ*) and k?,k%,kf e ext5(ϋ:*) such
that

Γ*(j>* ®Λ*) = JC* ® fc* for/= 1,2,3.
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Since H* is strictly convex, it follows that (A* 4- A£)/||A* + ^2II *s a n

extreme point of B(H*)9 so

x f ® fcf + x * β λ:* = Γ*(j>0* <8>(A* 4- A*J) =||Λ* + A*J|x* β A:*

for some x* e ext 2?(X*) and &* e ext 2?(jfiΓ*). Hence by Proposition 1
we have x*||x2

 o r k*\\k* The same arguments show that JC*||X* or
fc*||/r*, and x*||x* o r ^*H^*> a n < i ^ s proves that x*| |x2 | |x* o r

k* IIk* II ̂ * The strict convexity oί H* together with (4) now implies that,
for any >>0* e ext 5(7*), one of the following occurs:

(1) There is an element k* in extB(K*) and a linear, weak-*-con-
tinuous into isometry Φ: H* -» X* such that

Γ*( j 0 * β A*) = Φ(A*) Θ A:* for any A* in if*.

(2) There is an element x* of exti?(X*) and a linear, weak-*-con-
tinuous isometry Ψ: H* -> ^Γ* such that

Γ*( Jo* ® A*) = x* β Ϋ(Λ*) for any A* in Jϊ*.

Let us denote by Sx the subset of extJ5(7*) consisting of all points
y* for which the first possibility holds, and by S2 the subset of ext B(Y*)
for which the second holds. We have four functions:

Φ x: Sx X H* -* X*, %: Sx -> ext

Φ2: 52 -> extjB(X*), Ψ2: S2XH* -> 7Γ*

such that for any y* & Sλ

(5) Γ*( j * Θ A*) = Φi( j * , A*) β Ϋx(^*) for all A* e H*9

and for any j * e S2,

(6) Γ * ( j * 0 A*) = Φ 2 ( j*) β ^ ί ^ * * Λ *) f o r a 1 1 Λ * G H*

Using the same arguments for Γ"1, we get that ext B(X*) is the sum
of two disjoint subsets Sx and S2, and there are four functions:

Φ x: SλXK* ^ y*, %: Sx -> ext5(/ί*),

Φ2: 5 2 ^ ext Jϊ(y*), ^ 2 : S 2 X ί * - ^ H*

such that for any x* e Sx

(7) (Γ" 1 )*(x* β fc*) = Φx(x*, fc*) β ^ ( x * ) for all fc* e A:*,

and for any x* e S2

(8) (Γ" 1 )*(x* β ik*) = Φ2(x*) ® * 2 (x*, fc*) for all fc* e jRΓ*.
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It is easy to see that for any j / * ε S 2 the operator %(y*, •) is a
weak-*-continuous isometry from H* onto K*. Let 0 Φ j 0 * e Ŝ  (the bar
always denotes closure in the weak-*-topology), and let (y*)αGΓ c Sx be
a net convergent to ^ we can assume that the net (Φι(y£))aer

 t e n ds to
k$ *= K*. By (5) we have Λ;£ Φ 0, and we get that the net (Φx( j * , A*)) α e Γ

is convergent for any A* e i/*. Moreover,

Γ*(>;0* ® A*) = UmΦ 1 (^*,Λ*)®limψ 1 ( j*) for all A* e # * .

By the same arguments applied to formulas (6)-(8), we get that the
functions Φ,, Φ,, %,%, i = 1,2, can be extended to the weak-*-closures of
their domains, and formulas (5)-(8) remain valid for the extended func-
tions. They will be denoted by the same letters. These functions are not
uniquely determined by the formulas (5)-(8), and we will show that we
can assume Φ^1 = Φ2- To show this, let us notice that by applying (6) to
the extended functions we get

for all A* e H*9 for any y* ^ S2.

Hence, for any y* G S 2 - { 0 } there is a λ G R - {0} such that λ%(y*, •)
is an isometry. We can define an equivalence relation on S2— {0} by

yϊ~yξ if %{yΐ, ) = \%{y}, ) for some λ e R.
Multiplying the function y* •-» Φ2(y*) by a scalar function, and the
function y* -» %(y*, •) by its reciprocal, we can assume that both
functions are constant in each equivalence class and, for y* e S2 — {0},

l l^ί-y*) II = 11̂ *11 a n < i ^2(7*? ') i s an isometry.
By the same arguments Φ2 and Ψ2 may have the same properties.
From (6) and (8) we get

(9) y* 0 A* = Φ2(Φ2(>>*)) 0 %{Φ2{y*),%{y*, A*))

for any y* e S2 and all A* e if*.

Hence y*\\&2(®2(y*))> s o w e S e t J7* = ^ ( ^ ί ^ * ) ) ? w i t h lεl = l S i m i "
larly, for any λ e R, if λ^* e 5 2 we get

λ j * = ελΦ2(Φ2(λ>;*)) w i t h | ε λ | = l .

Hence, since the functions x* »-> ^ 2(x*, •) and 7* •-> ̂ ( 7 * , •) are
constant in each equivalence class, we get

%{Φ2{y*), %{y*, •)) = %{Φ2(λy*), %{λy*, •)),

so (9) gives ελ = ε for all λ e R.
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The above proves that by multiplying Φ2, in any point of its domain,
by 4-1 or - 1 , depending on whether ε = 1 or ε = - 1 , we get Φ2 ° Φ2 = Id^
and, by symmetry, Φ 2

1 = Φ2.
We now put

for i « 1,2.

We show that Xi9Yi9 i = 1,2, are Banach spaces, and X = Xx Θ^ X2,
Y = Yx Θ^ Y2. First we study the spaces Xλ and Yv

LEMMA 1.

(i) For any yf, y£ e S1 we have

or

(ii) // Φ^y*, )(H*) = Φ^^*, )(H*), then

φ i ( > Ί * ' •) = ^Φi(y*> •)> w h e r e λ== + 1 or λ = - 1 .

Proof. We first prove the following implication:

(10) If Φ X ( Λ *, Λf) = Φ ^ ^ , hi), then y?\\y; or AfPJ.

For this purpose notice that, since T* is onto and Φ2(S2) — S2, there
are y3* e 5 l 5 Λf e H* such that

Γ ( Λ ® AJ) = ΦX(>Ί*,Λ?)

We have

Γ*(j1* ® Af +yf 9 ht)

Hence by Proposition 1 we get hf||h* or ^llΛ*-
Now assume that j>f, j 2 * e Ŝ , and h%, Af, Af e jFί* - {0} are such

that Φ ^ , Af) = ΦΛtf, hi), but Φ ^ ^ , AJ) έ Φ ^ ^ * , / ί*) . Let j 4 * , y5*
e 5^ AJ, Af e ί ί * are such that

(π) ίΓ*^4* ® A i ^ = Φ l ^ * ' Λ S ) ® * 1 ^ * ) '
\ T*{ y* ® A?) = Φ^jf, Af + AS) ® %{y;).
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We have

T*{yf 9 hξ + y} 9 hi)

= *i(yϊ>hi)9%(yf) + Φ1(yϊ

= Φx{yf9hf + Λg) 9 %(yξ) = T(y* 9 A*).

Hence by Proposition 1 we have y*\\y* or A*||AJ. By (10) and (11) we
also have Af ||AJ, and AJ||Ag or y*\\y*. Hence we have the following
possibilities:

1°. Λ&HAf;

2°. yϊ\\yt>
3°. y*\\y*.
If AJ||Af, then

$ i ( JΊ*> ho) ||*i(Λ*> A*) = Φi(j2*, A*) G φ i ( ^ 2 * . ̂ * ) ,

which contradicts our assumption. If 2̂*11̂ 4*? then Φι(y£9H*) =
Φι(y*9 H*), and by the assumption, Φι(y*9 A )̂ ί Φι(y*9 H*)9 which
contradicts (11). If y*\\y*9 then, since (11) implies Φι(y*)II^1(^4*)? we get

j2*), and hence the vectors

Γ ( Λ β A*) = Φ^^f, A*) 0 ^ ( ^ f ) and

are proportional, so T* being injective gives y*\\y*9 which is impossible.
So we have proved (i). To end the proof of (ϋ), let us notice that if the

images of the isometric embeddings Φι(y*9 •) and Φι(y*9 •) coincide,
then, by (10), for any A* e H* there is a number λΛ* of modulus one
such that

So if we compose Φ1(.y1*, •) with the inverse map to Φ x(^*, •)
(restricted to its image), we get the isometry / from H* onto itself with
the property that every element of H* is its eigenvector; hence / = const
• Id^*, and this means that the function A* •-> λΛ* is constant, and we get
(ii).

For any y* e Sl9 the operator Φx(^*, •) is weak-*-continuous, so
(Φ1(y*9 •))* maps Z onto i/. Let us denote the restriction of (Φι(y*9 •))*
to X by Φί(j>*, •), and let Ω denote the subset {λΦf(j>*, •)'. y* ^ Sl9

λ = ±1} of the space L(X, H) equipped with the topology given by the
family of seminorms

[L(X,H)=)R*\h*(Rx)\: x e= X, h*
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We define maps Q and Qx:

Q: Sλ -> Ω β extB(K*), Q(y*) = Φf(y*9 •) β ^( .y*) ,

ρ x = Q ® IdextB(H*y Sx ® e x t # ( # * ) -+ Ω ® ext£(ϋ:*) Θ ext

By (5) the operators Q and Qτ are continuous and one-to-one, and by
Lemma 1 they are onto.

To prove they are onto, it is sufficient to show that, for any y$ e St

and k% e ext B(K*)9 there is a j * e 5 X such that Φx( j 0 * , •) = εΦx(>>*, •)
and fcj = «*i(^*), where |ε| = 1. Let h% e ext5(if*). Since Γ* is onto,
there is a ;;* e Sx and A* e extB(H*) such that

(12) Γ*(j;* β Λ*) = S φ o * , ΛJ) β fco*

On the other hand, from (5), we have

(13) T*{y* ® h*) = Φχ(J*, Λ*) β %(h*).

Hence Φ ^ ^ Λ Γ * ) Π Φ^j*,//*) Φ {0}, and by Lemma 1 there is an
ε e R, |ε| = 1, such that Φχ(.yo*> 0 = β*i(^*» •)• S o bY ( 1 2 ) ? ( 1 3) w e § e t

ΛJ = ε%(h ).
By definition we have

Ql\ω ®k*<8> Λ ) = (Γ-1)*(ω(Λ*) β ik*),

so β" 1 a n d Q\l a r e als°continuous.
Analogously we define Φf(jc*, •) e L(7, Jί) for x* e Sx, the set

Ω = {\Φ^(x*y •): JC* e 5j, λ = ±1}, and two homeomorphisms P and

P: 5X -»• Ω ®

Λ = P ® Id

The maps Q, Qv P, and Pι are homeomorphisms, so they define the
isometric embeddings:

Q°: Yx~> C(Ω® extB(K*)),

Ql: Y19 # -» C(Ω

extB(H*) ® extB(K*)).

By (5) and (7) the homeomorphism P1 ° T * ° βfL is of the form

Ω ® extB(K*) ® ext5(/ί*) 3 ω ® k* ® Λ*

-> φ(ω) ® h* ® fc* e Ω ® e
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where φ is a homeomorphism from Ω onto Ω. Hence, for any A"
ext B(H*) and k* G extB(K*) we have

Ω®{λ:*} Ω®{λ:*}®{Λ*} Ω®{/ι*}®{λ:*}

= ImP°

so the space Imβ°|Ω 0 ί A :*^ does not depend on the choice of A:*
ext B(K*), and we denote it by Z.

For any A* in ext B(H*)we have

czέί,

and by the same arguments, for any /c* in ext B(K*),

Xx « c Z Θ i/.

So Yx (Xτ) is isometric to a subspace of Z <S> K (Z <8> H) which contains
any element of the form z <8> k (z ® A) for z e Z, k ^ K, h ^ H, and
therefore, to end the proofs of Yλ — Z Θ K and Xx ~ Z ® H, it is
sufficient to show that Yl9 Xv and, as a consequence, Z, are complete. For
the sake of simplicity of notation, we will assume from now on, without
loss of generality, that Sx = Ω ® ext £ ( # * ) , Sx = Ω ® ext5(/ί*), φ =
idΩ, Z®HaX1QZ®H, Z®Ka YιczZ ® K, and, consequently,

(14) Γ*(ω <8> /:* ® A*) = ω (8) A* 0 k* for any ω ® k* G Ŝ

and A* e ext^(//*).

For any A* G H* and A: G K we define a continuous, linear operator

A β k)) foranyj* G e

Similarly, for any ί : * G ί * and A G /f we define a continuous, linear
operator 5Λ*>Λ: y -> -Y:

jc*(SΛ fΛ(.y)) = x* ® k*(T~ι{y® A)) for any JC* G

By (14) and (6) we have

(15) y*(Sh.tk(x))

I ω ® h*(x)k*(k) for y* = ω ® k*
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and by (14) and (8) we have

k*(y)h*(h) for x* = ω ® h* e §lt

)(y)*2(x*> k*)W for x* e S2.

By the above equalities, for any j ; 0 * = ω0 ® A* e S t we have

(17) xo*( V A o V * ( * ) ) = "o ® Λ*(*)**(*)

and for any xj G S 2 the equality Φ2 <> Φ2 = Id^ gives

(18) xS(Sk.th o V * ( * ) ) = *o*(*)*2(<M*o*)> Λ

To prove that Xx is complete and X = Xx Φ^ X2, we have to show
that for any x = (JC1 ?x2) G X we have (xv0) e X, and since the map
X B (xv x2) •-> (x1?θ) e X is linear and continuous and Z % H (alge-
braic tensor product of Z and H) is a dense subset of Xv it is sufficient
to show that (z0 ® ho,O) e X for any z0 e Z, h0 & H. For this purpose
fix x 0 = (z 0 Θ Λo, JC2)

 G X with llzoll ^ tl̂ oti = l We show that for any
ε > 0 there is a continuous operator ^4: JίΓ —> JίΓ (which depends on JC0

and ε) such that AxQ = (z0 ® ho,x'2) with ||x2 | | < ε, and, hence, by
completeness of X we get (z0 <8) Λ0,0) e X To this end fix x$ G SO and
let

A* €= extB(H*) be such that Af (Ao) = 1»
kx G JSΓ be such that ||Arxjj = 1 and
Ψ2(Φ2(x£), ΛfKiki) = 0 (such kx exists provided that dim K > 2),
A:* G extB(K*) be such that fcfi^) = 1.

By (17) for any JC* = ω Θ h* e Sx we have

ω 0 Λ * ( ^ f Λ o S A f Λ ( x 0 ) ) = ω

this means

and by (18) we get, by the same arguments,

s2

where

fxg(x*) = ̂ 2 (Φ 2
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is a continuous function on S2, of norm not greater than one and such
that fx*(x*) = 0. Hence, by the compactness of S29 for any ε > 0, by
iterating the action of the operators Sk* Λo ° Sh*tk for suitable k *, h *, and
kj, we get xf G X such that

x'\sλ

 = -̂ olsx a n c^ | A : * ( X / ) | < £ for any JC* e S2.

So we have proven that Xλ and yχ are complete; we have actually
proven even more—namely, that X2, Y2 are also complete and X =*
Xx θ ^ X2, 7 = ^ θ ^ 72. Thus to end the proof it is sufficient if we
restrict ourselves to investigating the isometry T between X2 ® K and
Y2 <S> H. Without loss of generality we can assume that X2 and Y2 are
subspaces of some function modules Π α G p I α and Ua(=rYa, respectively,
and that the identity embeddings πx: X2 »-> Π α e f Xa and mγ\ Y2 >-*
Π α e Γ 7 α give the maximal function module representation ([2]). Hence
any y* e S2 is of the form

for some y* e ext B(Yf) and a e Γ.

Let i f c e ί , A G ̂ , A:* e ϋΓ*, h* e i/*. By (18) the operator
SΛ*>Λ ° ^Λ*,A:: -^ -^ ̂  is of the form

where

/(« ® xα*) = Ψ 2(Φ 2(δα ® xα*), Λ*)(A:)^2(δα ® xα*, k*){h),

so it is just multiplication by a function /: S2 -> R. Since we have the
maximal function module representation, the function / does not depend
on x* but only o n α e Γ , and consequently the functions

and

also do not depend on ** but only on a e Γ. Hence by (8) the operator
(Γ" 1 )* is of the form

where φ: Γ -> f and Φα: Λ̂ * -• 7α*, Φα: .fiΓ* -> /ί* are weak-*-continu-
ous onto isometries.
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Composing the above formula with an analogous formula for T*9 we
get

Hence φ is a bijection between Γ and f, and we can assume Γ = f,
φ = idΓ, and T* is of the form

(19) Γ*(δα 0 y; 0 A*) = 8a * φ β (j£) 0 Ϋβ(* ),

where Φa: Y* -* Λ^, Ψα: i/* -> ΛΓ* are weak-*-continuous onto isome-
tries.

Put

A= Π Φ : ΓiXa-* Π n-
αeΓ αeΓ

The operator A is an onto isometry, and to conclude the proof we show
A{X) = y. By (19) and (16) for any h* e ext5(i/*), fc e ^ the opera-
tor SΛ*Λ o ̂ : ^ ^ ( y ) -^ X is of the form

*:(Sk*,h o A(w)(a)) = x:(w(α)) Φβ(fc

Hence the function Γ s α •-> Φα(fc*)(Λ) is continuous, and, since A~\Y)
c Π α e Γ XΛ is a function module, we get

for any we ^ ( y ) , k* (ΞextB(K*), h^H.

So to prove A~ι{Y) c X and, by symmetry, A~\Y) = X, it is sufficient to
show that the set

Lin{Sk^hoA(w): W G ^ ( 7 ) , fc* eextfi(A:*), h e i/}

is dense in ^ l " 1 ^ ) , but this is an immediate consequence of the definition

x*(Sk*,h(y)) = x* ® k^T-'iy ® h)).

Hence

and the set {Σj-yj 0 Λy: ^y e 7, Λy G H) is dense i n Γ έ i ί , and T'1 is
onto.

REMARK. AS proved by E. Behrends in the special case of Theorem 1
when X= C(S) and Y = C(S'), the assumption about K, H can be
weakened to effect dim Z(H) = 1 = dimZ(ίΓ). It is worthwhile to men-
tion that, in general, this strengthened form of Theorem 1 is not valid: to
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provide an example, let A be the disc algebra, i.e., the complex Banach
algebra of all continuous functions defined on the unit disc on the
complex plane which are analytic in the interior of the disc, and let AR

denote the Banach space A over the field of real numbers. Put Aj
R for the

injective tensor product of j copies of AR. We have dimZ(AJ
R) = 1 for

j = 1,2,... and

while

AJ
R = A*R only if j = i.
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