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APPROXIMATE GREEN FUNCTIONS AS A TOOL
TO PROVE CORRECTNESS OF A

FORMAL APPROXIMATION IN A MODEL
OF COMPETING AND DIFFUSING SPECIES

AART VAN HARTEN AND ELS VADER-BURGER

The purpose of this paper is two-fold; firstly, we shall derive some
new results concerning a singular perturbation problem describing the
stationary distribution of two competing and diffusing species; secondly,
we want to demonstrate the power of a technique using approximate
Green functions to prove the validity of a constructed formal approxima-
tion in a singular perturbation problem.

A mathematical model for the spatial distribution of two species

consists of two coupled 2nd order O.D.E. on the interval [-1,1] with

Neumann boundary conditions:

(1.1) ε2u"=f(x,u,v), υ" = g(x9u,v)

(1.2) iι'(-l) = </(-l) = 0, u'{l) = v'(l) = 0.

Here, ε is a small parameter > 0 and ' denotes derivation w.r.t. the

x-variable.

This model (or rather its time-dependent version) has been proposed

by several authors to explain the coexistence of competing and diffusing

species in some subdomain and not elsewhere, cf. [4], [9], [5], [6], [10]. For

certain non-linearities /, g there is the possibility of a solution with a

sharp transition phenomenon in the w-variable at an internal point

y e (-1,1). The domain (-1,1) is then subdivided in two subdomains

(-l,jμ) and (y, 1) where u behaves essentially different. At y the jump in

the w-behaviour is smoothed by an internal layer.

These results are derived by constructing an asymptotic approxima-

tion for εjO of the solution of (1.1-2). In [4], only a first approximation

without detailed information on the internal layer is used. In [9], all over

the domain higher order terms are included in the construction. This is

done by dealing with two separate problems on [-1, y + δ(ε)] and [y +

δ(ε), 1] with Dirichlet boundary conditions at the transition point. Free

constants introduced in this way, such as δ(ε), are determined later on by

requiring a smooth connection at the transition point. In this work a

restriction has to be made about the non-linearity g (see [9], assumption
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(ii)) just to ensure the solvability of each of the artificial problems on the
subintervals [-1, y + δ] and [y + δ, 1]. Though this assumption is suffi-
cient for the construction, it is far from being sharp.

Once in [1], [9] a formal approximation has been obtained, its validity
is proved. However, a purely proof-technical assumption has to be made,
namely a small interaction between one of the species and the other. (For
example: gu is required to be sufficiently small). Such an assumption does
not play a role in the construction, nor does it have a biological back-
ground. In our opinion this was a somewhat unsatisfactory situation and
at the same time it was for us a challenge motivating this work.

In this work we shall construct a global formal approximation of
arbitrary algebraic order in ε for the solution of (1.1-2), see §2. This is
done under less restrictive conditions than in [9]. For the construction we
use a method of matched asymptotic expansions (cf. [6]), in which the
internal layer is dealt with in a direct way (without interval subdivision as
in [9]). It appears, that the problem for the higher order terms in the
internal layer exhibits a resonance phenomenon. This is due to an
eigenvalue 0 in the spectrum of the linearized operator governing the local
expansion, for the homogeneous equation has a non-trivial solution decay-
ing exponentially towards ±oo. In order to be able to construct higher
order terms a global solvability condition concerning terms in [-1, y]9 [ j , 1]
as well as in the internal layer in a coupled way has to be satisfied. This
solvability condition can nicely be inteφreted in terms of the solvability
of the reduced (ε = 0) problem. Namely, it is equivalent to requiring that
the solution of the reduced problem is stable for small model-perturba-
tions, i.e. small perturbations of the non-linearities / and g.

Furthermore, we shall prove the validity of the constructed approxi-
mated under precisely the same conditions necessary to be able to do the
construction. Smallness of the interaction of one of the species with the
other is not necessary in this proof. The proof is based on linearisation at
the constructed approximation and a fixed point argument. In itself this
idea is rather standard, cf. [7], [8], [13], [1]. A central point in this type of
proof is the analysis of the inverted, linearised operator in order to get an
estimate for its norm. Several techniques have been used, such as maxi-
mum principles, a-prior estimates, variational principles, but in this case
under the conditions we want to impose, neither of these methods seem to
work. Of course, another method to analyse the inverse, linearised opera-
tor would be to use its Green kernel. This method is rather unpopular and
for a good reason: exact Green functions are hard to obtain (cf. [12], [11]).
However, it seems to have been overlooked, that instead of an exact Green
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function a sufficiently accurate, approximate Green function does the job
just as well. Such an approximate Green function can be found in a
constructive way, actually its construction is quite analogous to the
construction of higher order terms in the formal approximation of the
solution, see §3. This explains that one can find such an approximate
Green function under exactly the same conditions, which have to be
introduced to make the construction of the formal approximation includ-
ing higher order terms possible.

For these reasons the technique to use approximate Green functions
to invert the linearised operator approximately is very powerful in our
opinion: it is potentially applicable to a wide range of problems and it
works in rather complicate situations.

2. Construction of a formal approximation. We shall consider the
problem as given in (1.1-2) with / and g elements of C°°([-l, 1] X R2) in
the situation, where the reduced problem has a solution with a jump in the
w-variable in some internal point of the interval. Thus we start the
construction with:

2.1. The Oth order approximation. Let us call the internal transition
point y and the Oth order regular approximation at the left and right of
yU0, Vo and t/0, Vo, respectively. Then we suppose:

Assumption 0:
The reduced regular problem for ί/0, Vθ9 y, Uo and Vo:

(2.1.1) / ( * , Uo, Vo) = 0 f(x, Uo, Vo) = 0

Vo" = g(x,U09V0) Vf = g{x9U09V0)

forxtΞ [-l,y] forxe [y,l]

with the boundary conditions

(2.1.2) K0'(-1) = 0, K0'(1) = 0

and the continuity conditions in the transition point

(2.1.3) V0(y) = V0(y), V0'(y) = V^(y)

plus an extra condition to determine the transition point namely

has a solution such that y G (-1,1) and

UQ,V0<=C°°[-l,y], Uo,VoeC">[y,ί\
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with a jump in the u-variable at the transition point y:

(2.1.5) U0(y)ΦU0(y).

By rescaling the u variable as (u - U0(y))/(U0(y) - UQ(y)) and the

t;-variable as v — V0(y) and next denoting the transformed problem just

as before in (1.1-2) we see, that it is no restriction to put

(2.1.6) Uo(y) = 0, U0(y) = l9 Vo( y) = 0.

We observe, that because of (2.1.1): /(j>,0,0) =/(jμ,l,O) = 0. Fur-

thermore, we introduce some notation:

(2.1.7) F(u)= Γf(y,ΰ,0)dΰ

fu°M = ̂ {x,U0(x),V0{x)) for* e [-1,y]

^,Uo(x)>Vo(x)) ίovx e [y9l]

and g°, g° are defined analgously.

Note, that F(0) = 0 and that (2.1.4) implies: F(l) = 0.

In addition to assumption 0 we require:

Assumption 0':

(2.1.9) /H°>0 σn[-l,y], fu° > 0 on [y,l]

and:

(2.1.10) F(u)>0 on(09ί).

The condition in (2.1.9) is assumed because of the construction of

higher order terms, see (2.2.2). As a consequence of (2.1.10) we can

calculate the transition layer in the u-variable near the transition point in

Oth order:

(2.1.11) u - Γ0(ξ) + with { = (x - y)/ε

where To satisfies

(2.1.12) *-Ά=f{y9τQ9ϋ)9 l imΓ o (ξ) = 0, l imΓ o ( | ) = l .

The solution is given implicitly by

(2.1.13) Γ0(£) = τ ( £ - £ 0 ) ,
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Here ξ0 is an undetermined constant, due to translation invariancy in
(2.1.12). The study of higher order terms will reveal the value of £0, as we
shall see.

It is a nice exercise to show, that To approaches its limit values at oo
in an exponential way:

(2.1.14) τ( f )=^exp(μf) (l + θ(exp(/ιf)) f o r f ^ - o o

~ = ^exp(μf) -(I + O(exp(μf)) for ζ -* -oo

τ(f) - 1 = Bexp(-vξ) -(I + 0(exp(-^)) for f -> oo

— = B'kexp(-vξ) -(l + θ(exp(-vξ)) for oo

with μ =fu°(y) > 0, i/ =^°( j ) > 0 and k > 1.
Furthermore, Γo is strictly increasing on (-00, 00).

2.2. On the effect of model perturbations. As we saw, the Oth order

terms in the approximation have been found with the proviso that ξ0 still
has to be determined. Our next concern will be the construction of higher
order terms. For this construction we need another assumption. It is
interesting, that this assumption can be understood in terms of model
perturbations. Namely, suppose that the model is slightly perturbed, such
that the non-linearities change into: f + δfp9 g + 8gp. Here δ measures
the size of the perturbations and fp9 gp e C°°([-l, 1] X R2). Now, we
want the solution of the reduced problem (2.1-4) to be "stable" under
such model perturbations, i.e. the perturbed reduced model has a solution
for small δ of the form:

t/0 + δa, + o ( δ 2 ) , F0 + δ ^

In order to make this condition more concrete we shall derive the
problem for the perturbed quantities up, up9 ΰpy ϋp9 yp. It is convenient to
introduce the following shorthand notation

(2.2.1)

for the following problem

(2.2.2) tfU + tfV+r^O fu°U + fv°V + rx = 0

V" - g°uU + g°vV + r2 V" = fJJ + g°vV +

(2.2.3) l/'(-l) = α, Ϊ7'(l) = α
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(2.2.4) W(y) = U(y) +j,

U'(y) + V0"(y)C = U'(y) + V0"(y)C + /

(2.2.5) C-ffx(y,u,0)du

+ {V(y) + CV^y)) -f fv(y,u,0)du + β - 0.
•Ό

Then the perturbed quantities have to satisfy

(2.2.6)

with

// = fp(x, U0(x), V0(x)), fp° = fp(χ, U0(x), V0(x)),

etc. Note, that S£ plays the role of a linearized operator of the reduced
problem. Let us now formulate the condition in a precise way:

Assumption 1:

The homogeneous problem

(2.2.7) oS?(ί/,F,ί7,F,C) = (0,0,0,0;0,0;0,0;0)

has only the trivial solution.

Using a Fredholm alternative it is then easily seen, that inhomoge-
neous problems such as (2.2.1) or (2.2.6) can be solved in a unique way.
Further, it is not difficult to verify, that if the inhomogeneous term in
(2.2.1) is in (C°°[-l, y])2 X (C°°[y, I])2 X R5, the solution is an element of
(C°°[-l,^])2 X (C°°[j,l])2 X R. Moreover, the solution of (2.2.1) de-
pends continuously on the right hand side in an obvious way.

It will be clear, that assumption 1 implies the previously mentioned
"stability" property, because of the implicit function theorem.

In §2.3 we shall see, that inhomogeneous problems such as (2.2.1) are
the heart of the construction of higher order terms.

2.3. A formal approximation of order εN+ι. The structure of this
formal approximation of the solution of (1.1-2) is as follows:

(2.3.1) u - Z" = (UN + GN+ι)H + (UN + G " + 1 ) ϊ ϊ
def

+ (1 - H -Ή)TN

v = Z?= (VN + KN+2)H +(VN + KN+2)H
def
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Here UN, VN and UN, VN denote the regular expansion at the left and
right of the transition point

(2.3.2) UN = Σ e"UH(x) U=Σ *"Un{x)
#1 = 0 #i = 0

V»- Σ*HK(x) V»- Σe'Vm(x).
#i = 0 #1 = 0

Further GN+\ KN+2 and GN+\ KN+2 describe boundary layer correc-
tions at x = -1 and x = 1, respectively

Λf+1 Λf+1

(2.3.3) Σ Σ

#ί = 3 #2 = 3

with layer variables η = (JC 4- l)/ε and ϊ] = (1 — ;c)/ε.
The other terms TN

9 Y
N+1 describe the behaviour in the internal layer

N N + 2

(2.3.4) TN=Σε"TnU), YN+2=ΣenYnti)
#1 = 0 #i = 0

where the layer variable is ξ = (x — y)/e, as before in (2.1.11).
The functions H and H are suitably chosen cut-off functions. We

take

(2.3.5)

where x is a smooth function on R with the properties χ ( ί ) Ξ O f o r / < l ,
χ ' > 0, χ(/) s 1 for t > 2. The order functions σ(ε), σ(ε) will be speci-
fied in §2.3.3.

Finally, kN+ι and ΊcN+λ are introduced to take care that the ap-
proximation will exactly satisfy the boundary conditons:

P.3.6)

2.3.1. On the internal layer. Substitution of (2.3.4) into (1.1-2) and
collecting terms of order εn provides us with the equations governing the
internal layer expansion:

(2.3.1.1) ^r-m)Tn = FΪtt) far ii 2-
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with

(2.3.1.2) (i)
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c> La ε

? +
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Fι

1 n ->

I ε = 0

for n > 2

and

(2.3.1.3)

with

dί2
for n + 2 > 1

(2.3.1.4) (i) F_\ = 0,

(ϋ) ^ 2 = τ;i
= 1°

F 2 = —
X M

1 / d

for n > 1.

Here the superscript"0 means: evaluation with the argument (y, Γ0(£)?0).
Because of the matching for ξ -> ± oo we are only interested in

solutions of (2.3.1.1), which together with their derivatives are polynomi-
ally bounded. Now, Γo', the derivative of To w.r.t. £, is a solution of the
homogeneous equation corresponding to (2.3.1.1) and To' decays exponen-
tially for ξ -> ± oo, see (2.1.14). Multiplying both sides in (2.3.1.1) with
TQ and integrating from -oo to oo it is clear, that this equation can only
have a solution, which together with its derivatives is polynomially
bounded, if:

(2.3.1.5) Γ

On the other hand, if F*(ξ) and its derivatives are polynomially bounded
and the orthogonality condition (2.3.1.5) is satisfied, then (2.3.1.1) has
solutions of the desired type and these solutions are given by

(2.3.1.6) Tn-tH-

= Γo'({)/*
J0

T>(ϊ)Fn\ϊ)dξdξ
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with a free constant An9 which will be determined later on. Therefore, the
problem for the Tn's is characterised by a non-zero kernel of the operator.
Thus, it turns out that the expansion of the u-variable in the internal layer
is of resonant type.

Of course, the solution of (2.3.1.3) is given by

(2.3.1.7) Yl = yl + y£, Yn = yn + γB'ί + Ϋn(ζ)9 foτn>2

with Ϋn(ζ) = fo(ζ - £)F*_2(i) ^1 a n ( * certain constants yn9 y'n9 which will
follow later on by matching with the regular expansion.

Note, that tn9 Ϋn and Ϋn+ι follow in a unique way once Γo,..., Tn_λ

and Yv...9Yn_ι have been determined.
Using induction w.r.t. n it is now easy to check, that tn and Ϋn are

smooth functions, which behave as a polynomial of degree n plus an
exponentially vanishing term both for ξ -> -oo and ξ -> oo.

n n

μ.i.i.δj in j~^pn(ξ) - L pkξ , yn - ^ g n ( ξ j - 2^ ^ ζ

if ΛΓ

Moreover, the derivatives behave in analogous way. After these prepara-
tions we are in the position to deduce some useful relations. In the first
place we shall exploit the matching of the ^-component in the layer and
the regular expansion. This leads us to certain jump conditions for the
regular expansion at the free surface in the following way.

A. Comparing constants terms in the expansion of YN for £ -» ± oo
and VN

9 VN for x -> y we find that we have to impose the following
matching relations:

(2.3.1.9) Vx( y) = Vx{y) = Y l

and f or n > 1:

(2.3.1.10) Vnλ

Hence:

(2.3.1.11)

+ ί

= ' n + l

where j n = d e f q$ + ι - q£+1 is completely determined by Γ o , . . . ,Γ n _ l 9

Yl9..., Yn_v Note, that the jump condition in (2.3.1.11) is of the form

given in (2.2.4).



234 AART VAN HARTEN AND ELS VADER-BURGER

B. Comparing linear terms in the expansion of YN for £ -> ±00 with
those arising by expansion of VN

9 V
N in the variable y + εξ we are led to

the following matching relations:

(2.3.1.12) γί = VJ(y)

and for n > 0:

(2.3.1.13) V;+ι{y) = yn+2 + qr\ K+1( y) = Ί'n

Hence:

(2.3.1.14) v;+1(y) = Vn'+1(y) +

We shall now demonstrate, that (2.3.1.14) is of the form given in
(2.2.4) where the role of C is played by ξ0 if n = 0 and by An if n > 1.

In the case « = 0 we use that

= g(y,l,0)ξ+ Γ [g(y,τ(ζ),0)-g(y,l,0)]dζ, for ξ -* oo

with τ(ξ) as in (2.1.13-14). As a consequence we obtain

ύ - Άl =Jό + Ug(>>,0,0) - g(y,l,0)],

with

jό=- ί° [g(y,τ(ζ),o)-g(y,o,o)]dζ
•'-00

- Γ [g(^τα),o)-g(^,i,o)]rff.
•'O

Since V ( ^ ) = g(^,0,0) and Vf{y) = g(y9l,0)9 (2.3.1.14) yields:

(2.3.1.15) V{(y) + Fo"(^)€o = V{(

This relation is indeed of the form given in (2.2.4) and y0' *
s c o m "

pletely determined.
In the case n > 1 one has
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where the latter term is completely determined by To,..., Tn_l9 Yu..., Yn.
It is now easy to verify that (2.3.1.14) yields:

(2.3.1.16) Vn'+1(y) + Vf{y)An = K+ι(y) + V>'(y)A + fn.

This is again of the form specified in (2.2.4) and j ' n depends only on
T T V V
A0-> ' ' Λn-V i l » v i «

Another useful relation is found by analyzing the orthogonality
condition (2.3.1.5) somewhat further.

C. In the first place substitution of (2.3.1.2—(i)) with

(2.3.1.17) Yλ = Vx(y) +

and a change of variables ξ = ξ + £0 yields

(2.3.1.18)

with

A - Γ {fΛy,r(ζ),0)+ K(y)fv(y,τ(ζ),O)}ζτ'(ζ)dξ.
- 0 0

Note, that (2.3.1.18) is of the form given in (2.2.5) with ξ0 playing the
role of C. The constant β0 is known.

Next, we substitute F*+l9 as in (2.3.1.2—(ii)) in the orthogonality
condition for the equation Tn+1 and we use the following expressions for
Tn and Yn+1:Tn =tn- AX and

(2.3.1.19) Yn+1 - {Vn+1(y) + q«0

+1) +{K(y) - ^ + 1 ) ^ + ^ i

Then several integrations by parts in combination with the equation
for Tλ lead us to

(2.3.1.20) An.f
lfx(y,u,0)du

+ (Vn+ι(y)+AnV(;(y))'[lfϋ(y,u,O)du + βn = 0
Jo

with

The important thing is, that (2.3.1.20) is again of the form given in (2.2.5),
while βn depends only on Γo,..., Tn_v Yv...9 Yn, Vn. The rather suφris-
ing conclusion of this section is, that the relations derived by analysis of
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the internal layer have a lot to do with the reduced problem after a model
perturbation, though no internal layer is present in that problem, only a
transition point.

2.3.2. A scheme to determine all higher order terms uniquely. The
construction of the higher order terms is organised as an iterative proce-
dure. At the start ί/0, VQ9 y9 Uo, Vo are known and To is known except for
the value of £0. Further, Gλ and Gλ can now in the usual way be
determined as the solutions of the homogeneous boundary layer equations
vanishing at infinity and correcting the error in the b.c. due to UQ9 UQ.

(2.3.2.1) y&^ ψ^

with

Then we proceed to determine the other terms and constants according to
the following scheme:

step 1. ^ a. Ul9 V±, ξ0, Ul9 Vλ

b. G 2 , G 2 ; K3, K3

c -*o> Ύv M> -M> -̂ 2? Ύi-

step (n + 1), n > l a . Un+1, VΛ+1, An, Un+Il Vn+1

b. Gn+2, Gn+1, Kn+3, ^ H + 3

The problem for t/n+1, Vn+ι, An, Un + 1, Vn + ι is of the form (2.2.1):

(2.3.2.2) #(Un+ι, Vn+ι, An, Un+ι, Vn+ι)

= ir^ rn^ %, rl; an,ΰn; j n , j ' n ; βn)

also in the case n = 0, if we identify A 0 with ξ0.
Substitution of the regular expansion in (1.1-2) yields:

where for n = 0 we interprete t /^ ! as 0.
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For rw\ r2 analogous expressions hold.

The boundary values an, an are taken in such a way that the effect of

Kn+29 Kn+2 is annihilated

(2.3.2.4) an = - -

In the case n = 0we take an = otn = 0, of course. The definition of jn

was given in (2.3.1.11), j'n was introduced in (2.3.1.15) for n = 0 and in

(2.3.1.16) for n > 1. It is now clear that at the end of nth iteration step all

information to determine Un+V Vn+V An, Un+V Vn+ι is available and part

a of the {n + l)th iteration step consists of solving (2.3.2.2). This can be

done because of assumption 1.

Part b of the (n 4- l)th iteration step is a matter of more or less

standard boundary layer theory. Gn+2 is defined as the solution of:

(2.3.2.5) — — a zGn+2 = < + 2

dη
An

Gn + 2(rj) = 0

with

1

7T2)! [\Te

where x = -1 4- εη and Un+ι

9 etc. are defined as before in (2.3.2-3).

Using induction one finds, that Gn+2 is uniquely determined and equal to

a polynomial of degree (n 4- 1) in £ multiplied with exp(-α£). The second

component is found from

(2.3.2.6) ψ- = w2 lim Kn+3(η) = 0
dη2 *?-*°o

with

\[\dε
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It is easy to check, that Kn+3 is uniquely determined and equal to a
polynomial of degree n in ξ multiplied with exp(-aξ). Of course the
construction of Gn+2 and Kn+3 is completely analogous.

So, only the verification of part c of the (n + l)th induction step now
remains, but this is an immediate consequence of the results in §2.3.1,
namely (2.3.1.6) provides us with Tn and fn+v (2.3.1.10) yields γw + 1; Yn+1

and Ϋn+1 follow from (2.3.1.7) and finally (2.3.1.13) combined with our
knowledge of Ϋn+2 gives us the value of y'n+2

This completes the calculation of the formal approximation as de-
fined in (2.3.1).

2.4. Estimation of the remainder in the equation. The result of the
construction is, that the formal approximation has the following proper-
ties:

(2.4.1) ε>^l=f(x,Z»,Z2η + R», ^f = g(x,Z»,Z?)+R»
ax ax

(2.4.2) (zr)'(-l) = (zn'(-l) = 0, (z»)'(l) = (Z»)\\) = 0.

Note, that the formal approximation satisfies the boundary conditions
exactly, but some remainders arise in the equation. If N is sufficiently
large, these errors are small. In the maximum norm on [-1,1] we get an
estimate

[ /1 \1N + ι

ε l n w)J '
if the order functions σ and σ in the cut-off near the transition point (see
(2.3.5)) are suitably chosen:

(2.4.4) σ(e) = σ oeln(i), <x(ε) = σoεln(±

with σ0 and σ0 sufficiently large, ε-independent constants.
The verification of (2.4.3) consists of two elements. The first element

is a piece of algebraic reasoning to show, that the internal layer expansion
and the regular expansion have a good overlap in the regions σ < y - x
< 2σ and σ < x - y < 2σ, compare [9], [2]. Consider on one hand TN

for £ -> -oo, TN - Σ%=oε
kpn(£) w i t h Pn a s i n (2.3.1.8) and on the other

hand: the Taylor series up to O(εN) of Σn=oe
nUn(y + ε£) being

Σ£Lo

ε#I^#ι(£) Then both PN and Pn are polynomials in £ of degree n and
using the matching it is clear that these polynomials have the same
constant term and for n > 1 also the same linear term. By the same
reasoning Σ^?e"Qn with Qn = Qn + yn + γΛ'& Qn as in (2.3.1.8) and the
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Taylor series up to O(εN+2) of Σ%ϊ?εnVn(y + εξ) = Σ^εnQn are such
that Qn and Qn are polynomials in £ of degree n with the same constant
and linear term. Moreover, by construction both Σ%amQεnPn9 Σ^2εnQn and
Σ^oε

nPn9 Σ^εnQn satisfy equation 1.1-2 with an error 0{εN+ι). It is
now easy to verify with just some algebra on the coefficients of the
polynomials, that Pn = Pn, n = 0,..., N and Qn = Qn, n = 1,..., N + 2.
In this way we can prove the overlap property:

(2.4.5) \UN-TN\<C\eξ\N+1

on the regions σ < y — x < 2σ and σ < x — y < 2σ with an ε-indepen-
dent constant C.

The second element is a rather lengthy, but in principal elementary
calculation using the well-known properties of Taylor series expansion to
check (2.4.3) in the various subregions of [-1,1]. For example, in the
region y — σ < x < y + & containing the internal layer we obtain for the
error in the 2nd component the formula

#+1

Λf+2

and it is easy to check, that

(2.4.7)

(2.4.8) RN = R».i- *L{(v*- YN+2)H)

on that region.

In the region y — 2σ<x<y — a one splits the remainder as

- YN+2)H)

Using (2.4.6) and the overlap properties as in (2.4.5) together with
analogous estimates for the derivatives, such as

d r^yXT

, v' - / <aεN+1ξN for y - la < x < y - σ
dxx ; L J J

we then find in this region an estimate for 2?^ of the same type as (2.4.7).
Further details of the proof of (2.4.3) are left to the reader.
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3. Proof of the validity of the formal approximation. In this section we

shall prove the existence of a solution w, v of (1.1-2), such that

(3.1) \u-Z»\max+\v-Z?U = O(e^)

where | | m a x is the maximum norm of [-1,1].
The proof will be based on a contraction principle, which we shall

first discuss in general.

3.1. The general idea of the proof. Suppose, that one is in the situation
where for a singular perturbation problem

(3.1.1) Fε(u) = 0

a formal approximation Z has been constructed, for which

(3.1.2) Fε(Z) = R

where the remainder term is small, i.e. R e B with B a Banach-space with
norm, | |, say:

(3.1.3) | * | = μ(ε).

Let us denote the linearised operator DFε(Z) by Lε and the strict
non-linear terms by Nε, i.e.

(3.1.4) Fe(Z + v) = Fe(Z) + Leυ + Nε(υ).
def

The problem for the remainder term

(3.1.5) v = u- Z

can then be written as

(3.1.6) Lευ = -R-Ne(υ).

Now, suppose that an approximate right inverse operator (L" 1)' of Lε can
be found, such that

(3.1.7) LXL η^I+δiε)^

with / the identity on 2?, Kε a bounded operator from B into itself and
the operator norm satisfies:

(3.18) \8(ε)Kε I < I for 0 < ε < εx.

Let us put

(3.1.9) v= {L-ι)'w

then w has to satisfy:

(3.1.10) (/ + δKε)w = -R- Nε((L-ε

ι)'w).

This is an equation which can easily be solved by a fixed point argument.
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Suppose the non-linearity satisfies a Lipschitz condition

(3.1.11) ^ . ( ( L ; 1 ) ' ^ ) + N^L ΎW^K /(ε,p)K - w2\

for all wl9 w2 e J9(p) = {w e J5| \w\ < p} with a Lipschitz constant

(3.1.12) /(ε, p) = ~fγ for 0 < p < p2(ε), 0 < ε < ε2

v{ε)
with *>(<0 > 0.

If the remainder is sufficiently small

(3.1.13) 4 μ ( ε ) < p o = min{p2(ε), ±v(ε)}
def

for 0 < ε < ε0 < min(εl9 ε2), then there is a unique solution w of (3.1.10)
in B(ρ0). This solution satisfies the estimate

(3.1.14) |w |<4μ(ε).

In terms of a solution of (3.1.1) this means, that if

(3.1.15) \r\<y0

then there is a unique solution of (3.1.1) in the set Z 4- (L~ι)'B(p0) and the
following error estimate holds

(3.1.16) \u-Z\**\(L?)'\'\R\.

In comparison with the proofs in [7], [8] or [13] the new point is that
in this approach one works with an approximate right inverse of the
linearised operator. In cases where L is a (partial or ordinary) differential
operator (or an integro-differential operator, etc.) one can try to find such
approximate inverses by using an approximate function of Green satisfy-
ing

(3.1.17) LεGr(jc, /) = 8(x - t) + h

where h is o(l) for ε | 0 in a suitable sense. Of course, for systems of
differential equations we can proceed analogously using an approximate
Green matrix. The operator (L~1)' defined by

(3.1.18) [(L;1)'M](x) = / Gr(x,t)u(t)dt

with Ω the domain of the functions under consideration is then a good
candidate to be used as an approximate inverse with the desired proper-
ties.

3.2. Construction of an approximate Green matrix. In our case Lε is an
ordinary differential operator with as its domain the pairs of C2 functions



242 AART VAN HARTEN AND ELS VADER-BURGER

on [-1,1] satisfying homogeneous boundary conditions of Neumann type:

(3.2.1) L =
a

dx2

0

0

l j

(/„
Li'

Here v means evaluation with the argument (x,
construct an approximate Green matrix

Z%). We shall now

(3.2.2) Gr =

where Gr(x, /) has the following properties:
(i) Gr G C([-l, I]2) and the restrictions of Gr to the triangles Δx =

{(x,t)\-\ <x <t <l) and Δ 2 = {(x,t) | - 1 < t < x < 1} are
smooth up to the boundary of these triangles,

(ii) The jump in the derivative 3Gr/3x at x = t, [dGτ/dx]χs=t, is of the
following form

(3.2.3)
•«*••>

with 1 the identity and A uniformly bounded on [-1,1] for ε 10.
(iii) The matrix function "L εGr", defined as (LεGΐ)(x, t) for JC Φ t with

a jump at x = t, but without the distributional terms for x = t in
Lε Gr, satisfies:

(3.2.4) ί1 \\"

with constants K, v > 0 independent of x and ε and || || some ε-indepen-
dent matrix norm.

(iv) Gr satisfies the homogeneous Neumann boundary conditions

(3.25)
ΘGr 9Gr

x — 1 dx
= 0.

Of course Gr will be dependent on ε, but in the notation we have
suppressed this dependence.

3.2.1. The 2nd column of Gr. In order to construct the 2nd column of
Gr we put

(3.2.1.1)
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Note, that the first term has the correct singularity at x = t. Jλ and J2

will be continuously differentiable at x = t and they are of the following
form

(3.2.1.2) Jι = (/J + εDx)H +(j£ + εD^Ή

(3.2.1.3) / 2 = / 0

2 # + J2H +(1 - H - Ή){j£{y) + εEλ + ε2E2).

Here /Q1, /O

2, j j , j ^ 2 play the role of the regular expansion which together
with some constant c will be found from a problem of type (2.2.1). The
constant c comes from the term ε~ιE_x in the internal layer, where JELi is
just a solution of the homogeneous layer equation in (2.3.1.1).

(3.2.1.4) £-i = -eΓ0'.

Note, that the presence of the term E_x is typically a resonance phenome-
non. The next term has to satisfy the equation

(3.2.1.5) [^-Λ°(ψo = -cίCft + Tjuu + VH°JΓ0' + J

where the constant c is chosen, such that the r.h.s. is orthogonal to Γo' in
L2-sense. The solution EQ is then given by the expression in (2.3.1.6). In
this case the value of the free constant multiplying Γo

r in this solution is
unimportant, we shall take that constant = 0. Now JQ , 70

2, J^1, J$ and c
follow from

(3.21.6) Jφo\/O

2,7o\/O

2,e)

= (\\t- x\fΌ°,\\t - x\gl\\t - JCI/Λ

It is easy to check, that

(3.2.1.7)

where the convergence is of exponential type.
For the second component in the internal layer we obtain

(3-2.1.8) ^ L = _ c Γ o ' . ^
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d2F
(3.2.19) j gu0 gX(y) igl, glyx &ξ)

Using the matching conditions and choosing constants which are still free
in a convenient way this leads to

(3.2.1.10) E1 = {ji)'(y) ξ-cf [g{y,To{ξ),0) - g(y,0,0)]dξ

(3.2.1.11)
Jo

A simple calculation shows, that the following overlap property holds:

(3.2.1.12) |/0

2(x) ~{J0

2(y) + εE1 + ε2E2) \

< C(\x - y\3 + ε + ε2|£|) for y - 2σ < x < y - σ.

Such an overlap is also present at the other side of the transition point.
Moreover analogous estimates hold for the derivatives. Finally, Dλ and
Dx are just corrections to satisfy the boundary codnitions

(3.2.1.13) ^U)'

compare (2.3.2.1).
We can now immediately verify, that the 2nd column of Gr as defined

above has properties as necessary in view of (i)-(iv). We find, that the 2nd
column of A is identically (£), since the jump in the derivative is exactly
correct, and we obtain

(3.2.1.14) J 1 I "L e Gτ'\ 2 |Λ <

in an obvious notation.
The verification of (3.2.1.14) is analogous to §(2.4) and we leave the

details to the reader.
To conclude this section we want to point out, how remarkable it is,

that in the construction of the 2nd column of Gr we don't have to
distinguish between various cases for the location of t. For example, t in
the internal layer is no special case here, it simply introduces some
ε-dependence in the "regular part" /o

x, /0

2, etc. but that is all. This will be
different in the next section.

3.2.2. The 1st column of Gr. Here we distinguish between 3 regions for
the location of /.

( a ) ί e [ - l j - α ] , (b) / e [y + σ,l], (c) t e [y - 2σ,y + 2σ].
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Let us call this column Ia, Ib and Ic in these respective cases. Then the

1st column / for ( c, t) e [-1,1]2 will be given by

(3.2.2.1) / = H2Γ + Ή2I
b

with H2 = χ((y - t)/σ), H2 = χ((t — y)/σ) with χ the cut-off function

introduced in (2.3.5).

ad a: Ia is introduced in the following way:

(3.2.2.2) I« = ( l - H ) - ^ λ e x P ( - λ ^ l ) - f ε ' l M - ι + l {

0 1 j

Here λ = ]ffj(t) and ξ = (x - t)/ε. It is clear, that the first term of the

first component has exactly the correct jump in the derivative at x = t. To

correct the error in the b.c. we take M_x as the following solution of the

homogeneous boundary layer equation at x = - 1 :

(3.2.2.3) M_x{η) = -\ exp(-λ(l 4- t)/ε) a~ιcxp(-aη)

with a = \/Λ0(-l) > compare (2.3.2.1).
So is introduced to compensate the effect of -(2ελ)"1exp(-λ|f |) in the

second equation

cy β-λ\χ'-t\/ε

ys.A.LΛ) ^ 0 ^ yx x )gu 2 ε χ ax .

Note, that So decays exponentially in f for ξ -> oo and behaves as

(x — t)g®(t) + exponentially small terms in ξ for ζ -> -oo.

In a similar way Nτ compensates the effect of ε~ιM_x\

(3.2.2.5) Nx = ^ ( - l ) α - 2 M _ x

The other terms in (3.2.2.2) will be of the following form

(3.2.2.6) / ' = [/Q -

ϊ2a = l£H + ϊ*H+(l - H - H){l*{y) + εΩx + ε2Ω2}.

Since the process to construct / l ϊ f l, I2'a is so similar to §(3.2.1), we only

give a brief sketch.

Having the calculations of §3.2.1 in mind it will not be surprising,

that /Q, /Q, 7Q, ΪQ and A are the solution of an inhomogeneous problem
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as in 2.2.1:

(3.2.2.7)

Consequently the r.h.s. in the equation for Λo is orthogonal to Γo' and Λo

is determined in the same way as Eo in (3.2.1.5), but with c replaced by A
and Jo(y) replaced by I%(y). Of course, Ω1? Ω2 are found analogous to
El9 E2 i n (3.2.1.8-11) with the same changes c -> A, /0

2 -» /Q. Finally,
the boundary layer corrections Mv Mx are as in (3.2.1.13), but with I\
instead of JQ. It will be clear, that estimates analogous to (3.2.1.8) and
(3.2.1.12) hold in this case. Therefore we find for this part of the first
column the correct properties in view of (i)-(iv), specifically

(3.2.2.8) £ I "L.Grof\A < Λ'εln(±).

ad b: The construction of Ib is completely analogous to the construc-
tion of /".

ad c: Γ will be of the following form:

(3.2.2.9) Ic =
J_
2ε + tJ2,c

0

with ζ = (x — t)/ε as before and with t = y + εr, ξ = ξ — T. Further:

(3.2.2.10) Pc = (ε"1/^ + N0)H + ( ε " 1 P 1 + N0)Ή

+ (1 - H - H){-e~2BT^ + e^A.i

Ωo

It is not necessary to include more terms in the expansions here, since Ic

is only used for t in an 0(εln(l/ε)) interval, which yields an extra small
factor in the integration in (3.2.4).

Furthermore, the structure of the first column of Gr with t in the
internal layer shows the resonance even more drastically then before,
because of the term -ε~2
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In this case Λ_x has to satisfy the equation

(3.2.2.11) (-^ -fήλ., - -(€/,»„ + Tj^BTJ+ftl

hence an extra forcing term arises in the equation. We introduce the
notation

(3.2.2.12) δo(τ) = \ Γ (1 -f
Δ -oo

Note, that δo(τ) vanishes exponentially for T -> -oo and TOO + oo. Now,
we find J* l9 l\9 I\y Pv B as the solution of the following problem

(3.2.2.13) S?(lll9l}l9ϊll9ϊ*l9B) = (0,0,0,0; 0,0; 0,0; δ(τ)).

Hence, for large \τ\ this solution vanishes exponentially.
The r.h.s. of (3.2.2.11) is now orthogonal to Γo' and the solution Λ_x

is found as in (2.3.1.6), where the free constant can be taken to be 0. The
construction of the other terms in (3.2.2.10) is again analogous to section
(3.2.1). The result is that Ωo, Ωx and Nθ9 No are given by the expressions
in (3.2.1.10,11) and (3.2.1.13), respectively, but with the obvious changes
c -> B, JQ -» l\. Further, mutatis mutandis (3.2.1.7) still holds and as an
analogue of the overlap property in (3.2.1.12) we now have:

(3.2.2.14) le-'l^x) - { e ^ G O + Ωo + Λ

in the region y-2o<x<y-σ.
Putting all things together we find that the contribution of Γ has the

correct properties in view of (i)-(iv). Especially we mention that

(3.2.2.15) (y+2a \"LεGτ.^\dt <Kε\n(-\.
Jy-2a ' V e I

Herewith the construction of the approximate Green matrix is complete.

3.3. The approximate inverse operator and the derivation of the correct-

ness result. Using the properties of Gr given in (i)-(iv) it follows, that
{L~ιy as defined in (3.1.18) is an operator with domain {C[-l, I]}2 and
range contained in the domain of Lε. Moreover

(3.3.1) LXL?)' = I+eK9

where actually Kε is purely an integral operator with kernel "L ε Gr", since
we succeeded to do the construction with A in (3.2.3) = 0. We take as the
Banach space B in §3.1, B = {C[-l,l]}2 provided with the maximum
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norm | | 0 being the sum of the norms | | m a x for each of the compo-
nents.

Of course (3.2.4) implies, that the operator εvKε satisfies the estimate
in (3.1.8):

(3.3.2) \e"Kε\0<Kε\

Using explicitly the form of Gr given in §3.2 it is possible to estimate the
norm of (L~1)' as

(3.3.3)

With an ε-independent constant m > 0. The factor ε"1 in this norm is due
to a resonance effect in the internal layer, which is only present in the first
component. It is left to the reader to check, that this resonance effect is
precisely what one should expect on the basis of the construction of a
formal approximation for the linearised problem with smooth inhomoge-
neous terms.

In this case the non-linear operator Nε is given by

(3.3.4)

Using a method as in [7], [8] it is easy to show, that

(3.3.5) N -N <1OP

for 0 < p < p2 and 0 < ε < ε2 with ε-independent positive constants /0

and p2. In combination with (3.3.3) this leads to the following value for
K«) in (3.1.12).

(3.3.6) p{ε) = ε(lomY1.

Now an application of the results in (3.1.15-16) show that there is a
unique solution of (1.1-2) satisfying the estimate

(3.3.7)
(;)-

-1 ΛJεln ί)]
for TV > 2.

The main result given in (3.1) is then an easy consequence of (3.3.7)
and the triangle inequality

<

0
( " ) -

yN+2

+
0

7 ^ + 2
^1
?N+2

1 7N

7N

\Z '2

7N

The latter term is O(εN+1) because of the structure of the formal ap-
proximation.
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