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INVERSE THEOREMS FOR MULTIDIMENSIONAL
BERNSTEIN OPERATORS

Z. DITZIAN

Let B,f be the m-dimensional Bernstein polynomials on a simplex
or on a cube. The class of functions for which ||B,f — f|| = O(n™®) is
determined. That is, necessary and sufficient conditions on the smooth-
ness of f in the simplex or the cube and especially near their boundaries
are given so that ||B, f — f|| = O(n™%). Interpolation of spaces, and in
particular the characterization of the interpolation space, is one of the
tools used.

For a sequence of approximation operators an inverse theorem is a
result determining necessary and sufficient conditions on the rate of
convergence for the function to belong to a certain class of functions
generally satisfying some smoothness conditions. A more restrictive view
is that which calls the necessary and the sufficient conditions above direct
and inverse theorems respectively. Here the inverse results will be of the
first variety.

The Bernstein polynomials on C[0, 1] are given by

1) 85,0 = 3 f(%)2,.00)
k=0

where P, ,(x) = (Z)x"(l —x)"7k.

For B,(f, x) it was shown by Berens and Lorentz [1] that

|B,(f,x)—f(x)]| < M(("(l—n_x)—))a/2 for0 < a <2

occurs if and only if
|85 £(x)[=1£(x = k) = 2f(x) + f(x + h) | < MR*
for [x — h, x + k] c [0,1].

The Bernstein polynomial on the simplex

S = {(xl,...,xm); x;20, ) x, < 1},
i=1
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294 Z. DITZIAN
is given by
(12) B(f,x)= ¥ P.(x)f(%)

v/nES
where x = (x,...,x,,), » = (vy,...,7,) and

n!

13) P =
(1.3) £, (x) oo (11—, —--- —vm)!x1
R 0 L
and the Bernstein polynomial on the box B, B = {(x,...,x,,); 0 < x; <

1}, is given by
a4 B (0= T (12,0202

b
il n
O<py,<n, \IT m

where P, , (x,) is given by P, ,(x) in (1.1).

It will be shown that for m > 1 the class of functions given by Lip* «
is no longer adequate to characterize the rate of convergence of B,( f, x) —
f(x) or BY(f, x) — f(x).

It was observed by K. Ivanov [5] that for 0 < a < 2

(1.5) |v,(f,-) =f(-)lcon= O(n~*"?) = E,(f)
inf || f— Pllcp,= 0(n?).

degP<n

We conjecture this is the case for the multidimensional Bernstein poly-
nomials too.

For inverse theorems for approximation processes on D such that
span D = R™ and m > 1 the present result seems to be the first dealing
differently with points of different distance from the boundary of D.
Probably this is the reason that so few inverse results are known in the
multivariate case, none of which exhibit the above phenomenon. (This
phenomenon was shown by many authors to be natural for one-dimen-
sional approximation processes.)

We will show that ||B,f — f|| = O(n~%/?) is equivalent to a certain
interpolation space in stages. The direct result will be proved in §4 and the
converse result in §5. We will then characterize the interpolation space
and the K-functional in terms of smoothness. As the result for m dimen-
sions is not substantially different in ideas from that for two dimensions
but is somewhat loaded with indices, we will present the result for two
dimensions and comment in §§8 and 9 about the m-dimensional case.
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2. Preliminary results. Some preliminary results on two-dimensional
Bernstein polynomials on the simplex (triangle) will be necessary in later
sections. For two dimensions B,( f, x) given in (1.2) and (1.3) can also be

given by )
(2.1) B,(f,x, y) = g Eo( )( ;k)xkyl(l ) (1;£
Ekz:-O :0 Pnk[(x’y)f(_ _)

We can now prove the following lemma:

LeMMA 2.1. For B,(f, x, y) given in (2.1) we have:

22) 3-B.(f.x.¥)
P (4 R R

x(L=x—y)" k@ -x-p)=(n—k=1Dx];

(2.3) a 2 B (f.x.y)
E b i R
x[k(k—l)(l =) = 2k(n— k= Dx(1 = x — )

+(n—k=1)(n-k—1-1)x;

(2.4) axayB (f, %, )

kzn:o lzof( )( )(n 1 k)xk—lyl_l(l —x—y)" T

x[ki(1 = x = y)* = (ky + Ix)(n — k = 1)(1 = x — y)

)

+(n—k=0(n-k-1-1)x];

(2.5) o=B,(f.x.)

Y P,,_l,k_l,,(x,y)[f(k’ i) ‘f(k — i)]

n n n n

2
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(2.6) —az—B,,(f,x,y)

9x?
n n—k
= n(n - 1) Z Z Pn—2,k—2,1(x’y)
n=2 [=0

S e

n’n n n n

82
(27) WBn(f’x, y)

n n—k
= ”(” - 1) }: Z Pn—2,k—1,1-—1(x’y)

k=1 [=1
L))
St

Proof. Equations (2.2), (2.3) and (2.4) are actually straightfor-
ward derivatives of (2.1). We derive (2.5), (2.6) and (2.7) from (2.2),
(2.3) and (2.4) by comparing coefficients of x*~1y/(1 — x — y)" =+~
x* 21 — x —y)" %! and x*"y'"Y(1 — x — y)" %! respectively. To
prove (2.5), (2.6) and (2.7) we have to show

@ o)) =)

=(n—k—1+1)( " )" TRTT,

SRR fa LSS
- (k—1)(n—k—1+1)(kﬁl)(n—1;+1)

=n(n—k—l+1)(n—k—l+2)(kz1)(n_];+2)’

and

(@ n(n-n(r73)(n k1)

- kl(Z)(" , k) =k(n—k—-1+ 1)(2)(’;:{6)

=Kn—k—l+1wnﬁ1ﬂn—§+1)
n—k+1y

=(n—k—l+1)(n—k—l+2)(kz1)( I—1
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To show that (a), (b) and (c) are valid is a tedious but elementary
computation.

REMARK. The expressions (3,/9y) B,(f, x, y) and (392/0y?) B,(f, x, y)
can be obtained by interchanging / and y with k and x.

LEMMA 2.2. For B,(f,x,y) given by (2.1) and for ¢,(x, y) given by
$1(x, y) = x, (X, p) = y and ¢5(x, y) = 1 — x — y we have

(2.8) B,(¢;,x,y)=¢, and B,(1,x,y)=1;
o, (x, y)(1 = ¢;(x,))

n

(29)  B,(¢%x,y) = ¢:(x,p)* +

and

(2.10) B, (o9, x,y) = &,(x, y),(x, y)(1 — 1/n) fori+j.

Proof. We can write

n—

f(x,y,z)=k2::0 :(’Iz)(n;k)xkylzn—k—z= (x+y+2)"

J=
From this

B(1,x,y)=F(x,y,1—-x—y)=1
and
x 0
B,,(¢>1,x,y) = ;aF(xay,Z)
at z = 1 — x — y which yields (2.8). To prove (2.9), which we do only for

¢,, we write

2 2
2 _x (2 x (9
B(¢hx0) = 55 (55 ) Foxrn2) + 5 (55 | F(x. 0. 2)
at z = 1 — x — y and, therefore,

2(”'"1)+

=x2+x(1~-x)

n

B,(¢1,x,y) = x =

To prove (2.10), which we do only for i = 1, j = 2, we write

. _»
Bn(¢1 ¢2,X,y) n2 axayF(x>y’Z)
atz=1—-—x—y,or
X X
Bn(¢1'¢29x’y)=—-’:ly—(n - 1)=xy~%
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3. Rate of approximation, optimal case for x + y < 3 /4. One can use
Korovkin’s theorem and the fact that 1, x, y, x?> and y? is a Korovkin
system to obtain ||B,(f, x, y) — f(x, y)|| = o(1) as n = oo where ||g|| will
mean ||gl| ¢(s)- We can also prove the following estimate.

LEMMA 3.1. For f(x, y) € C%(S) satisfying

62
l@f(x,)’) <M,
and
62
oy (o) | < M,
we have

1
(3.1)  [B,(f,%,y) = f(x, )< 2M—(x(1 = x) + (1 = y)).
We will need for the present paper a somewhat more delicate result

and the next lemma will constitute that result for a partial domain.

LEMMA 3.2. For f(x, y) € C(S), fis C? locally in the interior of S and

02 a(n= ma (1| b o)

+y<3/4

5 505/ x0)||

we have

(3.3) xgg/san(f,x,y)—f(x,y)ls

M(2,(f) +1111)

where M is independent of n.

Proof. To estimate convergence in the domain x + y < 2/3 we may
assume f(x, y) = 0 in the domian x + y > 3/4 as f,(x) = f(x)in x + y
< 3/4 and f,(x) = 0in x + y > 3 /4 satisfies there

|B,(f = f1: %, »)| < 12| f1IB,((¢1 + &, — x — »)", x, ¥)

=122 £l (x +Y)(1n‘ x =) — 0(1)

Recalling Taylor’s formula

f(k 1) flx, y) + (E—x) axf(x,y)+(£—y)5a;f(x,y)

n n

+f0 tF”(t) dt
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where

and writing
1
f tF”(t) dt = xp(lc-, -l-,x,y) =4y,
0
we have for x + y < 2/3

IBn(f’x’y) _f(X,y)|= le/(!;_’ "!l_’x’y)Pn,k,l(x’y)
A EXN0))
n

as |0f/9x|, |8f/0y| and |f | are bounded on the domain x + y < 2/3 by
M,(|If || + ©o(f)). We now write ¢ =4, + ¢, + ¢ where (9/9x)?,
(02/0xdy) and (0/dy)? appear in ¥,, ¥, and Y, respectively. We esti-

mate
[, | = (x - %)2_[)1 t(%)zf(s + t(x - %) % + t(y - %)) dt
= (x N %)zfl k/n fot((j;)ftk/nﬂ

= (I)O(f)/ (5 gk/n) dt < (I)O(f)(__k/n_)

as for £ between x and (k/n)|(§ — k/n)/¢| < |(x — k/n)/x|. Similarly,
[¥sl < ®(f)(y — I/n)?/y and

I e O R R K

(f)fl t(x — k/n)(y — k/n) dt
o k/n + t(x — k/n)[Vl/n + t(y — 1/n)|?

.| <

conlf, e s

/x1/2 172

< By(f)|x - &
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We now write I, = Xy, P, , (x, y) and, using the above, we can write
I < @(f)x7'B,(($1 — x)°,x, ) < &(f)/n,
Iy < @,(f) y7'B,((¢, = »)’, x, ) < ®(f)/n

and

12 =< q)O(f) -2 _1/2B (|¢1 - XI |¢2 yl’xv y) = (Do(f)/n

4. Rate of approximation, direct theorem. It is known that if
|B,(f,x, y) — f(x,y)| = o(1/n), even locally, then f(x, y) satisfies in S
the elliptic differential equation

32 62 62
x(1 - x)ﬁf- xyaxayf+ y(1 —y)a—xz‘f=

which for this case would be in the “trivial” class of functions for the
present approximation process. Globally the result is still all solutions of
the elliptic equation, but since we have the side condition f(x, y) € C(S),
only constants will be admitted. Therefore, the optimal approximation
rate is O(1/n).

In the preceding section a condition for B,(f,x,y) — f(x,y) to
behave like O(1/n) in x + y < 2/3 is related to the behaviour of the
derivatives of f(x, y) in x + y < 3/4. We now generalize the result to all
of S.

We now define the transformations 7,

(41) Tl(x’y) = (1 - X _y’y)a Tz(x,)’) = ()C,l - X —y) and
fi(x,y) = f(Ti(x, y))
and the seminorm ®( f),

(42) o(f)= max_ ®,(f) where ®,(f) = ®,(f,) fori=1,2

where ®,( f) is given in (3.2).
We observe that ®,( f), for example, can be written explicitly as

f(x, ¥)|,

®,(f) = max ((1—x—y) 2 fx y>|

yagz
|Vy(1 -x—y) %f(x; y)l)

where ¢ = (1, -1).
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The result on optimal rate of convergence can be written now as
follows:

THEOREM 4.1. For f € C(S) which is twice continuously differentiable
in the interior of S we have

(4.3) 1B, (f,x,y) = f(x,y)| < M(®(f) +II£])/n

Proof. We can conclude the proof if we show |B,(f, x, y) — f(x, y)|
< M(®,(f)+|IfIh/n for x >1/3 and y > 1/3 where i =1 and i = 2
respectively. We can write

B,(f,x,y)= i Z f( )k,l,( n!k - l)!x"y’(l —x—y)"

f(l—i—ﬂ,g) n!

(n=1—m)'m!

Xx" Iyl — x — y)™.

This implies B,( f, x, y) = B,(f,, u,v) where (u,v) = Ty(x, y), and simi-
larly, B,(f,x,y)= B,(f;,u,v) where (u,v) = T,(x,y). We can now
apply Lemma 3.2 to the domains x > 1/3 and y > 1/3 as well. There-
fore, ®,( f;) < M implies

|B,,(f1,u,v) —fl(u’v)|S Ml(q)o(fl) +||f1“)/n
foru+v<2/30orx>1/3. Wehave

92 92
u—;z—fl(u,v) =[1-x —y)wf(X,y)‘,

moreover,

82
o )| =] g )|

as

[ i) = |55

and similarly

Jor= 57 )|

82
vu o fiu, v)
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DEerFINITION. The subspace 4 of C(S) is the collection of f € C(S)
for which the seminorm ®(f) = max(®,(f), ®,(f), ®,(f)) is bounded
where ®(f) and ®,(f) are defined in (4.2). We assume that f is locally
twice differentiable in the interior of S and that f,(9/9x)f and (0/9y)f
are locally absolutely continuous in both variables.

DEFINITION. The interpolation space (C, 4), is the collection of all
f€ C(S) for which K(f,t) < M(f)t* for all ¢t <t, where K(f,t) =

inf, c ,(Ilf — gll + 1®(g))-
THEOREM 4.2. For f € (C(S), A),, 0 < a < 1, we have
(4.4) I1B.(f,x,y) — f(x, )| < Myn~2.
Proof. For t =1/n and K(f,1/n) < M(F)(1/n)* we have g € 4

such that ||f — g|| + n7'®(g) < 2M(f)n % or ||f — g|| < 2M(f)n * and
®(g) < 2M(f)n'~* We write now

|B,(f,x,y) = f(x,»)]
<|B,(f— & x,») = f(x,») + g(x,y)| +|B,(g,x,y) — 8(x, y)|
<|B,(f— & x,y)|[+]f -~ gll+ M(@(g) +gl)/n
<2|f-gl+ M(2(g) + 2/ £1l)/n
<2L(f)A+ M)n ™+ 2| fl/n.
We used ||g|| < 2||f|| which follows the definition of the interpolation

space. This concludes the proof of Theorem 4.2.

In §6 we will characterize (C(S), A4) , using smoothness properties of
fE€(C(S), 4),

5. The inverse result. We will prove in this section that the rate of
approximation O(n~*) implies f € (C, 4),.

THEOREM 5.1. For f€ C(S) and a <2, ||f(x,y)— B,(f,x, )| <
Mn~*, implies f € (C(S), A),

Proof. Obviously B,(f, x, y) belongs to C? locally in the interior of
S. Therefore,

K(f. 1) <||f(x,») = B,(f,x, ) | + 1@(B,(f))-
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If we prove the following two inequalities:

(5.1) ®(B,(f)) < La| f|
and
(5.2) ®(B,(f)) < LO(f)

we will have K(f,t) < Mn=* + tmLK(f, n™"). The latter inequality com-
bined with the fact that K(f,t,) < ||f|| and the established procedure of
Berens and Lorentz [1] yield K(f, t) < M,t°. Therefore, we will finish our
proof when (5.1) and (5.2) will be established in Lemmas 5.2 and 5.3
respectively.

LemMMA 5.2. For f € C(S) we have ®(B,(f)) < Ln||f]|.

Proof. We first show ®,(B,(f)) < Ln||f|l. We use (2.6) and (2.7) to
show

(5.3) |(§;)ZB,,(f,x,y)

82
Ox0y

< 4n?|f|| and

B,(f,x,y)|<4n’| 1],

and the same for (32/0y?)B,( f). Now we use (2.3) to obtain

(%)ZBn(f,x, y)'

n? nonck (ko
= Z f(_’_)Pn (x7
X2(1 —x - y)2 o 5o n’n Jk, 1 y)
k(ik I 2 k kK 1
X{n(;—;(l— - )—2;(1———-—)x(1—x—y)
ot Gt
n n n n
n? Dokl

bttt
—2(——x)(x +y————)x(1—x—y)}

(continues)
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n? 2
S"f” ;Z-Bn((q)l —X) ’x’y)

2

1-x-y)
n n
+—B,(¢,,x,y) + ——————B, (¢, x,
x2 n(¢1 y) (1 —x —y)2 (¢3 y)
b2 (1 = x|y = 1+ x4 yx)|
x(1-—x—y) "7t 3 T

< n(1—x)_+_n(x+y)_|_n+ n
X l-x—-y x 1-x-y

b () B Ay

n n
;+1—_x_—y]||f||-

Actually we proved the part of the estimate of (3%/0x2)B,(f,x, y) in
x +y <3/4whereweuseforx <1/n(orl —x —y <1/n)

A
w

P 2
() Bu(rox.0)| < ani 11

and for x >1/nand x+y<3/4(orl—x—y=>1/n and x > 1/4)
the estimate

n

S 1]

with L < 15. Of course, the estimate |(3/dy)?B,(f, x, y)| is similar. To
estimate (9/0x9y)B,( f, x, y) in addition to using (5.3) we use (2.4) and,
after some computation and using the Cauchy-Schwarz inequality, we
write

l(%)an(f,x,y)
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2

axaan(fwxa.Y)‘
n> nonk (k 1)
= —, = | P, (X,
xy(l—x—y) kgo lgof n’n ,k,l( y)
k )
()5 -r)a-x -y
k 1\? k I\1

+(x+y—;—;) xy—(l—;—;);xy

—(-S—x)(x+y—§-;l;)y(1—x—y)

S

SIIfll{Z—;("(l; x) )‘/z(y(ln— ») )1/2
n  (x+y)(1-x-y)
1-x-y) n

n n?

Ta—x—y) TxU-x—»)
X(M)lﬂ( (x +y)1 = x—y) )1/2}.

n n

+

Therefore for x + y < 3 /4 we have

32 L|f|in
W‘Bn(f’x9y) < Nk

We now have essentially proved the result for ®,(B,(f)). To prove the
result for ®,(B,(f)) we use the transformation u =1 - x —yand v =y
and the identity B,(f,1 — u — v,v) = B,(f,,u,v) where fi(u,v)=
f(1 —u—v,v) and following (4.1) and (4.2), ®,(f) = ®,(f,) and
I/l = |l f1]l- Similarly, we prove the result for ®,(B,(f)).

LEMMA 5.3. For f€ C(S), f € C? locally in the interior of S and
f € A we have ®(B,(f)) < LO(f).
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Proof. We first examine the expression ®F for which we take the
maximum only on the region x + y < 2/3 (rather thanon x + y < 3/4
as done for @;). This would not matter, as a short computation shows

(g) = max (®,(g)) < C max (@r(g))

where ®* is maximum on the regions x + y <2/3, x >1/3and y > 1/3
fori =0,i=1and i = 2 respectively.
Let us denote A,.f(:) = f(-+ he) — f(-). For e, = (1,0), k> 1,

/> 0and k + !/ < 3n/4 we have
k 1 0 \? / n®,(f)
ol (o) oox) 10 3) | =57

n

A2

max
k/n<x<(k+2)/n K

Similarly, for / > 1 and k£ > 0 we have

k 1 n®,(f)
20 A2 0
" Aez/"f( n’ n) k
where e, = (0,1)and fork > 1and / > 1
2 f( ) n®0(f)
el/n e/n ‘/];—

For k = 0 we can write

l 2/n 0 \2 /
2 I 2 9 i
Ael/,,f(o,n)jszn{o A3z ) 7% %)
For k = [ = 0 we have

nzlAel/nAez/nf(O,O) I < nz'/(‘)l/n fol/n

1/n rl/n -
< @(/)n* [ [ (o) axdy

= ®(f)n.
For k = 0 and ! # 0 (or similarly for / = 0 and k # 0) we have

) 1/n p(I+1)/n
2 < 2/ /
Ael/”Aez/nf(O’ n ) ’ =n b Un

dx} < 4n®,(f).

dxdy

aZ
axay (%2 7)

f(x,y)|d

n

8x8y

n\/2 ri/n _ _
< n@o(f)(7) fo xV2dx < 2020, (f).
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Using (2.6) for x + y < 2/3 the fact that, for k > 1, k/(k + 1) < 2, and
Lemma 3.2 of [2], and (3.6), we have

n—

< 49,(f) Z Z 2,k—2,1(x’y)k 1

k=2 [=0

a(f.x)

n—2
n—2,k,l(x’ y)k + 1

<80,(/) T Pras(0) iy < ()5

(for n < 2(n — 2) or n > 4). Using (2.7) for x + y < 2/3, and the esti-
mates above we have

n—2
X,
Bxay f)kzl 121 —2k—1-1( )’)‘/—‘/E
nZZ nzk _» 1/2
<16<I>(f)( (x, y)2—=
iZo io T k+1
n—2 n—k 2’1/2
> X P (x, )5
ieo jeo I+1

f

This completes the proof that ®F(B,(f)) < 16@,(f). To prove that the
same result is true for the relation between ®F(B,(f)) and ®,(f) we
recall again the transformation u =1 — x — y and v =y for B,(f, x, y)
and that

Bn(f’l —u- U,U) = Bn(fl’uau)
where fi(u,v) = f(1 — u — v, ).

6. The equivalence relation. We will use the symmetric difference
Ay f(v) = f(v + 3he) = f(v — Yhe) and &, f(v) = A, (4, f(0)) for a
vector v, h € R, and a fixed vector e. Actually, earlier we used forward
differences because of convenience as they naturally appeared in the
derivatives of Bernstein polynomials. However, we will use only the final
estimates achieved earlier which do not involve difference (forward or
otherwise) and therefore, using the present form should cause neither
difficulty nor confusion.
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We let e; = (1,0), e, = (0,1) and e; = (1, -1) and may now state our
equivalence (inverse) results.

THEOREM 6.1. The function f with domain S belongs to (C, A),, where
A was given in §4, if and only if for (x, y) € S we have:

(@) In case x +y < 3/4: |x"‘A2,,elf| < Mh** for x> h and y > 0;
|y°D3, fI < MR** fory = hand x > 0; and |(xy)*/°A,. A, f| < M(hk)*
forx > h/2 andy > k/2.

(b) In case x > 1/4: (1 — x — y)°N5,, fl < MR** for 1 —x —y > h
andy > 0, Iy“AZheafl < Mh** fory >hand1 — x — y > 0; and

l((l - X —y)y)a/zAhelAke3f| = M(hk)a

for 1 —x—y>h/2 and y > k/2. (That is, (a) is valid for f(x,y) =
f(Ty(x, y)).)

(c) In casey > 1/4 the roles of x and y in (b) are interchanged. ((a) is
valid for f,(x, y) = f(Ty(x, y)).)

Note that with the above restrictions if # and k are small enough, say
h,k < 1/16, all points mentioned will be in S.

We can also have the following somewhat different description of
(C, A4),.

THEOREM 6.2. The function f(x, y) belongs to (C, A) , if and only if the
following conditions are satisfied.

(a) For x+y<3/4 |A,g. fl<Mh** for x>h*> and y > 0;
lAiﬁezfl < Mh>* for y > h* and x > 0; and lAh‘/;elAk‘/;ezfl < M(hk)*
for x > th* andy > k>

(b) Condition (a) is valid for f,(x, y) where fi(x, y) = f(1 — x — y, y).

(c) Condition (a) is valid for f,(x, y) where f,(x, y) = f(x,1 — x — y).

Proof of Theorem 6.2 assuming Theorem 6.1. We have to show that
(a), (b) and (c) of Theorem 6.1 and 6.2 are equivalent but for a fixed
(x, y) (for (a) say) h = h; of Theorem 6.2 correspond to s = hI\/; in
Theorem 6.1 and they are the same conditions etc.

This phenomenon is particular to C(S), in L, such forms would not
be equivalent (see Totik [9] and [10]). The second form was introduced
here too as this and not the form in Theorem 6.1 is the likely candidate
for generalizing to L,.
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Proof of Theorem 6.1. We first show that if fe (C, 4),, the 3
conditions (a), (b) and (c) are satisfied. We observe that it is enough to
show those conditions for x + y < 2/3, x > 1/3 and y > 1/3 instead of
showing them for x + y < 3/4, x > 1/4 and y > 1/4 for (a), (b) and (¢)
respectively. We will actually show just condition (a) but the transforma-
tions mentioned in (4.1) 7, imply ®D,(f) = ®y(f;) and B,(f,x,y) =
B,(f;,u,v), where T,(x, y) = (u,v), will imply that it is sufficient. For
f € (C, A),wehave, for any ¢, f = f,; + f,, where [x(3/9x)%f,,(x, y)| <
Mt*~! and |f,;(x, y)| < Mt* where M is independent of 7. Choosing
t = h*/x, we have |A}, f,.(x, y)| < 4Mh**/x*. We can now write

=8, falx, y)l<2maxf (u—x+h) f,z(u y) du

< 2 Mt* 'max

/xih (u—xFh) du‘.

Since | [**"(u — x — h) /udu| < h?/2x,

x (u—x+h) h? h?
fx_h ” du| < 2(x — ) < ax for x > 2h

and

j" (u—x+h)

du sf du <2h forx < 2h,
u

0

x—h

and using the choice ¢ = 2/x, we have in all three cases I < M (h*/x)"

To estimate |(xy)*/?A ne,Bke, f(x, y)| we choose f,, and f,, to match
= hk/(xy)/?* for which

| f(x,y)| < Mt* and < ML,

82
xy ‘x—yfz,z(x,J’)

Therefore, we have

|8 e BAie foa(x, ¥) | < 4M(hi)" /(xp)**

and

x+h/2 k 2
f+/ fy+ 729 =——f,,(u,v) dudu

ElAhelAkezft2(x Yy |_ e—ny2 iy dudv

x+h/2 ry+k/2 dudy
M f ] .
v—ks2  Juv

x—h/2



310 Z. DITZIAN

The estimate of I, can now be written as follows: forx > hand y > k
I, < 2Mt“ ik /\xy = 2M(hk)*/(xp)*%;

forx>hand y <k

I <V2Mt*1— = <d4Mr*'—Vk
2 Vx Vo Vx
(hkl/2 Vi vk < aM (hkl/z;
(xy) Y (xy)
forx <hand y > k

I, < aM(hk)“/(xp)“7?,
and forx < hand y <k

ho (k2 dy i h
J

<4M

3h/2 du (3k/2 dv 12 _ (hk)
= < 8Mt* Y hk .
Vu fo o (ki) (xy)“/ :

All other estimates follow similarly, and therefore f € (C, 4) , implies (a),
(b), and (c).

We now prove that conditions (a), (b) and (c) imply that for every ¢
there exists a function g, such that ||f — g,|| < Mt* and ®(g,) < Mt*~L.
We first observe that it is enough to find such functions g, that will satisfy
IIf — gll < Mt* and ®,(g,) < Mt*~! for i =0,1,2, that is, find g, that
will fit @, then a function g, that will fit @, etc. This is possible since we
can have ; > 0 for i = 0,1,2 satisfying X ¢;(x, y) =1, y, € C*, Y, =1
in x+y<1/3and ¢,=0in x+y=>2/3, ¢ =1 for x >2/3 and
Y, =0forx<1/3,and y,=1in y>2/3 and ¢, =0fory <1/3. We
now only have to construct g, to fit one of the functionals, ®, say, as all
of them can be achieved from the same construction if we use the affine
transformation discussed earlier first, then construct the function and then
use the inverse transformation which is actually the same transformation.
The construction of the function g, follows our method in [2] and [4] but
here we have the added difficulty of dealing with the two-dimensional
problem (which makes it more interesting). The multidimensional problem
is treated in a very similar way. As a preliminary to our construction we
define

(6.1) F, ()

2\* 2 0/2 ()2 (h)2 ()2
=(Z)(’2)f2 f2 .[ ./1 2f(x + uy + uy, y + 0, + 0,)

—f(x + 2u, + 2u,, y + 20, + 20,)| du, du, dv, dv,.

I, < Mz“‘lfo
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Elementary manipulations yield
(6.2) Af,el+fze2f(x +1,y+m)
=f(x,y) = 2f(x+7,y+7)+f(x+2m, y+2mn)
= Azf,elf(x + 7, p)+ Afzezf(x + 27, y+ 1)

+24,, 4, f(x+ 3m, y + in,).
This will imply

|f(x,y) - E,(x,y)]

(2)2 4/2 (42
<\t [
L) Y% 0
v, + 0,

ft2/2 f12/2
0 ] VWt +u,

(3)( ) /2 (h/2 (/2 [ty)2
L)\t Y% 0 0 0

u, + u,

\/x + 3(uy + uy)

2a

u, +u
! 2 du,du,

yx +uy + u,

2a
) dv, dv,

v, + 0, )a
\/)’ + %(01 + Uz)

)ma’u1 du, dv, dv,.
Therefore
(6.3) | f(x,) = F,,(x, )|
< M{min(s2%/x%, ) + min(13%/y*, t5)
+2min((1,8,) "/ (xp) %, 61372/x*, 5127 /v, (04,) ).

Following the standard techniques of Stekelov-type averages, we have

a 2
(5) F, . (x,7)
_ 4 2 t,/2  f1y/2 2A2 + 5 N N
B ;Z ./0 ./; { f1’2/2f(x tl/ > Y T U 02)
_Aflelf(x +t,y+ 20, + 202)} dv, dv,
and, therefore, using the conditions in the theorem,

(64) (&) Fuu)

t2a
< Mt/ mm( pr tl)
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Similarly,

t2a
< Mty mm( e t2)

(3 e

and
63) |50y Fun9)

L,

: ! )a /2 ( &) )a a/2 a/2
> tg 4 tl 4 (tltZ) *
&3 (fa? Vv

To construct the functions in question we remember that the function that
would fit ®, does not have even to be defined for x + y > 2/3, etc. We
restrict ¢ so that for x + y <2/3, x + 2t + y + 2¢ < 3/4 or in other
words ¢ < 1/50; this is not a serious restriction as the interesting part is
when ¢ tends to zero, and otherwise it just modifies the constants. We
choose ¢(x) to satisfy ¢(x) =1 for x <1/4, y(x) =0 for x = 3/4,
Y(x) decreasing and ¢(x) € C* We define also y,(x) = y(4'x). We are
now able to definein x + y < 2/3, f,, for ®;, which we denote by g, and
f,1 will therefore be just f—f,,. For 27/"! < <27/ (and of course
t < 1/50), we write

< M(tltz)_lmin{(

(6.6) ga(x,y) = z Z et e (2 )0 ()9 ()
X(l - ‘[’k+1(x))(l - ¢m+1()"))

-1

+ Eo Fo-« 27! (x Y)‘I/J()’)‘l/k(x)(l ‘l’k+1(x))

-1

Z 127, 12" "‘(x )))11/1()5)1[/ (Y)(l lPm+1(y))

+Fpp-, ,2-:(x y)‘[’l(x)‘l/l()’)
= kg Z 127k 12- '"(x y)‘I'km(x )’)

Of course, the preparation up to now was in order that for x + y < 2/3
we have |f(x,y) — g2(x, y)| < Mt**. We observe first that if in the
definition of g.(x, y) in (6.6) f(x, y) would replace F,-« ,-» for all m
and k (including m =/ and k = /), f(x, y) would also replace g2(x, y)
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on the other side, or in other words in the region prescribed the coeffi-
cients are a partition of unity. We observe that for every x and y at most
four terms are different from zero. Moreover, for 4" ! < x < 477,
Y (x)(1 = ¢,,1(x)) # 0 only at most for k<r+1and r— 1<k, or
only k = r + 1 and k = r are possible (not always both). For x < 4771,
¥,(x) is the only non-zero coefficient of F,-« ,,-». Therefore, using (6.3)
for z; = 27%¢t and ¢, = 27"t when x ~ 4 % and y ~ 47" respectively, and
for t, =27't and t, =27t when x < 47'"! and y < 477! respectively,
we complete the estimate of |f — g,:| by recalling

0 < ¥ ()¢, (¥ = ¥ (X)X = ¥,.1(r) <1

and only at most four of them are different from 0 at any point (x, y).
To estimate ®,(g,2), we first estimate x(3,/9x)%g.(x, y). (We should
get |x(3/9x)%g(x, )| < Mtz"‘”z.) We write

) 8ex0) = £ 8+ ) ot )W)

£ % 2a{ ) Favian (o) 5 )
# XL alEr () ) Hantxo)
=J, +J,+ ..

First we estimate J;. Recalling that at most four terms in the sum are
different from zero, we have only to estimate a term of J;. The function
¥, .(x,y) satisfies 0 < ¥, ., <1 and ¥, , # 0 implies x ~ 47 and
y ~ 47" unless k and/or m are equal to /, in which case x < 3 -4/~

and/or y < 3 - 477! respectively. In both cases using (6.4) the term is
smaller than M,z2*" 2, as for x ~ 47%

2 ([2_’()2“
xa

Mx(t27%)" < Mjt=%?

and for x < 3 -4-/"1
Mx(£27)7%(127))% < 3M1=2 - 122" < Mt2e2,

Estimating J, and J;, we have to distinguish between two situations: (A)
¥, .(x, y) is constant in x, for which points (x, y) the corresponding
summands of J, and J; are equal to zero. (B) 4 %! < x <347%"1 in
which case

Y n(x,9) =9, ()Y, (»)A = ¥,,4(»))
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and

\I,k—l,m(xay) = (1 - ‘Pk(x))lpm()’)(l - 11’m+1()’))

for m < I, k < I; and

\I,k,l(x’y) = 1l/k(x)‘xl’l(}’) and ‘I’k-l,z(XJ’) = (1 - 1I/k(x))¢1()’)-

Now we have to estimate for J, and J; their summands J,(k, m) and
J3(k, m) given by

J,(k,m —Zx( ){ 12k 2m (X, ) = Fperns pom(x, p))

X (YD1 = s () e a ()
and

J3(k m —X{Ez' rz"'(x )’) Fop-kn 12" '"(x Y)}

SURE )} E ENE
Since |(3,/0x)W,(x)| < M4*i for i = 1,2, we have

d
|J2(k, m)| <M 5;{52*,12-'"("7}’) - Ez-k“,zz-'"(X,y)} l
and
|J3 k m)! =< M"{Ez k12~ "'(x )’) F,- k+1 4o- '"(x )’)} |4k

The estimate of J;(k, m) follows immediately now from (6.3) as restric-
tions on m and k in relation to x and y imply

|F, 127k 2= w(x,y) = F,- k+1 yo-m | < Mr?e

and therefore |J,(k, m)| < M4*t2* < Mt>*~2, The estimate of J,(k, m)
though bit more complicated follows from

o' (x) llcta, o < M{W +(b - a)|¢"(x) ||c[a,b1}

where M is independent of [a, b] and ¢ (see [3, Lemma 3.1] for instance);
we set @(x) = Fyx pm(X,¥) = Fpter pm(x, p) and [a,b] = [47%71,
3. 4-%=1] and the estimate of J,(k, m) reduces to one similar to J; and
one similar to J5(k, m).

We now have to estimate

0 \2 d 9
ly('a_x) gt2(x,y)' and ‘/Ea_xagtz(x,y)
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but these estimates are similar to the above and are omitted. To get the
estimates for the other regions, we transform the vertex of the simplex to
(0, 0) as prescribed earlier, construct the function with the correct estimate
and take the inverse transformation after completion. (We will have a
fixed constant multiplying our estimates as the transformation is not
orthogonal.)

As a corollary from Theorem 6.1, we can state:

COROLLARY 6.3. The function f(x, y) € (C, A), implies that for x + y
< 3/4 and e = Be, + ye, where y* + B? = 1 we have

8700 < SE (B + T )

LM
(xy)*?

(Byh*)*  ((x,y) £ he € S).

Proof. The result follows easily from the identity
Azhef(x’y) ,Bhe,f(x yG‘Yh)+A2~/he2f(x+Bh’y)
+2ABhelAyhe2f(x + %Bh’ Yy - %Yh)

7. The difficulty in extending the Berens-Lorentz result. Berens and
Lorentz proved for Bernstein polynomials on C[0,1] and for 0 < a < 2
that

18,043 - 1) < e 20 =2)

if and only if |A% f(x)| < M,h* for (x — h,x + h) € [0,1]. It would be
nice to find a condition on B,(f, x, y) — f(x, y) that will be necessary
and sufficient for the class of functions satisfying |A%, f(v)] < M,k for
v — he, v + he € S. However, a condition of the type

|B,(f,x,y) — f(x,»)] <(ll/(x y))

will fail (no matter what (x, y) is). Choosing the function f(x, y) = x*
for which

|B,(f. %, ) = (e y) | =1B,(f, ) = x| ~ k(%)
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near x = 0 will imply that {(x, y) < Kx near x = 0 regardless of y.
However, for f(x, y) = y* the behaviour near y = 1/4 regardless of x is

N 1
an(f,x,y) -y l - Kna/z'

Therefore in the neighbourhood of (0,1/4) we encounter a contradiction.
(This contradiction can appear at any point of the boundary except at the
vertices.)

The situation will not change if we treat the Bernstein polynomials on
the square [0, 1] X [0, 1] given by

(7.1) o f3x, ) = E E w i (X) P, l(y)f(— —)

k=0 I=0
when 0 < K, <m/n < K, < in spite of the fact that at first glance
(7.1) looks like a cartesian product of the one-dimensional Bernstein
polynomial. The same functions as above would show a condition

|BE,.(f,%,y) = f(x, y)|<M(‘!’(x y))

(or

|Br (S, 2, 9) = f(x, y)] <M(®—“’E§/’2L)))

will fail.

8. The multidimensional Bernstein polynomials on a simplex. In this
section we will generalize the results achieved in §§2-6 to the m-dimen-
sional Bernstein polynomials on a simplex. As this is a more cumbersome
situation, it would appear to be a very long task. However, the proofs are
essentially the same as those for the two-dimensional Bernstein polynomi-
als, which were treated first.

The m-dimensional Bernstein polynomial is given by (1.2) and (1.3)
can be rewritten by

n h—w n—v,_, v, »
B B (¥ = XX e T[T BB,
=0 »,= v,=0
(where P, (x) is given by (1.3)). Recall that because of the symmetry in
(8.1), and (1.2), we can consider any two variables to be either x; and x,
or x,, and x,,_,, depending on what is advantageous at the time.

As in the two-dimensional case, we need a transformation that will

carry the behaviour near (0, ..., 0) to that near e,.
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This will be given in the following lemma that can be derived by
simple computation.

LemMA 8.1. For the u = T;x given by u; = x, for j # i, u; =1 — x; —
* =X, and f(x) = f(T;x) we have B,(f, x) = B,(f;,u).

The subspace 4 of C(S) is given by:

DEerFINITION 8.1. f(X45...,X,,) € C(S) belongs to class A4 if the
semi-norm ®( f) = max(®y( f), ®,(f),..., P®,(f)) is finite, where

|

2

f

J

(I)O(f)=z max (max XX

x<1-1/2m \ i,j dx,0x;

®,(f) = ®(£)
and f;(x) = f(T,x) where T, is given in Lemma 8.1.
The domain ¥ x; < 1 — 1/2m is chosen so that the domain satisfying
Yx,<1-m,,n,>1/2m and its transformations by 7; still cover S.

The inverse theorem for m-dimensional Bernstein polynomials is
given in the following two theorems.

THEOREM 8.2. f€ (C(S),A), if and only if ||B,(f,x)—f(x)| =
o(n=*?).

THEOREM 8.3. For f € C(S), f € (C(S), A), if and only if
(@) forx, <1 - (1/2m) |A211‘/Ze,«f| < Mh**, x, > h?,
|Ah‘/ze,Ak‘/x—jejf| < Mh°k®  forx; > 1h?, x, > 1k?
and x,>20 forl+#i, j;
and for any i we have condition (a) on f,(x) = f(T}x).
Outline of proof of Theorem 8.2 and 8.3. We will just indicate some of

the needed modifications to the proofs in two dimensions. For the direct
result we essentially have to prove the inequality

(8.2) 1B,(f) -7l < L&(f) for fe 4.

Here we have to use for the definition of a corresponding ®*(f) the
domain Y x;,<1—1/(m+ 1) and its transformations by 7;. We also
observe that (2.9) and (2.10) are valid with ¢,(x;,...,x,,) =x, for i < m
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and ¢, ,(x;,...,x,,) =1— X" x, For the converse result we need the
inequalities

(8.3) ®(B,(f)) < Ln||f|
and
(8.4) ®(B,(f)) <L®(F) forfe A.

The proof follows the proof in earlier sections. For (8.3) we need to
replace (2.2), (2.3) and (2.4) by

d v 1
(8'5) a_xan(f’ xl e xm) - Z f(;)Pv,n(x)xi(l _E;';lxs)

v/neS

X |7,

1= £ ) -[n- £ s

s=1

(8.6) (5%)23,,0; Xy e x)

1
= X ;)P
v/nes (n) ’ x2(1-%¥m,x,)*
m 2
X[v,(vl — 1)(1 -y xs)
s=1
—2vi(n - Y x,(l -y xs)
s=1 s=1
+ln— ) vs)(n—l— > vs)xf]
s=1 s=1
and
9 0
(8.7) a—xia—x;Bn(f,xl,...,xm)
1
= X f(;)Pa()
v/neS (n) ’ xixj(l —Z;n=1xs)2
m 2 m m
X [vivj(l - ¥1 xs) —(vx; + iji)(n - ;l Vs)(l - ;1 xs)
+(n -y vi)(n -1- Y v,.)x,.xj].
s=1 s=1
The construction of g, in Theorem 8.3 follows §6 with F, , (x;,..., x,,)

replacing F, , (x;x,) (using 2m iterated integral).
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9. Multidimensional Bernstein polynomials on [0,1] X --- X[0,1]. In
this section we will generalize the result to Bernstein polynomials on the
box B, B =[0,1] X --- X[0,1] given by (1.4) for which the inverse result
is the following theorem for B¥(f,x) = By ., (f, Xy,..., X,,).

THEOREM 9.1. Forf € C(B), BX(f, x) givenby (1.4), n = (n,,...,n,,)
andn,/n; < K for all i and j the following are equivalent for 0 < a < 1:

@) BE, o (foXperes ) = fCns oo Xl iy = O(n7®) (for any
i).

(b) € (C(B), 4), where A = { f;x,(1 — x,)(3*/0x})f € C(B) and
(8/0x,)f is locally the integral of (32/3x2)f}.

(¢) Foralli|(x;,(1 — x,))*A%, f(x)| < Mh?* if x + he, € B.

(d) Foralli |A2,,meif(x)| < Mh** ifx + hjx,(1 — x;) e, € B.

The proof of the above theorem, while not trivial, is made redundant
by the fact that at every step it is simpler than the earlier proofs in this
paper and therefore will be omitted.
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