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MINIMAL NON-PERMUTATIVE PSEUDOVARIETIES
OF SEMIGROUPS. 11

JORGE ALMEIDA

This paper is the continuation of a previous paper in which all
minimal non-#-permutative pseudovarieties of ¥ were determined where
P-permutativity was one of several conditions implying permutativity and
€ was the class of either (finite) groups, monoids or semigroups. In this
work, the most general case of this type is treated, namely when
P-permutativity is permutativity and € is the class of all finite semi-
groups.

The notations and conventions adopted in this paper were introduced
in [1].

1. Introduction. This paper is the continuation of [1] and uses the
notation and conventions introduced there. In [1] we determined all
minimal non-#-permutative pseudovarieties of ¥ where #permutativity
was one of several conditions implying permutativity and ¥ was the class
of either (finite) groups, monoids or semigroups. Here, we treat the most
general case of this type, namely when Z-permutativity is permutativity
and ¥ is the class of all finite semigroups.

2. Some non-permutative semigroups. In this section, we introduce
some semigroups which will play an important role in the sequel. We also
indicate a finite basis of identities for each of them.

Recall that any completely simple semigroup is isomorphic to a Rees
I X A matrix semigroup #(G; I, A; P) over a group G with sandwich
matrix P = ( p,;) (see Clifford and Preston [3]). For a prime number p,
we let

.5 5.10 0
Kp=ﬂ(Zp,2,2,[0 0 )

Rasin [5] has given a complete description of the lattice of varieties of
completely simple semigroups over abelian groups. The appropriate uni-
versal algebraic type to deal with arbitrary completely simple semigroups
involves not only one binary operation (product), but also one unary
operation (inversion within the group containing a given element). How-
ever, in the context of finite semigroups, the need for the unary operation
disappears, since the (group) inverse of an element is then one of its
(positive) powers.
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A regular semigroup S is said to be orthodox if the set E(S) of its
idempotents is a subsemigroup of S. S is said to be an orthogroup if it is
an orthodox union of groups (cf. Clifford [2]).

From the results of Rasin [5], one easily deduces that if S is a finite
non-orthodox completely simple semigroup over an abelian group, then
K, € ¥(S) for some prime p. Moreover, the V(K,) (p prime) are
minimal non-permutative pseudovarieties of semigroups; they are defined
by the following identities:

V(K,) = [x?*! = x, (xpx)” = x?, xyxzx = xzxyx]

and K, is a generator of minimum size of this pseudovariety.
Let

Y={(e,s,fielt=e, fP=f,es=s5=5f, ef =fe=0).
Then Y = {e, s, f,0} and, from Edmunds [4], we obtain
V(Y)=[x%=x3 xpx = x¥y? = y2x?];

we also observe that Y is a generator of minimum size of V(Y).
The last special semigroup we need to consider is the following:

Q= {(es,t;e*=e,es=s,t=te,se =et =15 =0).

We note that Q = {e, s, ¢, 5t,0}.

A characterization of the identities which fail in Q will be crucial later
on. To describe it, we require some further terminology. We let X =
(X1, X33 Y1y Varo > X, ¥, 2,8,...} be a countable set of variables; let
X" be the free semigroup on x and let X* = X*U({1}, where 1 denotes
the empty word. For a word w € X*, ¢(w) denotes the set of all variables
which occur in w, and |w|, denotes the number of occurrences of the
variable x in w. Two identities are said to be equivalent if they hold in
exactly the same semigroups. S = u = v means that the identity u = v
holds in the semigroup S. 2 + u = v means that u = v is a consequence
of the set X of identities.

LEMMA 2.1. An identity u = v fails in Q if and only if it satisfies (up to
equivalence) one of the following conditions:
(@) c(u) # c(v);
(ii) there exists x € X such that |u|, = 1 and |v|, > 1;
(iii) there exist y, z € X such that u = u,yzu, with |u|, = |u|, = 1 and
some u,, u, € X* while, either v = v,zv, yv, for some v, v,, v; € X*, or
v = v, YV, zV; for some vy, v; € X* and some vy € X
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(iv) there exists y € X such that |u|, =1 and every variable which
occurs to the right (left) of y in u occurs only once in u, while in v there is
some variable which occurs repeatedly and at least once to the right (left)

of y.

Proof. If (i) holds, then no nontrivial semilattice satisfies u = v; since
the subsemigroup { e, 0} of Q is a semilattice, we obtain Q ¥ u = v.

If (i1) holds, substitute sz for x, e for every other variable in u = v.
This yields the value st and u but 0 for v. Hence, Q ¥ u = v.

If case (iii) holds, we substitute s for y, ¢ for z and e for every other
variable in ¥ = v to obtain the value st for u and 0 for v. Hence,
QFu=uo.

Suppose condition (iv) holds, say with the “right” option. Let y be
the rightmost variable satisfying (iv). By the above, we may assume that
(1)-(iii) fail. Then, u = u’y for some u’ € X*. We substitute s for y and e
for every other variable in u = v to obtain the values s = es for u and
se = 0 for v. Hence Q ¥ u = v.

The above establishes half of the lemma. For the converse, let —
denote negation and assume that, up to equivalence, u = v satisfies the
conjunction (C) of conditions —(i)——(iv). We show that then Q = u = v.
Let

S={x?2=x%xp% = x¥? = pix?, x?yz? = 2%x?, xyx = xyx?,
XpXzX = XZXyx}.
Simple direct calculations show that Q = Z. Thus, it suffices to show
S2ru=v.
We note that, since each element of 2 satisfies (C), if the identities
u=v and u’ =" are equivalent in the presence of X, then u’ =’

satisfies (C) if and only if u = v does. Moreover, using 2, any word w
can be reduced to one of the form
W= WoeXTWiXIWy s XD W, 1 XAXE Ly XoW,

where n, m > 0, x; (i = 1,...,m) are not necessarily distinct variables,
c(w,) nc(wj) =@ for i+#j, x,& cw) (i=1,....m; j= 0,...,n),
w)l, <1foreveryx € X, w,€ X* (i=1,...,n — 1), and w,, w, € X*;
up to the relative order of the x?, the relative order of the w, (i = 1,...,
n — 1), and the positive number of their occurrences, this form is unique.

Let u’, v’ be words in the previous canonical form obtained respec-
tively from u, v using 2, say

r_ 2, .2 L2 2.2 ...
U = UgXp U XUy = Xy Uy 1 XXy XUy
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and

V' = 0op{01 9305t Vi 0k 1ViVier T Vi
By a previous remark, u’ = v’ satisfies (C). By —(i) and —(ii), we may
assume that m =/ and x, =y, (i=1,...,m). By —(ii) and —(iii), the
variables in c(ugu, -+ - u,) = c(ve; - - v,) appear in the same order in

u’ as in v’, and appear in adjacent positions on one side of »’ = v’ if and
only if they do so on the other side. Finally, by —(iv), u, = 1 if and only if
vo=1, and u,=1 if and only if v, = 1. Hence kK =n and u, = v,
(i =0,1,...,n), up to a rearrangement of the u, (i = 1,...,n — 1). Thus,
the words u’ and v’ coincide. Therefore £ — u = v, as claimed.

As a corollary to the proof of Lemma 2.1, we have the following.

PROPOSITION 2.2.
V(0) =[x?=x%xp*x = x¥p? = y2x?, x?yz? = z%yx?, xyx = x%yx2,
xyxzx = xzxyx].
REMARK 2.3. Examining the list of non-permutative varieties gener-
ated by semigroups of order four given by Edmunds [4], and noting that a

semigroup of order less than four is either permutative or idempotent, one
can show that Q is a generator of minimum size of V(Q).

3. Regular case. Recall from [1] the semigroups G,, H, ,, N Y
B(1,2)! and B(2,1)". For a semigroup S, p(S) denotes the set of regular

elements of S.

THEOREM 3.1. Let V be a pseudovariety of semigroups such that

(1) G,,H,, €V  (p,qdistinct primes)
(2) N', B(1,2)', B(2,1)' ¢ V

(3) K,&V (pprime)

(4) Yey

andlet S € V. Then p(S) is a permutative orthogroup.
We prove Theorem 3.1 in a number of steps. Henceforth, ¥ and S are
as in Theorem 3.1. First of all, because of (1) and (2), it follows from

Theorem 5.3 [1] that all monoids in V' are commutative.

LEMMA 3.2. E = E(S) is a subsemigroup of S.
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Proof. Let e, f € E and suppose that ef € E. We let S’ denote the
subsemigroup of S generated by {e, f}.

Suppose ef, fe are not #Z-equivalent in S’. If fe € E, then fe = fefe
< gef. So, we may assume ef £ sfe. Let I ={ue€ S e £ ;u}, an
ideal of S’. Then S’/I consists of the four elements e, f, ef and 0 = fe
(i.e., S’/I is isomorphic to the semigroup D of example 3.11 [1]).
However, it is easy to check that S’/I X §’/I has a subsemigroup
isomorphic to Y, whence Y € ¥, contradicting (4).

Hence, we have ef Zfe in S’. Since ef Z fe implies ef = fef and so
ef € E, we deduce that ef, fe are not #-equivalent. Hence, in the Z-class
of ef in S, R + H. Let ef Z efu but ef ¥ efu. Since e, f are idempotents,
it follows that ef = (ef)* for some k > 1. Hence, G = H,, is a subgroup
of S’. Moreover, from ef = (¢f )* we obtain fefe = (fe)**', and so Hy, is
also a subgroup of §’. In fact, R = J,, is a completely simple subsemi-
group of S’. Since (ef )*"}(fe)* ! = (efe)**~* & E, R is not orthodox.
By the results of Rasin quoted in §2, it follows that K » € V(R) C V for
some prime p, contradicting (3). This completes the proof of the lemma.

Let BA, denote the Brandt semigroup #°({1}; 2,2; A) (cf. Clifford
and Preston [3]). One can easily check that Y is isomorphic to a subsemi-
group of BA, X BA,, and that if a semigroup U has a regular Z-class
which is not a subsemigroup of U, then B4, € V(U).

LEMMA 3.3. p(S) is a subsemigroup of S and a union of abelian groups.

Proof. By the remarks preceding the lemma, every regular Z-class of S
is a completely simple subsemigroup of S. Hence, p(S) is a union of
abelian groups.

Let a, b€ p(S). Let e€ ENH,, f€ EN H, By Lemma 3.2,
ef € E. Further, if a’a = e and bb’ = f, then a’(ab)b’ = ef and ab = aefb.
Hence, ab_#ef and so ab € p(S), as desired.

LEMMA 3.4. (Yamada [6], p. 375.) A band is normal if and only if it

satisfies the identity xyxzx = xzxyx, i.e., if and only if all its submonoids
are commutative.

COROLLARY 3.5. E is a normal band.

LEMMA 3.6. Ife, f € Eands € p(S), then esef = esf.
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Proof. Let g € EN H,,. Then
esef= esggef = esgegf by normality of E
= esggf since gRes
= esf.
LEMMA 3.7. Ife € Eand s, t € p(S), then este = esete.

Proof. Let ge EN H

es?

h € EN H,, Then
este = esgeghte since eg = g
= esggehte by normality

= esete.
To complete the proof of Theorem 3.1, we only need to quote Theorem
3.9(iv) [1]).

REMARK 3.8. The reader should consult Yamada [6] for further results
on regular permutative semigroups.

4. Main result. We are now ready to establish our main theorem.

THEOREM 4.1. A pseudovariety of semigroups is permutative if and only
if it does not contain any of the following semigroups:

(5) G, H,, N, B(1,2)", B(2,1)",K,, Y, Q

7.9’
( p, q distinct primes).
Moreover, the pseudovarieties generated by each of these semigroups are

minimal non-permutative and admit the corresponding semigroup in (5) as a
generator of minimum size.

To prove Theorem 4.1, all we really need to show is that if ¥ is a
pseudovariety which does not contain any of the semigroups in (5), then ¥
is permutative. We establish this in several steps. By Theorem 5.3 [1], all
monoids in ¥ are commutative. Henceforth, S denotes a given element of
¥V and we may assume that ¥(S) = V. We suppose S is not permutative.
Also, let E = E(S).

LEMMA 4.2. If S x“yzx® = x“px“zx®, then S k& x“yx® =
(x®yx®)**! for some k > 0.

Proof. Since Q ¢ V, there exists an identity u = v such that S = u = v
while Q ¥ u = v. Hence, u = v satisfies one of the conditions (i)-(iv) of
Lemma 2.1.



MINIMAL PSEUDOVARIETIES. 11 277

If (i) holds, then ¥ does not contain any non-trivial semilattices. Since
p(S) is a union of groups subsemigroup of S and § is finite, it follows
that S is a nilpotent extension of a completely simple orthodox union of
abelian groups. In particular, S is permutative, contradicting our initial
assumption.

If (i1) holds, say the variable y satisfies (ii), then substitute x for
every variable in u = v other than y and pre- and post-multiply by x“ to
obtain a pseudo-identity of the form x“yx® = x¢yhix@yks ... xephxe
with 27_, k, > 1 which holds in S. Then, substituting x“yx* for y, we
obtain

S E x°yx® = (x“yx*)*"" for some k > 0.

Suppose that (iii) holds. Substitute x“ for every variable in u = v
other than y, z to obtain a pseudo-identity x“yzx® = x“zyx® or x“yzx*®
= x“yx“zx* which holds in S, contradicting the hypothesis of the lemma.

Finally, suppose that (iv) holds, say y is the rightmost variable in u
satisfying the “right” option of (iv) and suppose that (i), (ii) and (iii) fail.
Upon substitution of x“ for every variable in u other than y, we obtain
S E x“y = x“yx®, again in contradiction with the assumption of the
lemma.

LeEMMA 4.3. Ife € Eands, t € S, then este = esete.

Proof. Suppose that este # esete. Then, by Lemma 4.2, we have
(6) S E x“yx® = (x“yx*)*"" for some k > 2.

We claim that this leads to a contradiction. We may assume that {e, s, 7}
generates S and that s = es and ¢ = te.

By (6), every element of S which lies in a submonoid of S also lies in
a subgroup of S. In particular, se = (se)**! = sk*le, and so se Zs?.
Similarly, 1> Pet.

Since st = (st)**! = stst --- st, we have st £ (ts)> and so
tst &L st Rsts. From Theorem 3.1, we deduce that sts’t_¢st, whence
st st Zstse, and so st Zstse - tst, so that st < ,set.

On the other hand,

set = (set) ™" by (6)
= setes*et since eSe is commutative
= ses“t*et by Theorem 3.1, since se, s*, t*, et € p(S§)
k=1

= stt* lsket = set*s* st since eSe is commutative.
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Hence, set 5 st, so that, by (6), (st)* = (set)*. Thus,
este = st = st(st)* = st(set)”

= este(se)* (et)* esete = e(se)* st(et) set = eskt¥sete
since eSe is commutative

= es*sett*e by Theorem 3.1, since s*, t*, ser € p(s)

= esk*letk*le = (ese)* (ete) ! = esete by (6).

This contradicts the initial assumption in this proof, and thus the lemma
is established.

LeEMMA 4.4. Ife, f € Eand s € S, then esf = esef.

Proof. Suppose that esf # esef. We will then reach a contradiction.
Here, we may assume that S is generated by { e, f, s} and that s = es.

Using Lemma 4.3, we have sef = esefef = esfef = sfef. Since sef +# sf,
we get sf # sfef so that we may replace s by sf and still have e(sf)f #
e(sf)ef. Hence, we may assume that s = sf. By Theorem 3.1, we may also
assume that s is not regular, and so s < se,f.

Let I = {x € §: x £ ;x}. Note that [ is an ideal of S.

Suppose s < sef. Then, there exist u, v € S such that s = esf =
euefof . If u £ 5 then

s = esf = efesf
= efesef by Lemma 4.3
= esefef since eSe is commutative

= esef, a contradiction.

Hence u < ;5. It follows by Lemma 4.3 that s < ,sef and so s #sef.
Therefore, s % sef, so that there exists w € § such that s = sefwf. If
w < 45, then s is regular, contradicting a previous assumption. Else,
s = sefef = sef, again a contradiction. Hence, ef € I, whence sef € I and
we may assume I = {0}.

If s < 7 fe, then there exist u, v € § such that s = es = eufev =
euefev, the last step because of Lemma 4.3. Since ef = 0, we conclude that
s = 0, contradicting the definition of 1. Hence, fe = 0.

Finally, se = sfe =0 = fes = fs. Hence, S = Y and Y € ¥, a con-
tradiction. This completes the proof of Lemma 4.4.
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To finish the proof of Theorem 4.1, we just need to notice that, by
Theorem 5.3 [1] and Lemmas 4.3 and 4.4, the conditions of Theorem
3.9(iv) [1] are satisfied for any S € V. Hence, V is permutative.
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