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A CONTINUATION PRINCIPLE FOR FORCED
OSCILLATIONS ON DIFFERENTIABLE MANIFOLDS

M. FURI AND M. P. PERA

In the present paper we are concerned with the existence of
Γ-periodic solutions for the differential equation x(t) = f(t, .x( r)), t e R,
where / is a continuous time dependent Γ-periodic tangent vector field
defined on an ^-dimensional differentiable manifold M possibly with
boundary. We prove that if the Euler characteristic of the average vector
field w(p) = (l/T)fίff(t,p)dt is defined and nonzero and if all the
possible orbits of the parametrized equation x(t) = λf(ί,x(t)), / e R
and λ £ (0,1], lie in a compact set and do not hit the boundary of M,
then the given equation admits a Γ-periodic solution.

0. Introduction. Let M be an w-dimensional differentiable mani-
fold, possibly with boundary, and let /: R x M - > Γ ( M ) be a time
dependent Γ-periodic tangent vector field on M. In this paper we give a
topological result concerning the existence of Γ-periodic solutions for the
differential equation

(0.1) ±(/) «/(*,*(*)), * G R .

Roughly speaking, we associate to / a tangent vector field
w: M -» Γ(M), the average wind velocity

•Ό

and we show that if the Euler characteristic χ(w) of w is well defined and
different from zero, then the parametrized equation

admits, for small values of λ, Γ-periodic orbits which, for λ converging to
zero, approach points of M where the average wind velocity vanishes.
Moreover, still under the starting assumption χ(w) Φ 0, we prove that,
when suitable a priori estimates for the Γ-periodic orbits of (0.2)λ,
λ e (0,1], are ensured (i.e., if these orbits lie in a compact set and do not
hit the boundary of M), then (0.1) admits a Γ-periodic solution.

In other words, our result represents a sort of "continuation principle"
for forced oscillations on differentiable manifolds which, as we shall see
later, extends and unifies in a global setting many well known and
apparently not related existence results.
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For instance, when in particular M is an open subset of R", then
χ(w) is just the Brouwer degree of the map w: M -> R", which is well
defined provided that w~\0) is a compact subset of M. In this case we
extend a well known continuation principle for Γ-periodic orbits due to J.
Mawhin (see e.g. [12], [13]).

If for example M is a compact boundaryless manifold, then χ(w)
does not depend on w and coincides with the Euler-Poincare characteristic
χ(M) of M. In this case we obtain a classical result which ensures the
existence of Γ-periodic solutions for the equation (0.1) provided that
χ(M) Φ 0 (see e.g. J. G. Borisovic and J. E. Glikhlih [2] and references
therein).

In the case when M is a compact manifold, / does not depend on t
and points outward along the boundary of M (if nonempty), then
χ(f) = χ(Λf). So, our result includes the famous Poincare-Hopf theorem
which asserts that if χ(M) Φ 0, then / mush vanish somewhere.

Finally, let us mention the case when / is a Γ-periodic map from
R x R " into Rn which admits a guiding function, i.e., following Krasno-
seΓskij [8], a continuously differentiable function G: R" -> R with the
property that the inner product f(t,p) gradG(j^) is positive when the
vector p has sufficiently large norm. A classical result of KrasnoseΓskij [8]
asserts that if / admits a guiding function G such that G(p) -> + oo as
\\p\\ -» +oo, then (0.1) must have a Γ-periodic solution. This result can be
directly deduced from Mawhin's continuation principle (see [13]). How-
ever we want to show that it is also included in our Theorem 2.4. In fact,
observe that gradG(/?) Φ 0 when \\p\\ -> +oo. Thus, the condition
G(p) -> +oo as p -» +oo implies that if r > 0 is sufficiently large, the
set M = [p e R": G(p) < r) is a compact ^-dimensional manifold with
boundary 3M = G"1(r) and G has no critical points outside M. Thus,
χ(M) = χ(Rn) = 1 since M is a deformation retract of R" (to see this just
move outside M along the flow of -grad G). On the other hand / points
outward along the boundary G~\r) of M and the same does its average
field w. Therefore the starting assumption χ(w) Φ 0 is satisfied. To
deduce the existence of a Γ-periodic solution for (0.2) λ when λ = 1
observe that no Γ-periodic orbit of (0.2) λ, λ Φ 0, can hit the boundary of
M since, otherwise, / would be tangent to dM somewhere at some
instant, contradicting the condition f{t,p) gradG(p) Φ 0 for p e 3M,
ί €ΞR.

In what follows, given a subset A of M, we will denote by A and Fr^4
the closure and the boundary of A respectively. Moreover, for any
I c R x M and λ e R, we will indicate by Xλ the slice of X at λ, i.e.
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1. The Euler characteristic of a vector field. Let M be an «~dimen-

sional differentiable manifold embedded in some R* (k > n) and let
(Γ(M),7r) denote the tangent bundle of M, TΓ: T(M) -> M being the
bundle projection.

Let υ: M -> T(M) be a smooth tangent vector field. It is well-known
that if M is compact and, when the boundary ΘM of M is nonempty, if v
does not vanish on 8M, then one can associate to v an integer χ(u), the
Euler characteristic of v, with the properties that χ(v) Φ 0 implies
u(/>) = 0 for some p e M and that χ(r ) is equal to the Euler-Poincare
characteristic χ(M) of M (if 3M # 0, this last fact holds provided υ
points outward along the boundary). The reader is referred for example to
[7], [14], [15] for details concerning these topics.

Recently, A. J. Tromba [16], [17] extended the notion of Euler
characteristic of a vector field to the noncompact (and also not necessarily
finite dimensional) case. Nevertheless, his definition does not seem to fit
our purposes properly. For this reason, we shall introduce below a
different definition which turns out to be equivalent to Tromba's in the
finite dimensional case. Our definition is merely based on the theory of
fixed point index for absolute neighborhood retracts (ANR's) and will
enable us to deduce in a suitable form many properties which play an
essential role in proving our main results.

For completeness let us recall that since the manifold M is, in
particular, an ANR, then if φ: Ω -> M is any continuous map defined on
an open subset Ω of M and such that the set { G Ω ; Φ(p) = p) is
compact, it is possible to define the integer ind(φ, Ω)—the fixed point
index of φ in Ω—which satisfies all the classical properties (solution,
excision, additivity, homotopy invariance, normalization, commutativity)
of the Leray-Schauder index ([11]). A detailed exposition of the index
theory for ANR's can be found, for instance, in [2], [6].

Given v: M -> T(M) as above, let us now consider in M the
differential equation

(1.1) * ( 0 = ι>(x(0) , ' G R

For sake of simplicity, from now on we will assume M without
boundary (unless otherwise specified).

Denote

D = {(r, /?) G R X M: the solution of (1.1) which satisfies

JC(O) = p is continuable at least to t = r }

and let Z> be the slice of D at T.
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Let %: Dr -» M be the translation operator which associates to any

p e Dτ the value at time T of the solution of (1.1) satisfying x(0) = p. An

argument based on some global continuation properties of the flow (see

e.g. [10]) shows that D is an open set (containing {0} X M) and that Ψτ is

a smooth (and, thus, continuous) map.

In addition, consider the equation

(1.2) x(t) = τυ(x(t)), / E R , τ e R .

It is easy to see that D coincides with the set

{(r, p) Ξ R x M: the solution of (1.2) corresponding

to T and satisfying x(0) = p is continuable at least to t = 1}

and that % = Ψ^, where Φ{ associates to p e Dτ the value at time t = 1

of the solution of (1.2) satisfying x(0) = p.

Assume now that the set

Z = {p <Ξ M: v(p) = 0}

is compact.

We will show that for any relatively compact open subset Ω

of M containing Z there exists a positive constant ε = ε(Ω) such that

[-ε, ε] X Ω c D and %(p) Φ p for ^ E F r Ω , 0 < |τ| < ε. The first

assertion is obvious. As regards the latter, suppose by contradiction that

there exist τy -> 0, τy Φ 0, and {^ } y e N c FrΩ such that py = %(pj)

= ^ZiPj). Without loss of generality we may assume Pj - > / ? O E FΓΩ.

Denote by Xj( •), j e N, the solution of the initial value problem

lx(t) = τjv(

( ) j \χ(o)=Pj.

Since M is a submanifold of R*, the integrals JQv(Xj(t))dt make sense.

Hence

0 = Xj(l) - Xj(0) = rjj1 v{xj(t)) dt,

so that, as τy Φ 0,

(1.4) Jl v(xj(t)) dt = O for all j e N.

On the other hand, the continuous dependence on the initial conditions of

the solutions (τy( ), jcy ( )) of the system

*(t)-τ(t)o(x(t)), / e [ 0 , l ]

τ(ί) = 0

x(0) = Pj

τ(0) = Tj
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(which is clearly equivalent to (1.3) •) and the fact that any xy( •) is defined
in the whole interval [0,1] imply that the sequence {(?), *,(•))};<=N c o n "
verges pointwise in [0,1] to the (constant) solution (0,xo(-)) of (1.3)0

corresponding to (0, p0). Moreover, it is not hard to show that if Ώ is a
compact neighborhood of Ω and if γ = τaaxp^^\v(p)\, then any solution
of (1.2) with JC(O) £ Ω remains in Ώ for |τ | < η/γ, where η denotes the
(positive) distance between Ω and Fr Ω. Therefore, the convergence of the
sequence {Xj(')}JeN is dominated and so, passing to the limit in (1.4), we
obtain 0 = fov(xo(t))dt = υ(p0) contradicting the emptiness of
Z Π Fr Ω.

Thus, an ε with the required properties exists and this implies that the
fixed point index ind(Ψτ,Ω) is well-defined for 0 < |τ| < ε. Moreover,
from the homotopy invariance of the index, ind(Ψτ, Ω) is independent of T
in each one of the intervals (0, ε) and (— ε, 0).

The above considerations permit us to define χ(υ), the characteristic
of the vector field v in M, as follows:

χ(v) = lim ind(Ψτ,Ω).

The reason of the choice of negative r 's will be clear after the proof of the
normalization property.

Because of the excision property of the index, the above limit does
not depend on the relatively compact open set Ω, provided Ω contains Z.

Notice that in order to define χ(v) one might equivalently consider
Φ~ι

9 i.e. the translation operator associated with the equation
x(t) = -υ(x(t)), t G R, and set

χ(v) = lim+ ind(ψτ-\Ω).

If 0 is any open subset of M such that the set {p e Θ: υ(p) = 0} is
compact, then Θ is itself a boundaryless manifold and, so, it makes sense
to consider χ(v\Θ), that is the Euler characteristic of the restriction of υ
to Θ. In the case when 8M Φ 0 and the set {p e M: v(p) = 0} is a
compact subset of the interior M of M, then we still write, for brevity,
χ(y) instead of χ(υ\M).

The following properties of χ(v) are easy consequences of the given
definition and depend on the analogous properties of the fixed point
index.

Solution. If χ(v) Φ 0, then the vector field v has a zero in M.

Excision. Let 0 be any open subset of M containing Z. Then

x(v) = χ(v\Θ).
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Additiυity. Let Θ\ Θ" be open subsets of M such that Z c ^ u Θ"
and let Z Π Θf and Z Π 0 " be disjoint. Then χ(y) = χ(ϋ|0') + χ H # " )

Homotopy. Let z: M X [0,1] -» Γ(M) be a parametrized tangent
vector field such that {p e M: z(/?, μ) = 0 for some μ ^ [0,1]} is com-
pact. Then χ(z( , μ)) is independent of μ Ξ [0,1].

From the homotopy property it follows, in particular, that if M is a
compact boundaryless manifold, then χ(v) does not depend on v. If M is
compact and with boundary and if v does not vanish on 9M, then χ(v)
depends only on the restriction of υ to dM.

Topological inυariance. Let h: M -> N be a smooth diffeomorphism
and let ΰ: N -» Γ(λf) be the vector field which corresponds to v under h
(i.e. for each p e M, dhpv(p) = v(h(p))). Then χ ( ί ) is defined and

Proof. Since the set Z = {p e M: ϋ(^) = 0} is compact, it follows
that Z = {q e N: υ(q) = 0} is compact as well. Therefore, χ(v) is
defined. Let Ψτ and Ψτ be the translation operators corresponding to v
and v respectively and let Ω be a relatively compact open subset of N
containing Z. Then, % = h ° % <> A"1 in Ω and, for T sufficiently small,

on Fr Ω. Hence from the commutativity property of the index,

χ(ί ) = ind(Φτ, Ω) = ind(* τ o ^ o / i , h~ι(Ώ))

χ( ί ; ) . D

Normalization. Assume M to be compact and let υ: M -> T(M). If
dM = 0, then χ(v) is equal to χ(M), the Euler-Poincare characteristic
of M. If dM Φ 0 and v points outward along 3M, then again we have
χ(v) = χ(M).

Proof. In the case dM = 0 clearly Ψτ is defined in M for all r ^ R.
If dM Φ 0 and υ is outward on dM, then Ψτ is defined in M for all
T < 0 and the set Z of the zeros of v is a compact subset of the interior of
M. Therefore, in both cases, χ(v) is defined and, if Ω is an open
neighborhood of Z such that Ω c M, we have χ(v) = lim τ_0- ind(Ψτ, Ω).

On the other hand, there exists ε > 0, such that Φτ(p) Φ p for all
p ^ M\Ω, - ε < τ < 0 . Hence, by the excision property of the index

ind(Ψτ,Ω) = ind(Ψ τ,M), - ε < r < 0.
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Moreover, by the normalization property of the index

where Λ(ΨT) denotes the Lefschetz number of Ψr. Now, since Ψτ is
homotopic to Ψo, which is the identity over M, it follows that

Thus, χ(υ) = χ(M) as claimed. D

In the sequel, we will make use also of the following

PROPOSITION 1.1. Let v: M -> T(M) be a smooth vector field with a
compact set of zeros. Then

χ(-v) = (-ί)"χ(v)9 n = dimΛf.

Proof. By Sard's Lemma one can join v to a vector field w possessing
only isolated zeros by means of a homotopy which has a compact set of
zeros. Let p0 ^ M be such that w(pQ) = 0 and let h: Ω -> R" be a
smooth diffeomorphism of a bounded open neighborhood Ω of p0 in M
onto Λ(Ω). Because of the additivity property of the index, without loss of
generality we may assume that p0 is the only zero of w.

Thus, from the topological invariance of χ, we obtain

χ(w) = χ(w)

where w: A(Ω) -> R" is given by w = dhpo° w © /r1. On the other hand,
since w is a vector field of R", χ(w) coincides with the Brouwer degree
deg(>v, Λ(Ω), 0) and as it is well-known by the degree theory,

deg(-fc,ft(Ω),0) = (-l)"deg(w,A(Ω),0). D

In order to be able to derive, as direct consequences of our main
results of §2, those existence and continuation results of [2], [8], [12], [13]
stated in the Introduction, we need to extend the definition of χ(v) also
to the case when the vector field v is only continuous. To this end, let
{ VJ}JGN be a sequence of smooth vector fields uniformly approximating υ
on compact subsets of M.

Let Ω be a relatively compact open subset of M containing Z. It is
easy to see that there exists j 0 ^ N such that

Όj(P) φ 0 f o r aU P e F r Ω> j > Jo-

More precisely, one can choose j 0 in such a way that, for any j l 9 j 2 > j 0 ,
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Thus χ(Vj\Ώ,) is well-defined for j > j 0 and, from the homotopy invari-
ance,

Therefore, we can define

x(v) =

The same argument shows that the given definition is independent of
the choice of the approximating sequence and that all the properties listed
above (solution, excision etc.) still hold.

2. Global branches and continuation principles. Let M be an n-άi-

mensional differentiable manifold and consider in M the differential
equation
(2.1) * ( / ) - λ / ( ί , *(/)), λ > C U < = R ,

where /: R X M -> T(M) is a continuous vector field periodic of period
T > 0 with respect to t.

A pair (λ,/?)G[0,oo)XM will be called a starting point for the
equation (2.1) if (2.1) has a Γ-periodic C1 solution x: R -> M correspond-
ing to λ and satisfying the initial condition x(0) = p. A point p e M will
be called an emanating point (or a bifurcation point) of Γ-periodic orbits
for (2.1) if any neighborhood of (0, p) in [0, oo) X M contains nontrivial
(i.e. with λ Φ 0) starting points.

Let U be an open subset of [0, oo) X M. By a global branch (of
starting points) in U we shall mean a noncompact subset of U which is
the closure (in U) of a connected set of nontrivial starting points. Roughly
speaking, a global branch is a closed connected set of starting points
which is unbounded or (if bounded) must contain points which are
arbitrarily close to the boundary of U in [0, oo) X M. In other words it
intersects the complement of any compact subset of U.

Given a global branch C observe that any p e M such that (0, p) e C
is an emanating point. In what follows we shall say that C emanates from
a subset X of M if the slice [p e M: (0, /?) e C} is nonempty and
contained in X.

We are interested in finding conditions which ensure the existence of
global branches of starting points in U.

To this end, let us associate to equation (2.1) the autonomous vector
field w: M -> T(M) defined by

Tf(t,p)d*.
o
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Without loss of generality we may assume (in case replacing M with
its interior M) that M is a boundaryless manifold. Suppose in addition
that the set

(recall that UQ denotes the slice of U at λ = 0) is compact. So, the Euler
characteristic of w in Uo, χ{w\ £/0), is defined.

In the sequel, we shall also assume, for each (λ,p) e U, the global
continuation on [0, T] of the solutions of the Cauchy problem

(2.2)

Clearly this property is satisfied for instance when M is a compact
manifold without boundary.

Under the above assumptions we can state the following:

THEOREM 2.1. Let M, /, U9 w be as above. Assume in addition that f is
smooth and that the restriction of the vector field w to Uo has nonzero Euler
characteristic.

Then the equation (2.1) admits a global branch of starting points in U
emanating from the set {p e Uo: w(p) = 0}.

The proof of Theorem 1 requires the following point set topology
result (see [1], [9, Chapter V]).

LEMMA 2.2. Let X be a compact metric space and let A, B be nonempty
disjoint subsets of X. Then either A and B are separated in X {i.e. there
exists a pair {FA,FB) of closed disjoint subsets of X such that FA D A9

FB D B, FA U FB = X)9 or there exists a connected subset C ofX\ {A U B)
whose closure meets both A and B.

Proof of Theorem 2.1. Let
z = [P e Uo: w{p) = 0}

and

u{(λ>/>) e U: λ > 0, (λ,/>) is a starting point of (2.1)}.

The assumption χ(w\UQ) Φ 0 and the solution property of the Euler
characteristic imply that Z and, thus, S are nonempty. Let us show that S
is closed in U (with respect to the relative topology). Take (λo,po) e U
and a sequence {(λj9pj)}jeN) in S converging to (λ 0 ,p 0 ). Assume first
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λ 0 Φ 0 and denote by Xj( •)> j G N, the solution of the Cauchy problem

As in §1, the sequence {*/(')}/eN converges pointwise to xo( ) in [0, T].
Thus, in particular,

(λ o ,x o (Γ)) = Urn (XJ9Xj(T)) = lim (λj9pj) = (λo,po),

so that (λ 0, p0) is a starting point of (2.1) and, hence, it belongs to S.
In the case λ 0 = 0, we need to show that p0 belongs to Z. This is

obvious if λy = 0 for infinitely many j since w is continuous. Otherwise,

there exists jr e N such that λj Φ 0 for j > j and, as

0 = Xj(T) - Xj(0) = λ y / o

Γ /(ί ? xj(tj) dt,

we obtain

It = 0 for all j > j .

Now, the same argument already used in §1 shows that we can pass to the
limit in the above equality. Thus, f(ff(t,xo(t))dt = 0 and, since (as
λ 0 = 0) the solution JCO(') *S the constant function xo(t) Ξ p0, it follows
that

Γ
i.e. p0 e Z.

Our aim now is to prove that if V is any relatively compact open
subset of U containing {0} X Z and such that V c U, then S intersects
FrK

To this end let us consider the equation

(2.3) x(t) = λ[μ/(/,x(0) +(1 " μ)*(x(t))]9

t e R, λ > 0, μ G [0,1]

and let

W = {(λ, p) e U: the solution x( , λ, μ) of (2.3) satisfying

x(0)=p is defined in [0,T] for all μ e [ 0 , l ] } .

Let Hτ: W X [0,1] -> M denote the translation operator which asso-
ciates to any (λ, p, μ) the value at time T of the solution of (2.3) satisfying
x(0)=p.
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It can be shown (see e.g. [10]) that W is an open set (containing the
compact set {0} X Vo) and that Hτ is smooth in W X [0,1].

Let Ω be an open subset of the slice Vo such that Z c Ω c Ω c Vo

and take ε > 0 such that [0, ε] X Ω c W Π V. Clearly, we may also
choose ε in such a way that Wλ z> Vλ for 0 < λ < ε. Observe that this
implies, in particular, that the operator p •-> Hτ(λ,p,l) is defined in Vλ

for 0 < λ < ε. In addition, we may assume, reducing ε if necessary, that

{(λ,p9μ) €= F X [ O , 1 ] : Hτ(λ9p9μ) = p9θ < λ < ε )

c(0,ε] X Ω x[0,l]

(the proof of this fact is similar to the one given in §1 in introducing our
definition of the Euler characteristic of a vector field).

Consequently, for any 0 < λ < ε and μ e [0,1], the fixed point index
ind(i/Γ(λ, ,μ),Ω) is well-defined and independent of λ and μ. More-
over, from the excision property of the index

(2.4) i n d ( # r ( λ , ,1),Ω) = i n d ( # r ( λ , , l ) , F λ ) ,

and, since the translation operator ΦΓ : U -> M associated with equation
(2.2) clearly coincides with the operator (λ,/?) »-> i/Γ(λ,/?,l) on the set
{(λ, p) e V: 0 < λ < ε}, we may write

(2.5) ind(Hτ(λ9 ,l),K λ) = ind(ΦΓ(λ, ),Kλ).

Suppose now, by contradiction, that S Π Fr V = 0 . Observe that {(λ, p)

G S : λ > 0} is nothing else but {(λ, p) e U: Φτ(λ,p) = p, λ > 0}
and that, S Π V being compact, there exists λ > 0 such that
({λ} X Vχ) Π S = 0 . Therefore, from the generalized homotopy invari-
ance property of the index,

(2.6) ind(ΦΓ(λ, ),F λ) = ind(ΦΓ(λ, )9Vj) = 0.

Hence by (2.4), (2.5), (2.6), for 0 < λ < ε, we obtain

(2.7) i n d ( # r ( λ , ,0),Ω) = ind(if r(λ, ,1),Ω) = 0.

On the other hand, recalling the definition of the Euler characteristic of a
vector field given in §1 and taking into account of Proposition 1.1, it
follows, for 0 < λ < ε, that

(2.8) ind(//Γ(λ, ,Ω)) = χ(-w\U0) = (-l)nχ(w\U0).

Since by assumption χ(w|t/0) Φ 0, the equality (2.8) contradicts (2.7).
Thus S ΠFrVΦ 0 as claimed.

We are now in a position to prove the assertion of the theorem.
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According to the notation introduced above, we need to show that
there exists a connected subset of S n {(λ, /?) e U: λ > 0 } whose closure
in U is noncompact and emanates from Z.

In order to do this, let us construct the one-point compactification of
U, by adjoining the point oo.

Set U = U U {oo}.A subset 0 of U is an open neighborhood of oo if
oo e φ and U\0 is compact. Clearly U is a compact Hausdorff space
and {oo} is closed in U. Consider the compact metric subset of U9

S = S U {oo}. Observe that {0} X Z and {oo} are disjoint because of
the compactness of Z. It is not hard to see that our assertion reduces now
to show that there exists a connected subset o fSΠ{(λ ,/?)e U: λ > 0 }
whose closure in S intersects both {0} X Z and {oo}. This will follow
from Lemma 2.2, provided that {0} X Z and {oo} are not separated in S.
By contradiction, suppose they are separated, that is suppose there exists a
pair of disjoint compact subsets of S, say K and //, such that K z> {0} X
Z, i/z>{oo},jKΓU/ί=5. Thus, U being Hausdorff, there exists an open
neighborhood Voί HinU such that oo <£ cl^F and S Π (c l#F\ V) = 0
(cl^ denotes the closure in U).

Clearly, the set V = V Π U is a relatively compact open subset of U
containing {0} X Z. Therefore, by the first part of the proof, the set
S Π FrF, which coincides with S Π ( c l ^ F \ V) is nonempty. A con-
tradiction. Hence {0} X Z and {oo} are not separated in S as required to
achieve the proof of the theorem. D

Theorem 2.1 above is a particular case of the following more general
result.

THEOREM 2.2. Let M, /, w be as in Theorem 2.1. Consider in M the
equation

(2.9) x(t) = λ/(ί, JC(O), ί e R, λ G [\19 λ 2 ] ,

with λλ Φ λ 2 and — oo < \x < 0 < λ 2 < oo. Let U be an open subset of
[ λ 1 , λ 2 ] X M and assume that the Euler characteristic of the restriction of w
to Uo is defined and nonzero.

Then the equation (2.9) admits in U Π ((λ1? λ 2) X M) a connected
branch of starting points whose closure C {in U) has the following proper-
ties:

(i) the set {p e Uo: (0, p) e C) is nonempty and contained in {p e Uo:

(n)if λ 2 > 0 [respectively λλ < 0] the set C + = {(λ?jp) e C: λ > 0}
C~= {(λ,/?) G C : λ < 0}] w either noncompact or intersects

[resp. Uλi].
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The proof of this result is in the line of that of Theorem 2.1 but
requires a little more technicalities. Thus, we omit the details. We only
point out that in the case when λx < 0 and λ 2 > 0 one may need to
construct a two-point compactification of U in order to deduce assertion
(ii). An analogous construction has been considered in [5] where, however,
the manifold M was compact.

Our aim now is to remove the smoothness assumption on the vector
field /. To this end, observe first that the global continuation on [0, T] of
the solutions of problem (2.2) is equivalent to the fact that, for any
(λ, p) G U9 the set attainable in the time interval [0, T] by the solutions of
(2.2) is compact. Hence, taking into account this, it is not hard to show
that the global continuation property implies the following:

(c) For any compact subset K c U the set

A([0, T], K) = {p G M: there exists a solution x( ) of (2.1)

with (λ,x(0)) e Kandx(τ) = p for some τ e [0,7"]}

is compact.

We will now state the "continuous" version of Theorem 2.1.

THEOREM 2.3. Letf:RxM^> T(M) be a T-periodic in t continuous
vector field. Assume that χ(w\U0) Φ 0. Then the same conclusion as in
Theorem 2.1 holds.

Proof. Let Z and S be as in Theorem 2.1. With the aid of Ascoli's
theorem it is not hard to see that property (c) guarantees that the set S is
still closed. So, the assertion will follow again from the point set topology
argument used in Theorem 2.1 if one can show that S intersects the
boundary of any relatively compact open subset V of U such that
{ O j X Z c F c F c ί / . In order to prove this, consider a sequence
{ fj}jeN°f Γ-periodic smooth vector fields uniformly approximating / on
compact subsets of R X M. For each j e N, define

and

Sj = ({0} X [p e ί/0: H>(/>) = θ}) u { ( λ ϊ j P ) E ί / : λ > 0,(λ ϊ j P )

is a starting point of x(ί) = λfj(t,x(t))}.

Clearly, the sequence {wy}y e N uniformly approximates the vector field w
associated with / and χ( wy| Vo) Φ 0 for j > j .
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Therefore, by Theorem 2.1, any Sj(j > j) contains a global branch of
starting points of x(t) = λfj(t,x(t))> t e R, emanating from {p e Uo:

j

Thus, in particular, for each j there exists (λj9pj) e SjΠFτV,
j Φ 0. Without loss of generality we may assume

We will prove that (λ0, p0) belongs also to S. Let Xj(m) be the solution of

By using again property (c), it can be shown that the sequence {Xj( )}J e N

admits a subsequence uniformly converging on the interval [0, Γ] to a
solution xo( •) of the problem

lx(t) = λof(t,x(t)), ί € Ξ R

\x(O)=Po

(a proof of this fact can be obtained as in [4, Theorem 2.4]). Since
Xj(T) = pj9 this implies xo(T) = p0 and, if λ 0 = 0, w(p0) = 0. Thus
(λo> Po) e s s o t h a t S ΠFrVΦ 0 as required. D

If M is a compact manifold, then the Euler characteristic of M,
χ(M), is defined and the following consequence of Theorems 2.2 and 2.3
holds.

COROLLARY 2.1. ([5]). Let M be compact with χ(M) Φ 0 and let
f: R X M -> T(M) be a T-periodic continuous vector field which, if dM Φ
0, points inward (or outward) along dM for each t e R. 77ze« the equation

(2.10) JC(O = λ/(/,jc(O), / e R, λ e R

admits a connected branch of starting points intersecting {0} X M in a
nonempty subset of {0} X [p e M: Jj f(t, p) dt = 0} and whose projec-
tion on R is onto.

Proof. Let w: M -> Γ(M) be defined by w(/>) = (l/Γ)/ 0

Γ/(/, p) Λ.
We prove the corollary when dM Φ 0 (the other case is easier). Since M
is compact and w(p) Φ 0 for all /? e dM (w is, in fact, outward or
inward on 9M), the Euler characteristic of the vector field w is well-
defined. Assume / to be inward. So, the global continuation on [0, T] of
the solutions of (2.2) is ensured. Moreover, by the normalization property
and Proposition 1.1, we obtain that χ(w) = ( - l ) " χ ( - w ) = ( - l ) n χ ( M ) .
Thus, χ(w) Φ 0.
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Therefore, Theorems 2.2 and 2.3 apply yielding the existence of a
closed connected branch C c R x M o f starting points of (2.10) intersect-
ing {0} X M in a subset of {(0,/?): w(p) = 0} and such that C + =
{(λ,/?) <E C: λ > 0} and C"= {(λ,/?) e C: λ < 0} are noncompact
(closed) subsets o f R X M .

Now, since by the assumption on /, no starting point of (2.10) may
belong to 3M, the sets C+ and C~ turn out to be in fact noncompact
closed subsets of R X M. Consequently, C is unbounded with respect to
positive and negative values of λ as claimed (recall that M is assumed to
be compact).

Observe finally that the case / outward on dM can be reduced to the
previous one by defining the inward vector field f(t, p) = —/(— t,p) and
by noting that if y( ) is a solution of y(t) = λ/(/, y{t)) corresponding to
a fixed λ e R , then x{t) = y( -t) is a solution of x(t) = λf(t, x{t)). D

Let us point out that in Theorems 2.1-2.3 and, implicitly, in Corollary
2.1, we have assumed that the solutions of the Cauchy problem (2.2) are
defined in the whole interval [0, T], It is not hard to convince oneself that,
in order to deduce the existence of global branches of starting points this
hypothesis seems to be reasonable. However, in the case when one is
concerned with merely existence results, the global continuation of the
solutions is usually replaced by suitable a priori bounds on the Γ-periodic
orbits of the system (see e.g. [8], [12], [13]). This viewpoint will be
illustrated by Theorem 2.4 below which makes precise the continuation
principle for forced oscillations roughly described in the Introduction of
the present paper.

THEOREM 2.4. Let M be possibly with boundary, /: R X M -> T(M) a
T-periodic continuous vector field and w: M -> T(M) the average vector
field associated withf. Assume that:

(i) the set { p e M: w(p) = 0} is a compact subset of the interior M of
M;

(ii) the Euler characteristic χ(w) is nonzero)
(ϋi) all the possible T-periodic orbits x( ) of the parametrized equation

(2.11) jfc(0 = λ/(ί,*(0), λ e(0,l], t e R,

lie in a compact subset of M.
Then the equation

x(t)=f(t,x{t)), r e R ,

has a T-periodic solution.
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Proof. Assume first that / is smooth. By (i) and (iii), there exists a
relatively compact open subsets Ω of M such that Ώ a M, the set
{p e M: w(p) = 0} is contained in Ω and, if x is a Γ-periodic solution
of (2.11), then x(t) £ Fr Ω for all t e R. Let φ: M -> [0,1] be a smooth
function with compact support contained in M and such that Φ(p) = 1
for each /> e Ω. Define /: R X M -> Γ(M), by /(*,/>) = Φ(p)f(t,ρ).
Clearly, for each (λ,/?)e[0,oo)XM, the solution of the Cauchy prob-
lem

χ(0)-p

is globally continuable on [0, oo). Moreover, if w: M-* T(M) is the
average vector field given by w(p) = (1/Ύ)/O

Γ f(t,p)dt, we obviously
have w = φw. So, by (ii) and the localization property, it follows that
χ(w|Ω) = χ(w|Ω) = χ(w) Φ 0. Hence Theorem 2.1 applies to / and w
yielding the existence in U = [0,1) X Ω of a global branch C of starting
points (λ, p) of the equation

emanating from the set { p e Ω: w( /?) = 0}. Consider now the following
subset of C:

Ci = {(λ,/0 G C : the (periodic) solution x( ) of (2.12)

corresponding to (λ, p) is such that x(ί) e Ω for all t}.

It is clearly Cx Φ 0 since C emanates from the nonempty set {p e Ω:
iv(/>) = 0}. Moreover, it is easy to see that Cλ is open and closed in C.
Thus, C being connected, we have Cλ = C. This implies that C turns out
to be in fact a global branch of starting points of equation (2.11). Observe
now that, since C is non-compact and closed in U = [0,1) X Ω, the
closure in [0, oo) X M of C must intersect the boundary of U. Moreover,
by the continuous dependence of the solutions on the initial conditions, it
follows easily that any (λ, p) e C Π Fr U is a starting point of (2.11) and,
if λ = 0, is such that w(p) = 0. On the other hand, by the assumption on
Ω, we have λ < 1. Thus, there exists a starting point of (2.11) of the form
(1,/>), i e the equation x(t) =/( ί , *(/)), / e R, has a Γ-periodic orbit
(which lies in Ω).

Let us go back to the case when / is only continuous. Take Ω as
above and let {fj}JGN be a sequence of Γ-periodic smooth vector fields
uniformly approximating / on R X Ω. It is not hard to see that, for j
sufficiently large, the f/s and the associated w/s satisfy the assumptions
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(i), (ii), (iii) of this theorem in the boundaryless manifold Ω. Hence, by the

first part of the proof, any equation x(t) = fj(t,x(t)) has at least a

Γ-periodic orbit Xj lying in Ω. To complete the proof, it suffices now only

to observe that, by Ascoli's theorem, the sequence {x y} y e N has a subse-

quence uniformly converging to a (Γ-periodic) solution of the equation

x(t)=f(t,x(t)),teΈL D

REMARK. Results analogous to the previous ones are still valid for

equations of the form

*(/) = λ(g(λ, /, *(/))), λ e R, / e R

with g: R X R X M -> T(M) a Γ-periodic in t continuous vector field,

provided that in all statements one replaces the vector field w by

z: M-+ T(M) defined by:

z(p)= Γ g(0,t,p)dt.

Observe for instance that any smooth vector field (λ,t,p) »-> h(λ,t,p)

such that A(0, t, p) = 0 for all (t, p) e R X M can be written in the form

λg(λ,t,p) with

/*1 o /
g(λ,ί,/?) = / ^γ(sλ,ί,
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