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THE COLLARS OF A RIEMANNIAN MANIFOLD AND
STABLE ISOSYSTOLIC INEQUALITIES

JAMES J. HEBDA

We define the p-dimensional collar Colp(M,g) of a compact
torsion-free Riemannian manifold (M, g) to be the greatest lower bound
of the masses of all the /7-dimensional currents which represent non-triv-
ial integral homology classes. When the cohomology ring of M satisfies
a certain non-degeneracy condition there is an inequality giving a lower
bound on the volume of (M, g) in terms of certain ^-dimensional collars
of (M,g). This is a version of the stable isosystolic inequality using
currents rather than singular homology.

In addition to deriving this version of the stable isosystolic inequal-
ity, we show for one class of manifolds that it is a sharp inequality.

THEOREM A. Let (M, g) be a compact oriented n-dίmensional Rieman-
nian manifold with Hλ(M, Z) = Z. Then

Vol(M,g) > ColΛM.^Col^ίM.g).

Furthermore, equality holds if and only if there is a Riemannian submersion
of (M, g) onto the circle of length Col^M, g) such that each level hyper-
surface {i.e. fiber) is a connected minimal submanifold of volume
Col^C M,g).

It is interesting to contrast Theorem A with Loewner's inequality [2],
[8] which gives a lower bound on the area of a torus in terms of the length
of the shortest non-contractible closed curve. In Loewner's theorem equal-
ity holds for a class of metrics which differ from one another by a
constant multiple. Whereas in Theorem A equality can hold for many very
different Riemannian metrics. As an example let M = S1 X S2. Certainly
the equation Vol(M, g) = Col^M, g)Col2(M, g) will hold for any of the
various product metrics g. It also will hold for some non-product metrics.
One of the latter can be constructed as follows. Let S2 be given the
canonical constant curvature metric, and let / be a non-trivial orientation
preserving isometry of S2. Then the group of integers acts as a properly
discontinuous group of isometries on the Riemannian product R X S2 by
defining n(t,x) = (t + n,fn(x)) where fn is the nίh iterate of /. The
quotient space under this action is diffeomorphic to M. Hence the metric
on R X S2 passes down to a non-product metric on M for which (1) the
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projection on the first factor is a Riemannian submersion and (2) the level

surfaces of the projection are connected minimal submanifolds. Thus by

Theorem A the volume of this metric equals the product of the 1- and

2-dimensional collars.

It is easy to see that the cohomology rings of the complex and

quaternionic projective spaces and of the product of spheres satisfy

appropriate non-degeneracy conditions, and thus that the stable isosys-

tolic inequalities hold for these spaces. (See Gromov [6], [7].) We show

that the cohomology ring of CPm X CPn satisfies a strong non-degener-

acy condition. Consequently the following theorem holds.

THEOREM B. Let M = CPm X CPn. Given any positive integers

il9..., ik such that ix+ + ik = m + n there is a constant C(iv . . . , ik)

> 0 such that

Vol(M, g) > C(il9..., ik) Col2,(M, g) Col2 J M , g)

for each Riemannian metric g on M.

There are analogous inequalities for the product of two quaternionic

projective spaces and the product of two Cayley planes. This can be

proved by modifications in the proof of Theorem B.

We conclude with an inequality bounding the first eigenvalue of the

Laplacian of (M, g) from above in terms of some of the collars of (M, g).

Norms on forms and cohomology. Let (M, g) be a connected com-

pact oriented ^-dimensional Riemannian manifold. The canonical volume

form of (Af, g) will be denoted by υg. Thus Vol( M,g) = jMvg is the

volume of (M, g). The pointwise inner product of two /?-forms ω and φ

on M is the function (ω, φ) defined by

ω A *φ = (ω9φ)υg

where * is the Hodge-star operator on forms. The corresponding pointwise

norm of the p-ΐorm ω will be denoted by |ω|. The following properties are

well known [5,10].

•1 = ϋg9

**ω = (-l)(np)pω for all /?-forms ω,

I *ω I = I ω I for all p-ίovms ω, and,

(1) |ω Λ φ | < Cλ{p,q\ n)\ω\ | φ | for all p-ίoτms ω

and #-forms φ where Cλ(p, q; n) is a constant

depending only on p, q, and n.
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REMARK. Always

1/2

and if either p or q equals 0,1, n — 1, or /?, then C^/J, r̂; Λ) = 1 because
in this case at least one of the two forms is simple. Clearly Cx(p9 q; n) =
Cx{q9p\ή). See [5].

By integrating over M one obtains the global inner product on forms:

( ( ω , φ ) ) = / (ω,φ)v for /?-forms ω and φ.

By Hodge Theory and the de Rham isomoφhism, every real cohomology
class a e HP(M, R) is uniquely represented by a harmonic /7-form. We
define the inner product of two cohomology classes a,β& HP(M, R) by
the formula

where ω and φ are the harmonic /?-forms representing a and β respec-
tively. || || will denote the corresponding norms for forms and for
cohomology classes.

The comass of a /?-form ω at the point x in M is

I ωx | 0 = sup{ ωx(X): X & Ap TXM is a simple /7-vector of length < 1},

and the comass of ω is

| |ω| | 0 = sup{|ωjo: x G M ) .

REMARK. One always has the following inequalities between the
pointwise norm and the comass of ω which are valid at every point of M:

/2\ | ω | 0 < | ω |

| ω | < C2(p;n)\ω\o

where C2(ρ\ n) < (n

p) is a constant depending only on Λ and p. Further-
more, C2(p;n) = 1 if /? equals 0, 1, n — 1, or w, and C2(p;n) =
C 2 (n-/>;n).See[5,l l] .

Norms on homology. A /^-dimensional current is a continuous linear
functional on the vector space of all p-forms endowed with the C°°-topol-
ogy. The mass |Γ| of a /^-dimensional current T is defined by

\T\ = sup{Γ(ω): ω is a p-ίorm with | |ω| | 0 < l } .
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Recall that if T is integration over a submanifold of M, then |Γ| is the
volume of the submanifold, and that if T is a singular chain, then \T\ is
the mass of T defined in Gromov [7]. The boundary of the ^-dimensional
current T is the (/?-l)-dimensional current 9Γ satisfying 3Γ(ω) = T(dω)
for every (p — l)-form ω. This turns the collection of all currents into a
differential complex whose homology is canonically isomoφhic to the real
homology of M [9]. We define the mass of a real homology class
a<=Hp(M,R)by

H | = i n f { | Γ | : T<=a).

This definition of mass compares with Gromov's VolΛ as follows.
||α|| < VolΛ(<z) at least when a is an integral homology class.

The norms defined in this and the preceding section all depend upon
the Riemannian metric g.

Duality. D(a) G Hn~p{M,R) denotes the Poincare dual class of
a e Hp(M, R). Likewise, D(a) e Hn_p(M, R) denotes the Poincare dual
o f α E HP(M, R). Thus, if a b e Hp+q_n(M, R) is the intersection class
correspondinig to a e Hp(M, R) and b e Hq(M, R), then D(a - b) =
D(a) w D(b) where w is the cup product.

LEMMA 1. For every a Ξ Hp(M, R) and every (n — p)-form ω repre-
senting D{a),

\\a\\< C2(p;n)f \ω\υ

Proof. Define a /^-dimensional current T by the formula

T(φ) = / co Λ φ
JM

for every /?-form φ. Then Γ E α. It follows from (2) that |φ| < C2(p; n)
for every p-ίorm φ satisfying | |φ | | 0 < 1. Hence, if | |φ | | 0 < 1,

T(φ) = f ω A φ = f (*ω,φ)ϋ
JM JM

|t;g< C2(p;n)f \ω\vg/ g f
where we have integrated Schwarz's inequality for the pointwise inner
product on forms and used |*ω| = |ω|. Thus

J M
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LEMMA 2. If a e Hn_p(M, R) andb e Hn_q(M, R\ then

\\D(a)\\\\D(b)\\>C3(p,q;n)\\a b\\

where C3(p,q; n) = (Cx(p,q; n)C2(p + q n))'1.

Proof, Let ω and φ be the harmonic forms representing D(a) and
D(b) respectively. By applying in succession Schwarz's inequality, (1), and
Lemma 1, we have

1 / 2/ \ 1 / 2

\ω\\φ\υg> C{ι(p,q\n)( |ω Λ φ\o
JM

( g
JM JM

> Cil{p,q;n)C?{p + q;n)\\a • b\\

because ω Λ φ is a form dual to the class a b and C2(n — p — q n) =
C2(p + q n).

COROLLARY 3. For every a e Hn_p(M, R)

(Vol(M,g))1/2\\D(a)\\>C4(p;n)\\a\\

where CΛ(p; n) — C2~
1(/?; n). If equality holds then the pointwise norm of

the harmonic form representing D(a) is constant.

Proof. Let ω be the harmonic form representing D(a). Then by
Lemma 1 and Schwarz's inequality,

M

1/2

= C2(p;n)\\D(a)\\(Vo\(M,g))1/2.

If equality holds then |ω| is constant by Schwarz's inequality.

The collars of (M, g). From now on suppose M is torsion free. Thus
the integral homology H*(M, Z) and the integral cohomology H*(M9 Z)
may be identified with subsets of H*(M, R) and H*(M,R) respectively
which form lattices of these real vector spaces.
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The /^-dimensional collar C o l ^ M , g) of (M, g) is defined by

Col , (M,g) = inf{||fl||: a e Hp(M9Z)9 aΦθ}.

REMARK. Coln( Af, g) = Vol(M, g).

Let det(Hp(M, Z)) denote the determinant of the lattice HP(M, Z)
in the inner product space HP(M, R). Recall the theorem of Minkowski
which states

det{Hp(M,Z))>u(bp)λb'

where λ = min{||α||: a G HP(M, Z), α Φ 0} and where u(b ) is a posi-
tive constant related to the Hermite constant depending only on the pth
Betti number bp of M. We will have need of the following inequality [4].

LEMMA 4. det(/P(M, Z » > w(i/7)λ1 λbp where λλ< < λ^
αr^ ίΛe successive minimums of the lattice HP(M, Z).

For notational convenience we set h(k) = (u(k))ι/k.
We say M satisfies the dual lattice condition in degree p if for all

a e Hp{M, R\ (auβ) [M] e Z for every β e Hn~p(M, Z) implies α G
HP{M, Z). This condition is important because of the following lemma.

LEMMA 5. {Berger [2].) If M satisfies the dual lattice condition in degree

p, then

det(Hp(M, Z)) det(Hn-p(M, Z)) = 1.

This condition is satisfied in all degrees by compact orientable
surfaces, the product of spheres, the complex and quaternionic projective
spaces, and the Cayley plane. Details may be found in [2]. Similar
computations to those in [2] show that CPm X CP", HPm X HPn, and
OP2 X OP2 also satisfy the dual lattice condition in all degrees.

PROPOSITION 6. Suppose M satisfies the dual lattice condition in degree
p, then

Vol(M,g) > C2(p;n)h2{bp)Co\p(M,g)Coln_p(M,g).

Proof. Let a e HP(M,Z) and β G Hn~p(M,Z) be the minimum
lattice points. Then D(a) G Hn_p{M,Z) and D(β) G Hp(M,Z) are
both non-zero. Hence by Corollary 3 and the definition of the collars of
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(Vol(M,g)) 1 / 2 H|> C4(p;n)\\D(a)\\

>C4(p;n)Coln_p(M,g)

and

(Vol(M,g))1/2\\β\\> C4(n - p;n)\\D(β)\\

>C4(n-p;n)Colp(M,g).

By Lemmas 4 and 5,

1 = det(Hp(M,Z))det(H"-P(M,Z))

>u{bp)\\atu{bn_p)\\βt-f

from which follows the inequality

by taking bp roots since bp = bn_p. Therefore

Vol(M,g)>Yol(M,g)h2(bp)\\a\\\\β\\

> h2(bp)C4(p; n)C4(n-p; n)Colp(M, g)Coln_p(M, g)

> h2{bp)C2(P;n)Colp(M,g)Coln_p(M,g)

since C4(n - p n) = C4(p; n).

Proof of Theorem A. Let (M,g) be a compact oriented w-dimen-
sional Riemannian manifold with Hλ{M,Z) = Z. Since M is oriented,
Hn_ι(M,Z) is torsion-free. Thus it is evident that M satisfies the dual
lattice condition in degree one. Thus by Proposition 6

Vol(M, g) > Col^M, g) C o l ^ ί M , g)

because h{\) = C4(l; n) = 1.
Suppose /: M -* R/LZ is a Riemannian submersion onto the circle

of length L such that every level surface (or fiber) is a connected minimal
hypersurface of (M, g). Let ω = f*(dt) where Λ is the canonical volume
form on the circle R/LZ. Then |co| = 1 because / is a Riemannian
submersion. Thus *ω = *ω/|ω| restricts to the volume form on each fiber
of /. Hence a simple calculation shows that d(*ω) = η A *ω where η is
the 1-form defined by η(X) = -g(H, X), H being the mean curvature
vector of the fibers of /. Consequently, d(*ω) = 0 because the fibers are
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minimal submanifolds. Hence all the fibers have the same volume V.
Because / is a Riemannian submersion, we may calculate Vol(M, g) by
first integrating over the fibers and then over the circle R/LZ. Therefore
Vol(M,g) = LK

Let a e Hλ(M, Z) = Z be a generator. Then, because the fibers of /
are connected, f*a generates HX(R/LZ, Z). Thus if s is a closed curve
representing a,

\ιω Jf 3
= L.

If T is any current in the homology class a, then fs and T are
homologous, i.e.

j - T = dS

for some 2-dimensional current S. Thus

j ω- T(ω) = dS(ω) = S(dω) = S(θ) = 0.

Therefore, because | |ω| | 0 = 1 (since |ω| 0 = |ω| = 1)

= L.

Consequently, Col^M, g) > L.
Let b ^ Hn_ι(M, Z) = Z be a generator and 71 a current in the

homology class b. Since the fibers of / also represent b, integration over
any fiber W is homologous to T. Therefore, since d(*ω) = 0,

T(*ω) = ί *ω = V.

But |*ω|0 = |*ω| = |ω| = 1. Hence |Γ| > |Γ(*ω)| = V. Consequently,
Co\n_λ(M, g) > V. Therefore

) > LV= Vol(M,g).

Since we have already proved the reverse inequality we conclude
C o l ^ M , g ) = L , C o l ^ ^ M , g) = V, and Vol(M, g) =

Conversely, suppose Vol(M, g) = Col^M, g)ColA?_1(M, g). Let ω be
the harmonic 1-form representing a generator a e Hι(M, Z). Then |ω| is
constant by Corollary 3 because by the proof of Proposition 6, if equality
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holds in Proposition 6, then it holds in Corollary 3. Therefore φ = ω/\ω\

is a harmonic 1-form with |φ | = 1. Since Hλ{M, Z) = Z, the periods of φ

are all integral multiples of a fixed number L > 0. (In fact L = \cc\~1.)

Thus we may define a map /: M —> R/LZ such that f*(dt) = φ by first

fixing a point x0 in M and then defining f(x) to be the value modulo L

of the integral of φ along any path joining x0 to x. (See [2].) / is a

Riemannian submersion because \f*(dt)\ = \φ\ = 1. Consequently *φ

restricts to the volume form on the fibers of /. Therefore, because

d(*φ) = 0 since φ is harmonic, the fibers of / are all minimal submani-

folds of M. Furthermore, they must be connected since each fiber repre-

sents the generator D{ά) of Hn_ι{M,Z). Finally the first part of the

proof shows that L = Col^M, g) and that Colw_ 1(M, g) is the volume of

a fiber.

Fully non-degenerate bilinear maps. Let E, F, and W be three

finite-dimensional real vector spaces, and let B: E X F —> W be a bilin-

ear map. Choose bases el9..., e{ of E and / 1 ? . . . , fk of F. Thus / = dim(£)

and k = dim(F). We will assume I < k. Form the / X k matrix A =

(B(enf)) whose entries are elements of W. The set of / X / submatrices

of A formed by deleting k — I columns can be indexed by the set Π

consisting of all subsets m of {1,2, 3, ...,&} of cardinality / so that the

submatrix Am is obtained by deleting the 7 th column if and only if j £ π.

There are (f) such matrices.

If we consider the entries of Am to be in the real symmetric algebra

over W, we can form the determinant d e t ^ ^ ) which is a homogeneous

element of degree / in the symmetric algebra.

Suppose the set ( d e t ^ ^ ) : m e Π} is linearly independent over R in

the symmetric algebra. It is a simple matter to show that this condition is

independent of the choice of bases of E and F. For first suppose

e[,..., e\ is a second basis of E related to ev ..., eι in one of the

following three ways:

Case 1.

Ce: I = I n -to υ

Case 2.
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Case 3.

•o i=Jθ

Thus, if we let A' be the matrix (B(e'i,fJ)) and A'π be the submatrix
corresponding to TΓ G Π, then, by the properties of the determinant, we
have:

Case I. d e t « ) = cdet(,4J
Case 2. det(ΛJ = det(ΛJ
Case 3. det(v4J = -det(ΛJ.

Clearly {det ί^) : π e Π} is linearly independent in every case.
Now suppose //,...,// is a second basis of E related to f l 9 . . . , fk in

one of the following three ways:
Case 1.

// = ί/ι i Φ i

Case 2.

Case 3.

Thus, if we let A' be the matrix (B(ei,fj')) and A'm be the submatrix
corresponding to TΓ G Π, then, by the properties of determinants, we
have:

Case 1.

v ί c d e t ( Λ j i f / o e * τ

Case 2.

if either i0 ί TΓ or

both/0,y0 ε TΓ

if/0 « •
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Case 3.

if ι0, jo£ TΓ

j if i0, 7 o G 7 Γ

./ \ / d e t ^ - ' ) i f fΌ G π> Λ' ) = {

dct(A^) if ι0 ί TΓ, j 0 e TΓ

Once again, in every case, {det(y4^): π e Π} is linearly independent.
Since any two pairs of bases for E and F are related to each other by

a sequence of the elementary changes of bases just described, we see that
( d e t ί ^ ) : T Γ G Π } is linearly independent for every pair of bases for E
and F if it is for one such pair. We will say B is fully non-degenerate if
the set (det(^4w): T Γ E Π } is linearly independent in the symmetric
algebra over W.

Suppose B is fully non-degenerate. Then for any bases el9..., et of E
and / 1 ? . . . ,/* of F and for every m e Π, det^,,) Φ 0. Recall that
det(^4w) is the sum of terms where each term is ± 1 times a product of /
entries chosen from Am in such a way that an entry has been chosen from
each row and column exactly once. Since d e t ί ^ ) Φ 0, one of these terms
must be non-zero. Thus we are able to choose / non-zero entries from Am

such that any entry has been chosen from each row and column exactly
once. Therefore, doing this for each TΓ, we can choose (f)/ non-zero entries
from A so that an entry has been chosen exactly (f )-times from each row
and exactly (fr^)-times from each column. Some entries may have been
chosen more than once.

LEMMA 7. Suppose w. H?(M9 R) X H\M, R) -> HP+%M, R) with
p + q < n is fully non-degenerate. Then

(det(H'(M,

>h(bp)h(bq)C3(p,q;n)Co\n_p_q(Myg).

Proof. Let bp = /, bq = k, and assume I < k. Let al9..., aι and
βv...,βk be bases of HP(M, R) and Hq(M, R) respectively which are
the successive minimums of the lattices HP(M, Z) and Hq(M, Z). Since
KJ is fully non-degenerate, we can choose (f)/ pairs (a^βj) with
ai w β• Φ 0 so that each α, is a member of a pair exactly (f)-times and
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each βj is a member of a pair exactly (fj^-times. For each pair
0 Φ D(at) D(βj) €= Hn_p.q(M, Z). Thus, by Lemma 2,

Multiplying all (f)/ of these inequalities together gives

>{C,(p,q;n)Coln_p_q(M,g)f)l.>{C,(p,q;n)Coln_p_q(M,g)f)l

Thus, by Lemma 4,

(det( #'(M, Z))f\det(H"{M,

> u(lf>u{kf--ίXc3(p, q; n) Coln_p_q(M, g)f)l.

The desired inequality follows by taking (f)/-roots.

PROPOSITION 8. Suppose M satisfies the dual lattice condition in degree
p for all 0 < p < n, and suppose u : HP(M, R) X Hq{M, R) ->
Hp+q(M, R) is fully non-degenerate for all p, q with p + q < n. Then,
given any positive integers il9..., ίk such that iλ 4- +ik = n, there is a
constant CM(iv ...,ik)>0 such that

Vol(M, g) > CM(ilt...,ik) Colh(M, g) • • • ColjΛf, g)

for every Riemannian metric g on M.

Proof. Set C(p,q) = h(b?)h(bq)C3(p,q;n) and H" = H?{M,R).
Then by applying Lemma 7 k times,

^ 1 > C(09n - /J Col^Λf, g)

1-2 > C ( i i > π _ f i _ /2)Coll2(Λf,g)

Since det(/ί0) = (Vol(M, g))ι/1 and 6̂  = δ^,^, the proof is completed
after multiplying these inequalities and applying Lemma 5.

REMARK. This is a version of the stable isosystolic inequality. It bears
comparison with the stable isosystolic inequality 7.4.C in Gromov [7]. In
fact his result implies ours. For if M satisfies the hypothesis of Proposi-
tion 8 and il9..., ik are positive integers satisfying ix + +ik = n, then
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the hypothesis that the cup products are fully non-degenerate implies that
the cup product form Hh(M) X XHik(M) -> Hn(M) is non-degen-
erate in the sense of §7.4 of [7]. Thus Gromov's result 7.4.C gives a
constant C and non-zero homology classes hj in Hi{M9Z) such that
No\R(hλ) VolΛ(ΛΛ) < C Vol(M, g). Since Col, (M, g) < VolΛ(λ,)
Proposition 8 follows. However we will prove Theorem B by showing the
cohomology ring of CPm X CPn satisfies the hypothesis of Proposition 8.

Proof of Theorem B. Let M = CPm X CPn with m>n.H*(M, R)
is generated as an algebra by two elements x9 y e H2(M, R) satisfying
xy = yx, xm+ι = 0 and yn+ι = 0. Thus H2p(M, R) has a basis consist-
ing of

xp

9 xp

xp, xp

xmyp~

l 9 . . . , ί

m v

, Λ

?/ is

x'~2y2,.

χp~2y\.
m — lyp — m-

this basis

• 9

-1
5

for H2?{M,R)

iίp

if n

i fp

and

<

<

>

Λ

m.

, . . . ,Λ

or

is this basisThus if
for H2q(M, R) where we assume / = b2p < k = Z>2<? a n d p + q < m + n,
then ef. ^ fj = e? ^ fy whenever i +y = /' + / . Hence, if we let
Z +y = eiκJfpthen the matrix 4̂ of the bilinear map \J\ H2p(M,R) X
H2q(M, R) -> H2p+1\M, R) is of the form

l+l Z / + 2 Z / + 3 * " * ZI+k f

The zt are distinct elements of the basis for H2p+2q(M, R) except that the
first few z/s and the last few, namely z 2 , . . . , z7 and z^+ 2,..., zι+k9 may
possibly be zero when p + q is large enough. In any case,
z/ + 1, z / + 2 , . . . , zι+k are linearly independent elements of H2p+2q(M, R).

Again recall that the determinant of a square matrix is the sum of
terms where each term is ± 1 times a product of entries chosen from the
matrix so that an entry is chosen once from each row and each column.
For 7τ E Π, we break down the determinant of Am as follows:

where Dm is the sum of the terms involving only z / + 1,.. ., zk+v and E^ is
the sum of the terms that contain at least one of z 2 , . . . , zl9 zk+2,..., zι+k.
We will prove the set (det^^) : T Γ E Π } to be linearly independent by
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first proving that {det(Aπ): π ^ Π} is linearly independent if {Dn:
*π e Π) is linearly independent, and then by proving that {D :̂ π e Π} is
linearly independent.

Suppose {Dπ: m e Π} is linearly independent, and let

Thus

Σ a,Dw + Σ amEm = 0.

But Σa^D^ is contained in the subspace of the symmetric algebra over

H2p+2q(M,R) spanned by simple homogeneous elements of degree /

involving only zι+1,..., zk+ι while Σa^E^ is contained in the subspace

spanned by simple homogeneous elements of degree / each of which

contains at least one of z 2 , . . . , z / ? zk+2,...,zι+k. Since these two sub-

spaces have only zero in common.

Hence, aπ = 0 for all 7 Γ G Π by the linear independence of the Dπ.
Therefore (det(^4w): T Γ G Π } is linearly independent.

We next prove {Dn: π e Π} is linearly independent by double
induction on / and k.

Clearly, {Dπ: T Γ G Π } is linearly independent if / = 1 and k > 1
since z 2 , . . . , zk+ι is linearly independent. Also, if I = k, {Dπ: 7 Γ G Π } =

{ ( Z / + I ) / ) ^s linearly independent because zι+ι Φ 0.
Now suppose that \ < I < k and that we have linear independence

for matrices of dimensions (I - 1) X (k - 1) and / X (k - 1). Decom-
pose Π into two disjoint subsets

Π = Π 0 U Π 1

where Π o is the set of all subsets of (1,2,..., k - 1} of cardinality /, and
Π 1 is the set of all subsets of (1,2,..., k) of cardinality / which contain
k. Πj is in one-to-one correspondence with the set IT of all subsets of
(1,2,..., k — 1} of cardinality / — 1 where T Γ E U ! corresponds to π' e
IT if and only if π = π' U {k}.

Let A0 be the / X (k - 1) matrix
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obtained from A by deleting the last column. Then, for m e Π o let

d e t ( ^ ) - D° + El

where D® is the sum of the terms involving only zι+v..., zk. By induction
{D®: π e Π o } is linearly independent. Observe also that if π e Π o , then

Dn = Dl + F,

where D® is as above and Fπ is the sum of the terms in Όm which contain

i
Let A1 be the (/ - 1) X (k - 1) matrix

z5

obtained from A by deleting the last column and the first row. For
π' e Π', let

det(^) = Dϊ + El,

where D^ is the sum of the terms involving only zι+ι,..., zk and Ef

m, are
the other terms. By induction, [D^r. τrf ^ Π'} is linearly independent.
Observe that if π e Π^ corresponds to m' e Π', then

where the terms in F£ must contain zk+1. If we set D\ = (D^ + F£),
then Dπ = zk+ιDl and the set {D\: π e Πx} is linearly independent. The
linear independence of the Ό\ follows easily from the linear independence
of the D^ and the fact that the D^ he in the subspace of the symmetric
algebra over H2p+2q(M,R) spanned by simple homogeneous elements of
degree / — 1 involving only zι+l9...,zk while the F^ he in the subspace
spanned by the simple homogeneous elements that involve zk+1. In short,
the Dr

m, and the F^ lie in two different subspaces which have only zero in
common.

Now, suppose

p IT tm—d IT IT

τreΠ 0

Then
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But the first term of the last equation lies in the subspace spanned by
terms involving only zι+l9...9zk whereas the last two terms lie in the
subspace spanned by terms which all involve zk+1. Since these two
subspaces have only zero in common,

flA° = 0= Σ aw

Since the D® are linearly independent, am = 0 for all m

Σ a

Π o . Therefore

Therefore

Therefore aπ = 0 for all m e Γ^ since the D\ are linearly independent.
This completes the induction step proving that {Dπ: T Γ G Π } is linearly
independent.

Therefore KJ is fully non-degenerate. Hence Theorem B follows from
Proposition 8.

Example. Proposition 8 does not apply to the product of more than
two projective spaces. For example, let M = CP2 X CP2 X CP2, and let
x9 y, z e H2(M, R) be generators of H*(M9 R) which satisfy x3 = y3 =
z3 = 0 and commute. With respect to the basis {x2, xy9 y

2, xz, z2, yz) for
H4(M, R) and the basis {x2y, x2z, xy2, y2z, xz2, yz2, xyz) for Hβ(M, R)
the bilinear map ^ : H\M, R) X H6(M, R) -> H10(M, R) has the ma-
trix

0

0

0

0

x2yz2

x2y2z

0

0

x2y2z

0

0

x2yz2

0

0

0

x2y2z

xy2z2

0

x2y2z

0

0

xy2z2

0

0

0

x2yz2

xy2z2

0

0

0

x2yz2

xy2z2

0

0

0

0

0

x2y2z

0

x2yz2

0

xy2z2

By direct calculation the submatrix formed by deleting the last column
has determinant equal to zero. This shows that ^ is not fully non-degen-
erate.

On the other hand, it seems safe to conjecture that the product of
more than two complex projective spaces satisfies stable isosystolic in-
equalities. To prove this one would need to show that the cohomology



COLLARS OF A RIEMANNIAN MANIFOLD 355

ring of the product of several complex projective spaces satisfies the
appropriate non-degeneracy conditions in the hypothesis of Gromov's
version of the stable isosystolic inequality.

The First Eigenvalue.

PROPOSITION 9. Let λ1(M, g) denote the first eigenvalue of the Lapla-
cian of (M, g). Suppose M satisfies the dual lattice condition in degree 1,
then

Proof. Set μp = inf{||α||: θ e HP(M, Z), a Φ 0}. Berger [3] proves
λλ < 4π2c~2μl where c is the (n — l)-dimensional carcan of (M, g) which
he defines as the infimum of the volumes of all compact oriented
(n — l)-dimensional submanifolds of M whose fundamental class is not
null-homologous in M. Since integration over every such submanifold
defines an (n — l)-dimensional current whose mass equals the volume of
the submanifold, Coln_ι(M, g) < c. Thus, by Lemma 4,

g) C o l ^ ^ M , g) < 4π2μt < 4τr

Now by Corollary 3 and Lemma 4,

Co\ι(M,g)<μn_ι(Vo\(M,g))
1/2

Raising the last inequality to the fourth power and multiplying it with the
previous inequality gives

, g) Colί(M, g) ColJU^M, g)

which by Lemma 5 is equivalent to the inequality to be proved since
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