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A FUNCTIONAL CALCULUS FOR BANACH
PI-ALGEBRAS

DENIS LUMINET

Let A be a unital Banach algebra. Take a,,...,a, € 4 and let B
be the closed subalgebra of A they generate. The algebras 2(Q) of
entire matrix-valued functions were introduced by J. L. Taylor, who
asked if they led to a functional calculus, generalizing the Shilov-
Waelbroeck-Arens-Calderon theorem. We show that a necessary condi-
tion for a functional calculus map 2(Q) — A to exist is that B satisfy a
polynomial identity; sufficient conditions are that B be a topological
subquotient of a Banach Azumaya algebra, or that n = 2 and B satisfy
all identities of 2 X 2 matrices. For closed subalgebras of Banach
Azumaya algebras, we obtain a functional calculus on polynomial poly-
hedra containing the joint spectrum. Various properties of algebras of
matrix-valued functions are studied, including domains of holomorphy.

Introduction. In the early 1950’s, Shilov, Waelbroeck and Arens-
Calderon constructed a functional calculus for several variables in a
commutative Banach algebra with unit (all algebras are assumed to be
complex). If A4 is such an algebra, and a,,...,a, € A, we have a homo-
morphism P, —» A4 that sends 1~ 1, X; — a,,..., X, — a,, where P, is
the polynomial algebra in X,..., X,. This map extends to a continuous
homomorphism O(U) — A, i.e., we have a commutative diagram

P, - A4

n

N/
o(U)

provided the open subset U of C” contains the joint spectrum of
(ay...,a,)[8]

Is there a reasonable equivalent of this result for noncommutative
algebras? Let A be any unital Banach algebra, and take a,,...,a, € 4.
We have a homomorphism F, — A4 thatsends1 — 1, X; = a,,..., X, —
a,, where F, is the free algebra in Xj,..., X,. Can we extend this map to
some algebra 7 of “noncommutative functions”

E, - 4

N 2
574
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the existence of the extension being subordinate to a condition on a (yet
to be defined) joint spectrum of (a,,...,a,)? This is the functional
calculus problem for noncommutative algebras.

Our first task is to define the algebras of noncommutative functions
that will play the role of the O(U), U € C". Let us again consider a
commutative situation: entire functions of one variable. We can regard
them as “holomorphic functions”, i.e., continuously differentiable func-
tions C — C that satisfy the Cauchy-Riemann equations. Or we can view
them as “analytic functions”, i.e., power series with infinite radius of
convergence. Of course, these notions are identical: a function is holomor-
phic if and only if it is analytic. The equivalence holds for functions of n
variables; any function holomorphic (in the Cauchy-Riemann sense) in
the open set U C C” is locally the sum of its Taylor series, and conversely.

It is somewhat surprising that the natural generalizations of “holo-
morphic” and “analytic” to noncommuting variables give rise to two
different theories. For simplicity, we shall deal again with “entire” func-
tions. We can consider functions that send n-tuples of i X i matrices to
i X i matrices (n > 2 is fixed, i ranges over the positive integers). If we
demand that these functions satisfy suitable intertwining conditions, we
obtain the algebra 2({) of “free entire holomorphic functions”. Even
simpler is the definition of % (c0), the algebra of “free entire analytic
functions”: we take all free power series with infinite radius of conver-
gence. J. L. Taylor, who introduced 2(2) and % (o0) in [14], showed that
Z (o0) embeds in 2(L). The inclusion is proper: take free indeterminates

X, and X,, and consider
o0

(X, Xz) = kZZ Sk(Xv X1 X5, X1X2k_l)
where S, is the standard alternating free polynomial in k variables. It is
easily shown that f € 2(Q), for the value of f on a couple of matrices is
always given by a finite sum (Amitsur-Levitzki theorem, see [10]); but
f & Z(o0): it cannot be written as a convergent power series (2.9).

Let us go back to the functional calculus problem. Since we can
always substitute Banach algebra elements in a free power series, the map
F, — A extends to % (o0). However, we are looking for a functional
calculus, and % (o0) is not really a function algebra. Thus, we now ask
whether the map F, - A extends to 2(£2) (which is a function algebra)

F, - A

| g A (Taylor’s question, [14])
F(o0) - 2(9)
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In order for the dotted map to exist, it is necessary that the subalgebra of
A generated by a,,...,a, be a Pl-algebra, i.e., some free polynomial
vanishes identically when evaluated on elements of the algebra (2.7).

The converse question is more delicate. We conjecture that 2(Q)
gives a functional calculus for all PI-algebras and any (finite) number of
variables. We prove this

(a) when the algebra is a separated quotient of a closed subalgebra of
a Banach Azumaya algebra;

(b) when the number of variables is two, and the algebra satisfies all
polynomial identities of 2 X 2 matrices.

It is not known if every finitely generated Banach Pl-algebra enjoys
property (a). Even if this is not the case, (b) indicates that (a) might be
superfluous.

To attack this question, we shall assume henceforth that the unital
Banach algebra A satisfies all identities of i X i matrices. Then the map
F, > A vanishes on the ideal T, of those elements in F, that are
polynomial identities for i X i matrices, and yields a map F,/T,, = R, ;
— A, where R, ; is the algebra of n generic i X i matrices. R, ; can also
be described as an algebra of polynomial functions M — M, (M, is the
algebra of complex i X i matrices; likewise M, ; is the space of complex
i X j matrices, GL; the complex general linear group,...). We can con-
sider #, the closure of R, ; in O(M', M;). An intrinsic definition of 2
can be given for n =i =2, but fails when i >2 or n > 2. Z is the
algebra of “entire holomorphic functions of n i X i matrices”. Does
R, — A extend to 2?

N

This question is equivalent to the following: can every function in # be
represented by a power series, i.e., do “holomorphic” and “analytic”
coincide for entire functions of n i X i matrices (where now both » and i
are fixed). Still another way to phrase the question is: do () and
F (00) agree after factoring out the functions that vanish on i X i matrices?
If the answer is affirmative, we will have shown that 2(Q) — A.

When n = i = 2, we can prove it, because we have precise structure
results on R,,, the algebra of two generic 2 X 2 matrices [7]. Our
approach does not seem to generalize to n > 2 or i > 2, when the
structure of the generic matrix algebra is less well understood. The basic
difficulty with our algebras £ is that they are not finite modules over
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their centers, and the centers are not finitely generated algebras. Neverthe-
less, we can try a more complicated construction. Instead of considering
entire free power series, we take free power series with a finite polyradius
of convergence. Also, we add g extra indeterminates to the n we started
with, and impose ¢ relations, before factoring out the identities of i X i
matrices. If the relations are chosen suitably, the quotient turns out to be
an Azumaya algebra (hence finite over its center), and its center is finitely
generated. Then we can show that the quotient is isomorphic to the
algebra of all “holomorphic functions” defined on an open set of M
which is a natural generalization of a polynomial polyhedron. This implies
the existence of 2({) — 4 when A4 is (a topological subquotient of) an
Azumaya algebra (n, i arbitrary).

The contents of this paper can be summarized as follows. In Chapter
One, we give basic facts about algebras with polynomial identities. The
sole original result is a description of the algebra of two generic 2 X 2
matrices by intertwining conditions. Free algebras of analytic and holo-
morphic functions are introduced in Chapter Two, which is based on
Taylor’s [14]. We include a study of “domains of holomorphy”, parallel to
the domains of holomorphy in classical complex analysis. In Chapter
Three, we discuss Pl-algebras of holomorphic functions. Chapters Four
and Five, where the commutative functional calculus plays an important
role, constitute the heart of the paper. In Chapter Four, after developing
an implicit function theorem due to Taylor, we show that holomorphic
functions on » i X i matrices admits power series expressions in ap-
propriate domains, for which the function algebras are Azumaya. Chapter
Five concentrates on functions of two 2 X 2 matrices. Finally, Chapter
Six describes the construction of a functional calculus, under the assump-
tions (a) or (b) stated on page 129. For closed subalgebras of Azumaya
algebras, we obtain a functional calculus on polynomial polyhedra con-
taining the spectrum.

This paper originates in a doctoral dissertation completed at the
University of Utah under the supervision of Joseph L. Taylor, whom we
thank for his encouragement and stimulating comments.

Chapter One. Polynomial Identities

Let 4 be a complex algebra with unit. A satisfies a polynomial
identity if some noncommutative polynomial in n variables vanishes on
all n-tuples of elements of 4. We also say that A is a PI-algebra. We shall
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write A < M; when A satisfies all the identities of i X i matrices (in
particular the standard identity S,;, = 0).

Basic properties of Pl-algebras can be found in [9], [12], [16]). Let us
also mention this recent result.

1.1. PROPOSITION (Braun). If A is a finitely generated PI-algebra,
there exists i € N such that A < M,.

Proof. See [4].

Azumaya algebras (also called central separable algebras) form an
important class of PI-algebras. Here is a deep and useful fact.

1.2. PROPOSITION ( Artin-Procesi). A is an Azumaya algebra of rank i?
over its center Z if and only if

(a) A < M,

(b) For every maximal ideal I in A, A/I is a central simple algebra of
dimension i* over its center.

Proof. [16, 11.3.5].

Recall that, for 4 < M,, the Formanek center F(A) of A is the subset
of A obtained by evaluating all central polynomials (for i X i matrices)
without constant term, in any number of indeterminates; see [9.VIII].

1.3. PROPOSITION

(a) F(A) is anideal in Z( A), the center of A.

(b) F(A) = Z(A) if and only if A is an Azumaya algebra of rank i*
over its center.

Proof. [10, 5.1, 5.4].

Let n > 2, i > 2 be two integers. Let R be the algebra of n generic
i X i matrices (see Introduction, or [11]).

Let B be the algebra of invariants (for n-tuples of i X i matrices),
which we define by

B= {f: Mi"pd—zn'C: f(mxm™) = f(x) forall x e M/, m € GLi}~



132 DENIS LUMINET

Then S = BR is the algebra of concomitants (also known as the trace
algebra), and

1.4. PROPOSITION.
lyn.
S = {f M,-"po—y)n M;: f(mxm™) = mf(x)m™

forallx € M, m € GLi}.

Proof. [11, 2.1].

Is it possible to describe R by stronger intertwining conditions? The
definition of Taylor’s 2(Q) algebra suggests that this might be possible, if
we accept noninvertible intertwining matrices. Unfortunately, this works
only for n = i = 2, where we have the

1.5. PROPOSITION. Let

polyn.
275

R = {f: M2T5TM,, f(x)m = mf(y)

whenever x, y € M}, m € M, and xm = my}.
Then R’ = R, the algebra of 2 generic 2 X 2 matrices.

Proof. Basic structure results for R are given in [7]. By (1.4),
polyn.

S ={f: MF"S" My, (x)m = mf()
when x, y € M}, m € GL, and xm = my}

and thus R C R’ € S. Now R and S have the same commutator ideal K
[7], so R’ will also have K as its commutator ideal, and R/K C R'/K C
S/K. Let X, X,,T,, T, be the classes mod K of X,, X,,trX;,tr X, € S.
Then R/K = C[X,, X,] and S/K = C[X,, X,, T}, T,]. Take
a,, by, cy,a,,b,,c, € Candlet

& 0 _[a, 0
Tl b-q) 2T l0 b, -4,

@& 0 (a4 0
yl_ O Cl—al .yZ— 0 02—a2.
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Let x = (x;, x,) and y = (y,, y,)- Note that x(} 3) = (} 3)y. Let m =
(5 0)- Suppose f€ S/K. Write f =X\, X;X{TST, (where A, € C
and the sum is finite). If f € R'/K, f(x)m = mf(y), which forces A, ,, =
0 when k # 0 or [ # 0. Thus f € R’/K implies that f= XA, o X;X] €
R/K, and from R’/K = R/K, it follows that R’ = R (the final part of
this argument is due to E. Formanek).

From this description of R’ = R, we obtain
, 2polyn.
Z(R) = Z(R) = { f: MZ"3"C, 1(x) = £(»)
whenever x, y € M2, m # 0, and xm = my}

from which we can get

1.6. COROLLARY.
Z(R) = C + B(X,X, - X,X,)".
This appears in [7] with a different proof.

However, results analogous to (1.5) fail for n > 2 or i > 2.

1.7. ExaMpLE (Formanek). Let R be the algebra of 3 generic 2 X 2
matrices. Consider f € S, f(X,, X,, X;) = tr Xi(X,X; — X;X,); then f
satisfies the strong intertwining condition, but f & R. Similar examples
can be given for pairs of i X i matrices (i > 2), and of course for n-tuples
of i X i matrices (i,n > 2).

We now go back to the algebra of invariants B (n, i arbitrary). B is a
finitely generated algebra; more precisely

1.8. PROPOSITION. B is generated by {tr(X, - -+ -X,): r <2' —1}.
Proof. [11, 1.3].

It follows that B is Noetherian.

Fix a set of generators z,...,z, for B. This defines a map II:

M - C>.

1.9. DEFINITION. Let M/ = {(x,,...,X,) € M": x,,..., x, generate
M,}. Let M/ = M — M.
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Note that M/ is open and dense in M.
Two important facts are contained in

1.10. PROPOSITION. (a) IT maps M onto an affine algebraic subvariety
Ain C? dimA = (n — 1)i* + 1.

(b) II restricted to M,." maps onto an open, smooth subset A of A; in
fact, M is the total space of a principal bundle with fiber PGL, and base A.

Proof. [10, 4.1.5.10]

We now attack the spectral study of Banach PI-algebras. The funda-
mental structure result is

1.11. PROPOSITION. Let A be a primitive Banach algebra satisfying a
polynomial identity of degree d.
Then A = M, for some i < [d/2]

Proof. By a theorem of Kaplansky [9, II.1], 4 is a central simple
algebra of dimension i? over its center Z, with 2i < d. By the Gelfand-
Mazur theorem, Z = C. Since C is algebraically closed, we conclude that
A =M,

1.12. COROLLARY. Assume A is a unital Banach algebra that satisfies
an identity of degree d, and let I be an ideal of A. Then (a), (b), (c) are
equivalent and imply (d):

(a) I is maximal

(b) I is primitive

() A/T=M,(2Qi <d)

(d) I is closed.

Let A be a unital Banach PIl-algebra, and take a = (a,,...,a,) € A"
All irreducible representations of A4 are finite-dimensional, and this will

allow us to define the joint spectrum of (a,,...,a,) as a subset of
Q=Ux, M/

1.13. DEFINITION. Let

sp;,(a) = {(¢(a,),...,9(a,)): ¢ irreducible representation 4 — M, }

and sp(a) = UZ sp,(a). (Actually the union is always finite.)
We will need the notion of full spectrum.
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1.14. DEFINITION. Let
fspi(a) = {(¥(a,),...,¥(a,)): ¥ nondegenerate

representation 4 — M,}

and fsp(a) = U, fsp,(a).
Also interesting is the polynomial spectrum.

1.15. DEFINITION. Let
pspi(a) = {x=(x;,...,x,) € M/ pp(x) < pp(a) forall p € F,}
(p = spectral radius),

and psp(a) = U, psp(a).

Clearly @ C sp(a) C fsp(a) C psp(a).

We will not consider the problem of the Gelfand transform (can we
represent any semiprimitive Banach Pl-algebra as an algebra of continu-
ous matrix-valued functions?) in full generality here. Let us just mention
the

1.16. PROPOSITION ( Fell). Let A be a unital C*-algebra such that
A/I = M, for all maximal ideals I of A (i is fixed). Let Z be the center of
A: then Z = C(X) for some compact Hausdorff space X. There is a bundle
M with fiber M, and base X such that A = I'(X, #), the algebra of all
continuous sections of over X.

Proof [6, Th. 3.2].

Thus Azumaya C*-algebras can be represented as section algebras
(since the bundle .# need not be trivial, we cannot always write 4 =
C(X, M,)). A similar result will be given for some Azumaya algebras of
holomorphic functions (4.19).

Chapter Two. Free Algebras of Functions

In his papers [14] and [15], Taylor studied “localizations” of the free
algebra. We fix n > 1. An embedding F, » &/ (where ./ is a Fréchet
algebra, i.e., a complete, metrizable, locally m-convex algebra) is said to
be a localization if there exist n linear maps A,,...,A,: &> /& o (®
is the completed inductive tensor product) that have properties similar to
partial differential quotients [15, p. 6]. If, furthermore, A,,..., A, satisfy



136 DENIS LUMINET

conditions analogous to the Cauchy estimates, =/ will be called a free
analytic algebra [15, p. 13]. When the map F, — &/ is understood, we shall
just say that &/ is a localization. Taylor gives many examples of localiza-
tions of Fj, the polynomials algebra in one indeterminate. He shows that
& is a free analytic algebra (in one indeterminate) if and only if &/= O(U)
for U open in C. Since the algebras O(U) give a one-variable functional
calculus, we can hope that free analytic algebras (in » indeterminates) will
lead to a functional calculus for » noncommuting variables in a Banach
algebra.

We shall also need the notion of “Imc completion”. The Imc comple-
tion &7 of a topological algebra . is the Hausdorff completion of ./
with respect to the family of all continuous submultiplicative seminorms
on . It has the universal property:

& —> B
N/

~

o

viz. every continuous homomorphism 2/ — B (B Banach algebra) factors
through 27; see [13, p. 178] for an equivalent definition.

We assume henceforth » > 2. Let us investigate some “free algebras
of functions”.

Every free polynomial p of degree 4 in F, can be written as
p= Zﬁ,,= oA, X° where ¢ is a noncommutative multi-index, |o| its length,
and A, is a complex coefficient. Let J =]000]. On I", we have the partial
ordering a = (a,,...,a,) <b=(b,,...,b,)if and only if a, < b,,...,a
< b,. Let r € I". We introduce the algebra of power series [14], [15]:

n

2.1. DEFINITION.

o0 o0
F(r)= { YOAX Y At <ooforallt e, t < r}.
|o|=0 lo]=0

Endowed with the obvious family of (semi)norms, %#(r) is a Fréchet
algebra, and a free analytic algebra [15, p. 17]. Let % (o0) = % (r) where
r = (00,...,00). F(00) is the Imc completion of F,, and can be regarded
as the algebra of “free entire analytic functions” (although free power
series do not correspond to functions in the sense of mappings). Taylor
claimed [14, p. 235] that % (r) was never nuclear (as a Fréchet space).
However, we have the

2.2. PROPOSITION. Let r = (ry,...,r,) € I". F(r) is nuclear if and
only if at most one of ther,,. .., r, is finite.
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Proof. We follow [14]. #(r) is nuclear provided that, for every
p’ €I, p’ <r,thereis p € I", p’ < p < r, for which the series

> "‘1*"'+k~>!(p_1)"‘...(p_;)k"

ok, Rl k! P P

is convergent. This series can be rewritten as

k

o0 /

) LS. ] (k=tky + - +k,)
k=0 Py Py
which converges if
/ /
L
pl pn
If (and only if) at most one of the r,, ..., r, is finite, then for every choice

of p’ <r we will be able to find p, p’ < p < r, such that the above
inequality is satisfied, and % (r) will be nuclear.

2.3. COROLLARY. % (0) is nuclear.

Here is the relationship between free power series and the functional
calculus problem.

2.4. PROPOSITION. Let A be a unitial Banach algebra, and take
a,,...,a, € A. Chooser, > ||a,|...,r, > ||la,l. There is a continuous alge-
bra homomorphism % (r) > A that maps1 — 1, X, —» a,,..., X, — a,,.

Proof. Elementary.

But, as we observed earlier, % (r) can hardly be regarded as an
algebra of functions. Therefore, we shall now turn our attention to a quite
different kind of algebra, based on the idea of function rather than power
series.

The following definitions are borrowed from [14, p. 238]. Let © =

® M (topological disjoint union). If x =(x;,...,x,) €E M/, y=
(Y15--->¥,) € M, x ® y will denote

x 0) _[[xx O x, O »
53l Sl 2o

Let U be an open subset of 2, let U, = U N M/". Then U, is open in M,.
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We denote the Fréchet algebra of holomorphic functions in U, with
values in M, by O(U,, M,).

Let Z(U)=11~,0(U, M,) be the topological direct product. Thus
an element f € #(U) is a function on U which, when restricted to U, is a
holomorphic function with values in M,.

Note that Z(U) is a nuclear Fréchet algebra. We shall say that U
open in { is normalif x € U,, y € U, impliesx ® y € U, .

2.5. DEFINITION. Suppose U is a nonempty open normal subset of 2.
Then

2(U) = (1€ BWU): f(x)m = mf(y)
whenever x € U,, y € U, m € M,, and xm = my}.

2(U) is a closed subalgebra of Z(U) and hence is also a nuclear Fréchet
algebra. We have a natural map F, > Z(U). As no (nonzero) free
polynomial vanishes in all matrix algebras, this map is injective. Here is a
crucial property.

2.6. PROPOSITION. If U is a nonempty open normal subset of 2, 2(U)
is a projective limit of Banach Pl-algebra.

Proof. 2(U) is a closed subalgebra of Z(U). Any continuous semi-
norm » on Y(U) is essentially given by »v( f) = max{||f(x)|: x € K} for
some K compact in U, so K ¢ U’_, M. Thus »'(0) contain all poly-
nomial identities of / X i matrices, and the normed algebra 2(U)/»~}(0)
< M,. Taking an increasing sequence of compact sets and completing, we
can realize Z(U) as a projective limit of Banach PI-algebras.

2.7. COROLLARY. Let A be a Banach algebra, and ¢: Z(U) > A a
continuous homomorphism. There exists i € N such that ¢2(U) < M,

(hence p2(U) < M,).

Thus, if 4 is a Banach algebra with unit, and a,,...,a, € 4, we can
hope to get a functional calculus map Q(U)—-> A4, 1~1, X~
a,,..., X, — a, only when the subalgebra of 4 generated by q,,...,4q,

satisfies some identity, hence all identities of i X i matrices for some i
(1.1).

Since Z(U) is Imc and complete, the embedding F, = Z(U) yields
an injection % (o0) = 2(U). In particular, % (o0) = 2({2). We know
that % (o0) is an algebra of “free entire power series”, while 2({) is an
algebra of “entire matrix-valued functions”.
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2.8. PROPOSITION. The map % (o0) = D(R) is not surjective.

Proof. If it were, F(o0) and 2(2) would be isomorphic Fréchet
spaces; but on 2({) there is no continuous norm (2.7) and % (o0) admits
many continuous norms.

A more concrete explanation is the following (see Introduction).

2.9. EXAMPLE. Let n = 2, consider

f(Xl’ Xz) = kzz Sk(Xv XXy, Xlek_l)-
Then f & % (o0): write f as a power series LA, X°, and observe that for
all d € N, there is a multi-index o, |6| > d, A, = 1; thus XA X’ cannot
have infinite radius of convergence.
But f € 2(9Q): if x = (x,, x,) € M?, f(x;,x,) is given by the finite
sum Y2, 8, (X, X, Xq, ..., %, x57Y), and f € B(Q); it is easily checked
that f € 2(Q).

2.10. PrOPOSITION. Let f € 9(Q), x € U, y € U,. There is a linear
map A: M, > M,,, z = f(x, y, z) such that

1

f(x Z)=(f(x) Af(x,y,z)
0 y 0 f(y)

whenever (5 ;) € U, ;.

Proof. See [14, p. 239]. Note that (§ )) € U,,,, and as U is open,
0 ») € Uy, for all z in a neighborhood of 0 in M.

2.11. PROPOSITION. Every f € D(2) has a formal free power series in
Xiheeor X,

Proof. For a given i, f will have a power series as a function
M = C"" — C” = M,. This Taylor series can be written as a power
series in X,..., X,, say X% _o AP X° [15, p. 20]. As M, does not satisfy
any polynomial identity of degree < 2i, the A{) are uniquely determined
for |o| < 2i. We define A, =AY for any i > |o|/2, and XA, X° is the
formal power series for f. Example (2.9) shows that we lose control on the
growth of the coefficients.
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Taylor proves [14, p. 242] that 9(U) is a localization. However, it is
not a free analytic algebra. Let us only show

2.12. PROPOSITION. 9(2) is not a free analytic algebra.
Proof. Let E be an infinite-dimensional Banach space. If 2(Q) were

a free analytic algebra, the set

V={(x,...,x,) € (Z(E))": there s a continuous homomorphism

2(Q) > ZL(E),1~1, X, x,..., X, > x,}
would be open in the norm topology of (Z(E))" [15, p. 14]. But (2.7)
Ve w={(xy,....,x,) €(L(E)": x,,...,x,

generate a PI-subalgebra of Z(E)}.

Since 0 = (0,...,0) € W and W is not a neighborhood of 0, V' cannot be
open. A similar argument shows that 2(U) is not a free analytic algebra.

In the setting of matrix-valued functions, we can study envelopes and
domains of holomorphy.

As usual, let U be a nonempty, open normal subset of . By a
representation 2(U) — M,, we mean a continuous unital algebra homo-
morphism. Since 2(U) is a localization of F,, we have the

2.13. PROPOSITION. Let (x,...,x,) € M. There is at most one
representation D(U) - M, X, = x,,..., X, = x,,.

Proof. [15, p. 7].

Of course, if x =(x;,...,x,) € U, evaluation at x will give a
representation. A natural question is: are there (finite-dimensional) repre-
sentations which are not evaluations?

2.14. DEFINITION. Fori = 1,2,3,..., welet
U, = {x € M}": there is one representation 2(U) - M,,
X, = x5, X, = x,).

Then U = U%, T, is the envelope of holomorphy of U. Since U, C U, C
M., we have U C U c Q; thus we do not have to consider “Riemann
domains”.
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2.15. Conjecture. We believe that U is always open in Q. If it were
true that 2(U) is a free analytic algebra, this would follow from [15].
Note that U is normal; if U is open, we have a natural isomorphism
2(U0) - 2(U).

2.16. DEFINITION. U is a domain of holomorphy if U = U.

Although we do not have a complete characterization for domains of
holomorphy, we have necessary conditions contained in the

2.17. PROPOSITION. Let U be a domain of holomorphy. Then:

(a) For all i, U, is holomorphically convex (in the classical sense, viz. as
a subset of C"").

(b) If x € U, and m € GL,, then mxm™ € U,

() Ifx € U;andy € U, then

(3 )Z;)El]i+j forallz € M.
@If (5 ;)€ Uy, thnx € U andy € U,

J

Proof. (a) Assume U, is not a domain of holomorphy in C"’. Let U,
be its classical envelope of holomorphy, which is a manifold spread over
C"”. Every holomorphic function g: U, = M, extends to g: U, — M,
Take x € U, let y: D(U) - M,, f— §(x) (where f|, = g); this defines
a representation of 2(U). If x does not lie over U,, ¢ cannot be given by
any point of U,, so U is not a domain of holomorphy.

(b) ¥(f) = mf(x)~! defines a representation, which must be given by
evaluation at mxm™".

(c) As U is normal, x € U, and y € U, imply that

i o

w small enough,

X w
(0 )=t
Now, by (b),

t 0\(X WY\[g1 0y (x tw
(0 1)(0 y)(o 1)—(0 y)eU"“’

for all + € C*. Since tw is arbitrary, we see that

As U is open, for w € M

ij°

(i)c ;) € U,; forall z € M, (seealso (2.10)).
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(d) This follows from [15, p. 7].

We do not know if these four conditions are sufficient, i.e., if every
normal, open U that satisfies (a), (b), (c), (d) is a domain of holomorphy.

We also have a class of examples, the holomorphic polyhedra. Let V
be a domain of holomorphy (e.g., 2), take f,,..., f, € 2(V), and con-
sider

U= {xeV:pfi(x)<1,...,pf,(x) <1}.

U is open and normal, moreover
2.18. PROPOSITION. U is a domain of holomorphy.

Proof. First observe that UC V= UC U C V = V. Suppose x € U
— U. We can assume, without loss of generality, that pf,(x) > 1, so there
is m € C, |n| = 1, such that f,(x) — 7 is not invertible in M,. But f, — 7
is invertible in 2(U), and a unital representation should map invertibles
onto invertibles.

In classical complex analysis, domains of holomorphy are holomor-
phically convex, and conversely (Cartan-Thullen). Here, the 2(U )-convex
hull of a compact subset of U will almost never be compact, even if U is a
domain of holomorphy. Still, we think that domains of holomorphy
should be “limits” of holomorphic polyhedra.

Chapter Three. PI-Algebras of Functions

Let A be a unital Banach algebra, and a,,...,a, € A. We have
shown that a functional calculus map 2(U) — A4 could exist only if the
subalgebra of A4 generated by a,,...,a, satisfied a polynomial identity,
hence all identities of i X i matrices for some i (2.7).

Without loss of generality, we shall assume that A itself satisfies the
identities of i X i matrices, i.e., 4 < M,

Suppose there exists ¢: () > 4,1-1, X, »a,,..., X, ~a,. ¢
will then vanish on the ideal of polynomial identities of i X i matrices,
hence on its closure I, = { f € 2({2): f=0 on M/} (actually f= 0 on
M implies f=0on M}, j < i). Thus ¢ will yield a map 2(Q)/1, - 4.
The quotient 2(Q)/I, can be expressed as an algebra of functions taking
n-tuples of j X j matrices (1 < j < i) to j X j matrices, and 2({)/1, <
M.

i
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In order to attack the question of the existence of ¢, we need a
satisfactory theory of such quotient algebras, more generally of quotients
2U)/{f<€ 2(U): f vanishes on U, for all j < i}, where U is open and
normal in Q. Therefore, we are led to investigate PI-algebras of functions,
similar to the 9(U), but now U CU’,_; M has only finitely many
“levels”.

We shall make a simplifying assumption, viz. consider just U C M/
(U has only one level). In the two cases we will study later, this is no loss
of generality:

— If i = 2, we can always embed (n-tuples of) scalars as (n-tuples of)
scalar matrices (Chapter Five)
— When our Pl-algebra of functions turns out to be Azumaya of rank
i%, U must be contained in M/ (Chapter Four).
Another argument for restricting ourselves to “one-level” algebras is that
we can embed all M;,1 <j < i,in M, (see also 6.6)
Let us thus take U open in M.

3.1. DEFINITION.

holom.

H(U) = {f3 U > M, f(x)m = mf(y) whenever
x,yeU meM, xm= my}.

3.2. DEFINITION. Z(U) = the closure in O(U, M,) of the algebra R of
n generic i X i matrices.

Clearly Z(U) € #(U). In some sense, Z(U) is the smallest algebra
we can define, if we demand that it be closed in O(U, M,) and contain the
generic matrices. We also expect every function of n i X i matrices to
satisfy the intertwining condition in (3.1), so S (U) is the largest algebra
we can reasonably work with.

Neither of these two definitions is totally satisfying, (3.1) in view of
example (1.7), (3.2) because we do not expect all domains U to be Runge.
But both will prove to be useful in the sequel. In the next two chapters, we
shall show, under suitable assumptions on U, that Z(U) = #(U). Let us
already mention

3.3. PROPOSITION. #(M}) = #(M3).

Proof. Let fe#(M3); f is the sum of its Taylor series (as f:
C® > M,),ie., f=X%_oc,t* where ¢, € M,, p is a commutative multi-
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index, and ¢ is a 8-tuple of complex numbers (the 8 entries of the matrices
X, and X,). Since the intertwining condition (3.1) is linear, f, =
ZM 0c t* € R (the algebra of 2 generic 2 X 2 matrices) by (1.5), and

fx 57 f, so f € R(M}). The reverse inclusion is obvious.

This result will be generalized later (4.17). Note that the analog of
(3.3) fails when n > 2 or i > 2, because of (1.7).

Chapter Four. The Implicit Function Theorem

Algebras of holomorphic functions on polynomially convex sets in C”
were studied by H. Cartan and K. Oka in the 1940’s. They yield one road
(Waelbroeck) to the commutative functional calculus [8], while another
approach (Shilov, Arens-Calderon) uses the Weil integral formula. We do
not see any generalization of the Weil formula to functions of several
noncommuting variables. On the other hand, Taylor [15, p. 23] proved an
“implicit function theorem” that will play the role of the Oka-Cartan
results.

4.1. PROPOSITION. Let =% (ry,...,1,, 51,---,5,) be a power series
algebra (2.1) in the indeterminates X,, ..., X,,Y,,...,Y,. Letp,,..., P, be
free polynomials in X, ..., X, and let I be the closed ideal generated in F
byp, - Y,...,p,— Y,

Then & = /1 is a free analytic algebra in the indeterminates X, ..., X,
provided 1 # % (we do not distinguish between X, in % and its class
mod/l, k=1,...,n).

Proof. [15, p. 26 (Example 3)].

Recall that algebras of power series do map into Banach algebras
(2.4), but not all functions in 2(£2) have convergent power series expres-
sions (2.9). However, this very example (2.9) indicates that power series
algebras and matricial function algebras might coincide after factoring out
the identities of i X i matrices. Our goal is to prove this, under suitable
hypotheses. The idea is to map quotients of power series algebras into
PI-algebra of functions (Chapter Three) by a “Gelfand transformation”
and show that the homomorphism must be an isomorphism.

We want to map & = %#/1 (4.1) into an algebra £ (U) (3.1). Let us
study & by looking at its finite-dimensional representations (a representa-
tion is always assumed to be continuous and nondegenerate).
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4.2. DEFINITION. For i = 1,2,3,..., welet
U= {x=(x,...,x,) € M/": there is a (unique, 2.13)
representation & = M,, X, = x,,..., X, = x,}.

Note that each U, is open in M [15, p. 14] and invariant under
conjugation. What does U, look like? Can it be defined by analytic
inequalities?

4.3. PROPOSITION. Let || || be any algebra norm on M, If x =
(X1, - -5 %,) € M7, and |Ix,|| < ryyonns Xl < lP2(0)] <
Sy e s |Pg(X)l < 54, then x € U,

Proof. This follows from (2.4)
We have a converse result

4.4. PROPOSITION. If x = (x,...,x,) € U, then p(x;) <
I P(X,) < 1y pP1(X) < Sp5.., pP(X) < 5,

Proof. Suppose x € U,. Let a be the corresponding representation
&— M, and a its lift F—> M,, so a(X,) = x;. Now f=X7 ¢, Xf € F
if ¥2_ ¢, tf converges for all t; € R, t; < r;, and then a@(f) = X2_yc, xf
converges only if p(x;) < r. As U, is open we must have p(x,) <r,.
Similarly, we can consider power series of a single variable, and show

P(X3) < Fyyevey P(X,) <y pPYX) < 81y, PP(X) < 5,

4.5. REMARK. Combining (4.3) and (4.4), we see that, for x € M/,

Bl < risee s Xl < ry el p(x) <r,....,p(x,) <r
x i
"pl(x)“ < sl""’"pq(x)" < sq ppl(x) < rl""vppq(x) < Sq

which does not completely determine U, (except when i = 1), but does
give some control on it. Later, projective limit arguments and the
Gelfand-Beurling formula will allow us to obtain functional calculi on
domains defined by analytic inequalities (6.4).

4.6. REMARK. If (for example) p, is a central polynomial for i X i
matrices, then p,(x) is a scalar matrix for all x € M/, || p,(x)|| = pp(x),
and the condition for p, is completely known.



146 DENIS LUMINET

4.7. REMARK. With results like (2.18) in mind, one could believe that
actually (4.4) determines U,, i.e.,

1

U={xeM"p(x)<nr,..,p(x,)<r,

ppi(x) <sp,...,pp,(x) <s,}.

This is not the case; let n=2, ¢g=0(so &=F), ry=r,=1, i =2
Then

Uy, € {(x1,x,): p(x) <1, p(x,) <1}

and inclusion is strict: let f( X}, X,) = L2_, (X, X,)*, f € #, and (x,, x,)
€ U, implies p(x;x,) < 1, which does not follow from p(x;) < 1, p(x,)
< 1.

Now let i be chosen such that U, # &, but U=2 for j < i. Note
that all we are going to do is trivial for i = 1, so the reader may assume
i>2.

Our strategy is to study a quotient algebra of & which is Azumaya of
constant rank i2. All irreducible representations of such an algebra will be
i-dimensional. Thus, if U, = @ for j < i, but U, # &, we will factor out
the identities of i X i matrices, in order to get rid of all the irreducible
representations in dimension greater than i.

Let U = U,. Also note that U, = @ for j < i implies U C M (1.9);
if x€ U, xe M, then x corresponds to a reducible i-dimensional
representation, which yields a subrepresentation and a quotient represen-
tation in dimension less than i, contradicting the emptiness of U, j <.
We have the “Gelfand transformation”: for f€ &, x € U, let f(x)
¢(f), where ¢ is the unique representation & - M, X; = x;,..., X, —
X,

4.8. PROPOSITION. The map f — [ defines a continuous homomorphism
y: &> H#(U) =

Proof. [15, p. 15].

v is certainly not injective; kery contains J, the closure in & of the
polynomial identities of i X i matrices.

4.9. DEFINITION. Let 9= &/J.

We obtain a homomorphism ¢ — 5. We want to prove that ¥ — ¢
is in fact a (topological, as both ¢ and 5 are Fréchet) isomorphism.
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We shall prove (4.12, 4.13) that ¢ and 5 are Azumaya of rank i%. Of
course ¢4 < M, (we factored out J which contains the identities of i X i
matrices) and #°< M, () is an algebra of M;-valued functions). All
closed maximal ideals of ¢ and J# correspond to points in U C M/, and
they have codimension i2. but we cannot apply Artin-Procesi (1.2) here,
since ¢ and 5 have maximal ideals that are not closed. We need the

4.10. PROPOSITION. Let A be a Fréchet algebra which is Azumaya over
its center Z. Then the trace map [5, 111 §2) T: A — Z is continuous.

Proof. A is a finite Z-module. Take e,,..., e, a generating set for 4
over Z; if a€ 4, a=1X5_,ae; for some a,,...,a, € Z. Since T is

Z-linear, T(a) = La;T(e;). Consider the map ¢: Zk > A, (ay,...,a;)~
Yaje; - Y is continuous and surjective, hence open, and Z k/kery = A (as
Fréchet spaces). Let T": Z* - Z, (ay,...,a,) = T(Zae,) = La,T(e)).
T’ is continuous and vanishes on kery, yielding a continuous map 7"
Z*/kery — Z. Now T is just T” provided we identify 4 with Z*/kery.
(I am indebted to R. Brooks for this argument.)

Recall that we defined a map II: M” - A C C? which sends M/
onto A, A smooth (1.10). Since U € M, we have V = I1U C A Visa
smooth locally closed submanifold of C?, and

holom.

Z(H#) = {f: U - C, f(mxm™) = f(x) whenever
xeUme GL,.} - o(V).

4.11. PROPOSITION. V is polynomially convex in C?.

Proof. Write %= lim %,, where the %, are Banach algebras, and
¢ = lim ¢,. Then each ¢, is a Banach Azumaya algebra, as shown by

(1.2): all maximal ideals of ¥, are closed and have codimension 2. Now
R (the algebra of n generic i X i matrices) is dense in ¥, for F,,, was
dense in % (4.1) and density is preserved under quotients, and R is dense
in each ¥,. The trace map T: ¥, — Z(%,) is just (up to a coefficient
which we may assume is 1) the usual trace, so T maps R into B,
B C Z(%,); since R C ¥,, we see that BR =S C 9,. As R is dense in
G, so is S. Furthermore, B is dense in Z(9,): if f€ Z(¥9,), f=Tf, S
dense in ¢, =f=1limf, (f,€S), T continuous (4.10) = f=Tf =
lim 7f;, and each Tf, € Z(S) = B. Since B is dense in Z(¥,), Z(9,) is a
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finitely generated commutative Banach algebra. Its maximal ideal space
V, can be identified with a compact, polynomially convex subset of A.
Now V, C V, in fact V=U,V, is an increasing union of compact
polynomially convex subsets of A, and each compact subset of V is
contained in some V,. Therefore V' is polynomially convex.

We can now prove

4.12. PROPOSITION. S is an Azumaya algebra.

Proof. In view of (1.3), it is sufficient to prove that F(#) = Z(¥).
We already know that Z(5#) = O(V). Let € be the set of central
polynomials without constant term. Then M = N{ f~(0)} (f € ¥). As
Z(R) C B and B is Noetherian, we can suppose M = {x € M": f,(x)
= ... = f(x)=0}, with f,..., f, € B. These functions f,..., f, can
be seen as functions on [TM; = A, they have no common zero on A,
hence no common zero on V. As V is polynomially convex, we can find
85---,8, €0), with fig, + --- +f,g,= 1. This shows 1 € F(¢),
and J# is Azumaya.

Similarly, we have

4.13. PROPOSITION. ¥ is an Azumaya algebra.

Proof. The space of closed maximal ideals of Z(¥) is V' (same proof
as in (4.11)). Take f,,..., f, as in (4.12). They have no common zero in V,
and by a result of Arens [2] we can find g;,..., 8, € Z(¥9) with f, g,
+ --- +fg =1.Thus1 € F(¥) and ¢ is Azumaya.

4.14. REMARK. We have a map ¢ — 5 between two Azumaya alge-
bras of rank i% In order to show that this map is an isomorphism, it is
enough to establish the isomorphism on the centers. Injectivity of Z(¥)
— Z(2¥) implies injectivity of ¢ — 5, because we have a natural corre-
spondence between ideals of ¢ and ideals of Z(%). If Z(9) — Z(#) is
also surjective, then ¢ — 5 is bijective [12, 1.8.49].

4.15. PROPOSITION. The map Z(9) — Z(5¥) is an isomorphism.

Proof. Again, write 4 = liln 9, and Z(9) = liin Z(%,). The maxi-
mal ideal space V, of Z(%,) is a compact polynomially convex subset of
V. By a form of the (commutative) holomorphic functional calculus due to
Allan [1], there is a continuous homomorphism O(V) — Z(¥,) which is
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the identity on B. Passing to the projective limit, we obtain a map
O(V) - Z(%). We also have a map (Gelfand) Z(¥9) —» Z(¥) = O(V),
and the composition Z(¥) - Z(#) = Z(9Y) is the identity on B, which
is dense in Z(¥). Hence Z(¥9) = Z(¥).

From this, we obtain, in view of (4.14)

4.16. THEOREM. The map 9 — 5 is an isomorphism.
This theorem has several consequences

4.17. COROLLARY. Z(U) = S (U) (recall (3.1, 3.2)) (for R is dense in
H(U)=9).

4.18. COROLLARY. The ideal J (see 4.9) is equal to kery (for £(U) is
separated by its i-dimensional representations).

4.19. PROPOSITION. There is a holomorphic bundle M# over V with fiber
M., such that 3¢ is isomorphic with I'(V, #) the algebra of holomorphic
sections of M over V.

Proof. Cover U by open sets U, such that U, = II(U,) X PGL,; (=
as complex manifolds). Let ¥V, = IIU,. On U,, II has a holomorphic
section a,: V, = U,, II(0,(z)) = z for all z in V,. For f € #(U), define
foo Vo= M, by f(2)=f(e,(2)) (z€ V,). We get homomorphisms
H(U) - 0V, M,), f— f,. Pasting these, we obtain a bundle .# over V'
and a map S#(U) — I'(V, #). This map induces an isomorphism on the
centers, and both algebras are Azumaya. Thus #(U) = T'(V, #).

Chapter Five. Two Generic 2 X 2 Matrices

Let R be the algebra of generic 2 X 2 matrices generated by X; and
X,. The structure of R is described in [7]. As generators for the algebra of
invariants B, we take z; = trX;, z,=detX,, z; =trX,, z,=detX,,
zs = tr X, X,, so B = ([z,, z,, z5, z,, zs]. Note that

det X, = %((ter)2 - terz),...,

so all invariants could be expressed in terms of traces (1.8).

The algebra of concomitants S is a free B-module of dimension 4:
S = B + BX; + BX, + BX, X,. We shall also need the commutator ideal
of R (cf. 1.9)), [R, R] =[S, S]1 = S(X, X, — X, X)).
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We let 7= X, X, — X,X;, 0 =12= (XX, — X,X;)% and Z(R) =
C + Bo (see 1.6).

We now find the Imc completion of R. As # = #(M}) is Imc and
complete, we have an injective map R — 2, and we shall show that it is a
(topological, as both R and % are Fréchet) isomorphism. Note that R
and # are not Azumaya (they have irreducible representations in di-
mension 1 and 2), so the method of Chapter Four (reduction to the center)
will not do. Instead we are going to use a Five lemma argument.

We have a diagram with exact rows

0- [R,R] - R - R/[R,R]-O
al Bl vl -
0> [2,2] - @& - R[22 -0

where [R, R] and [2, 2] are the closed commutator ideals of R and 2. If
we can prove that both a and y are isomorphisms, it will follow that 8 is
bijective too.

5.1. PROPOSITION. v is an isomorphism.

Proof. Both R/[R, R] and #/[2, #] are commutative Fréchet alge-
bras generated by (the classes of) X; and X,, and we have

R/[R,R]
0(C2)§ 0(C?)
.@/[@,9?]

where the maps on the left are holomorphic functional calculi, and the
maps on the right are Gelfand transforms. It follows that O(C?) =
R/[R,R] = 2/ %, R].

Now we have to show that a is an isomorphism. We let = B =
O(C®), and define = B + BX, + BX, + BX, X,.

5.2. PROPOSITION. ¥ is a free #-module.
Proof. If a + bX, + cX, + dX, X, = 0, with a, b, c,d € %, write four

scalar equatins (corresponding to the four matrix entries) and observe that
the determinant of the system is 0 = (X; X, — X, X;)% Since o is not a
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zero-divisor, a = b = ¢ = d = 0 is the only solution.
Next let

7= (12 M3 M, J(mam ) = mf (5

forall x e M}, m € GLZ}.

5.3. PROPOSITION. ¥ = 9.

Proof. Clearly ¥C 7, and Z(¥)=Z(T)=%. Let f€TJ. An
argument similar to (3.3) allows us to write f as the sum of a power series,
all partial sums of which belong to S = B + BX; + BX, + BX,X,. Thus
we can write f=a + bX, + cX, + dX;X,, where a,b,c,d are formal
power series in zy, z,, z3, 24, 5. On the other hand, a, b, c, d can also be
computed by solving a 4 X 4 system with entries in & and determinant o,
so by Cramer’s rule a, b, ¢, d will be meromorphic functions: a = 4 /o,
(A € @), etc. But the fact that a has a formal power series forces a to be
holomorphic on C3, i.e. a € #. Similarly, b,c,d € # and f € .

We let X'= %7, and claim that o= [R, R] = [%, #]. Actually, since
[R, R] C [#, 2] we need only show that #'C [R, R] and [#, #] C X

5.4. PROPOSITION. X'C [R, R].
Proof. It is enough to show that @7 C [R, R].

Let » be any submultiplicative seminorm on R. Without loss of
generality, we can suppose » is a norm. Let E be the completion of B~
with respect to ». E is a Banach space, and £ (E) is a Banach algebra.
We have an embedding ¢: B —» Z(E), given by (f € B):

Y(z2)(fr) = X, fr + frX,
¥(2,)(fr) = X, frX,
Y(z5)(fr) = X, f + f1X,
¥(z)(fr) = X, f1X,

Y(z5)(fr) = XX fr + fr X X, (see [7])

These relations show that ¥(z,), ¥(z,), ¥(z;3), ¥(z,), ¥(z5) are »-
continuous (Bt — Br), hence extend to continuous linear maps £ — E.
Let A4 be the closure of Y(B) in F(E). A is a finitely generated
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commutative Banach algebra. At this point, we can employ the (commuta-
tive) holomorphic functional calculus: there is a continuous homomor-
phism O(C*) =B > 4, 1= 1, 2, = Y(2)), 2, Y(2,), 232 Y(23), 24
= Y(z,), zs = Y(zs). Hence, if f € %, the linear map ¢( f) will be in 4,
it will send 7 onto fr € E. Thus % C E. This holds for any choice of »,
and %t C Br, the closure of Br in [R, R] (i.e., in R). We can multiply by
X,, X, and X, X,, proving that #'C [R, R].

5.5. PROPOSITION. [Z, Z] C X .

Proof [, R =[#,H#|c|T,T)=[L,L]=X.
Combining (5.4) and (5.5), we have

5.6. PROPOSITION. [R, R] = [#, %], 50 a is an isomorphism.
Now, by the Five lemma, (5.1) and (5.6) yield

5.7. THEOREM. B is an isomorphism, and R = R(M?) = #(M?2).

5.8. REMARK. We have not been able to find the Imc completion of
the algebra of n generic i X i matrices for n > 2 or i > 2. We believe that
it should equal 2(M/), ie., that O(M, M;) induces the finest Imc
topology on the algebra of n generic i X i matrices. But it is only for
n = i = 2 that we have enough information on the generic matrix algebra
(given in [7]) to prove it. The structure of the other generic matrix algebras
is less well understood.

As an application of the above result, let us consider the following
situation. A is a topological algebra and Z( A4) its center. We have maps

z(4) - Z(4)
) 1

A - A -

and the homomorphism Z(A4) — Z(A) need not be one-to-one or onto,
as shown by (5.9, 5.11).

S04

5.9. PROPOSITION. If A is the algebra of two generic 2 X 2 matrices,
the map Z(A) — Z(A) is not surjective.

Proof. A =#(M2?) =R(M?) (5.7), and (cf. 1.6) Z(A)=C+
0(C%)o. Recall that Z(A) = C + Bo. Endow C° with a norm, and let
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T = {z € C* |o(z)| < exp(-||z|)}. T is ia “rapidly decreasing” neighbor-
hood of {z € C> o(z)=0}. T is not compact. Nevertheless, every
f€ Z(A)isbounded on T: fe Z(A)=f=a+bo (a€C, beB=
Clzy, 25, 25, 24, 25)); |f(2)] < |a] + |b(2)lexp(—]|z]]) for z € T. We can de-
fine a submultiplicative seminorm on Z(A4) by »(f) = sup|f(z)|; » does
not extend to Z(A), as g(z) = o(z) exp(z?) is unbounded on T. So Z(A4)
is a proper subalgebra of Z(A).

5.10. ReEMARK. If it were true that m = C + 0(C®)o, then it
would be possible to show (using localization, in the ring theoretic sense)
that 4 = 5#(M?). This is the case, but for different reasons.

Here is a different phenomenon.

5.11. PROPOSITION. If A is the enveloping algebra of sl(2,C), then the
map Z(A) — Z(A) is not injective.

Proof. By [14, p. 250], 4 is a direct product of matrix algebras. We
know that 4 has one (up to equivalence) irreducible representation in
each dimension 1, so 4 =12, M,, and Z(A) = CN is the algebra of
sequences of complex numbers. Now Z(A4) = C[@2] (@ is “the” Casimir
element), and Z(A4) = 0(C), the entire functions of Q. We have the map
@: Z(A) > Z(A). Looking at the infinitesimal character, we see
that ¢ sends the function @ € @O(C) to the sequence (0,3/4,2,...,

(n?> —1)/4,...) € CN. Hence
o(f) = (£(0), £(3/4),....f((n* = 1)/4),...).

By the Weierstrass theorem [8, 1.5.4], ¢ is a surjection O(C) > CN. ¢ is
not injective, for its kernel contains f(Q) = sin47 Q.

Chapter Six. The Functional Calculus

The results of Chapter Four will now yield a functional calculus for
topological subquotients of Banach Azumaya algebras, giving a positive
answer to Taylor’s question: if A is a separated quotient of a closed
(unital) subalgebra of a Banach Azumaya algebra, if a = (a,,...,a,) € 4",
then there is a continuous algebra homomorphism Z({2) — A4 that sends
1-1, X; > ay,..., X, a, If we suppose that A4 is a closed subalge-
bra of a Banach Azumaya algebra, we can even get a functional calculus
on a polynomial polyhedron. We will also give a result valid for two
variables in any Banach algebra satisfying all identities of 2 X 2 matrices.
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First let 4 be a Banach Azumaya algebra of rank i? over its center
Z(A). Take (a,,...,a,) = a € A". Our idea is the following: choosing
suitable free polynomials p,,..., Py radii r,...,7,, §y,...,5,, using the
implicit function theorem of Chapter Four, we will get a homomorphism
g — #(U) which, provided ¢ and 5 are Azumaya, will be an isomor-
phism (4.16). Since ¢ maps into 4, we will obtain a continuous homomor-
phism 5#— A. But things are not that simple. Since all irreducible
representations of A are i-dimensional, we have have (see 1.13) that
sp;(a) = @ for j <i. This does not imply that sp,(a) C {\Al,-” (a trivial
counterexample: let a, = --- = a, = 0). Even if sp,(a) C M/, we do not
know that psp,(a) C M,.” (see 1.15), and even if psp;(a) C Mi", can we
find suitable p,,..., p, and corresponding radii such that U, = U C M{'?
If this can be done, then the machinery of Chapter Four will apply. The
difficulties can be overcome. As A4 is Azumaya, Z(A) = F(A) (1.3); in
particular, 1 € F(A), there exists P,, a free polynomial without constant
term which is central for i X i matrices, and b,,...,b,, € A, such that
Py(by,...,b,) = Py(b) =1. Let p, =1 — P,. Let us use the construction
of Chapter Four, p,..., p, being free polynomials in X,..., X,, p, a
free polynomial in Xj,..., X, . We choose r, > ||a,||,...,r, > ||la,ll, s; >
lpo(@)---55,> 1P (@)l We take F* to be the free power series
algebrain X;,..., X,, X{,..., X, Y},...,Y,, Y, with the radii r,...,r,,
00, ..., 00, Sp5.-t58, 1. We have a continuous homomorphism (2.4)
Fr->4,1-1, X~ a,....,X,~a, X ~b,....,X,~b, Y —
pi(a),.... Y, = pa), Y, = 0=1— Py(b) = py(b). This homomor-
phism vanishes on the closed ideal generated in #* by Y, — py, Y; —
Py ---» Y, — p,, and by all polynomial identities of ’ Letting ¥* be the
quotient, we obtain a map ¥ > 4, X, - ay,...,X,~a, X =
b,...., X, —b,. Let

Ut= {(xl,...,xn,x{,...,x:n) € M *™: there is a representation

G > A, X, > x50, X, X, X{ o X0, X o X}

Now U*= U X U’, where Uc M, U c M, in fact (4.6) U =
((x},...,x.) € M™ |py(x)| <1}, and U € M" (for Py=1— p,
vanishes on M), hence U C M”*™. By (4.16), the map ¥ — H#"=
A (U™) is an isomorphism. This shows

6.1. PROPOSITION. There is a unique continuous homomorphism ¢ (U™)
- A4,1-1, X;—a,....,X,—a, X = by,...,X, = b,. (Uniqueness
follows from polynomial density (4.17)).
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This is not satisfactory yet, because

(a) we do not know U™ in terms of analytic inequalities;

(b) we are interested in functions of a,...,a,, and b,,..., b, have
been thrown in.

In order to get rid of the b,,..., b,,, observe that S#(U*) = Z(U™).
Restrict the map J#(U*) — A to the algebra of n generic matrices
generated by X;,..., X, and extend it by continuity to the closure, viz.
R(U) (recall that U™ is a product domain). This implies

6.2. PROPOSITION. There is a (unique) continuous homomorphism
RAU)—> 4,1~ 1, X, >a,....,X,—a,

All we know about U is (4.5). We let
U*={xeM" p(x)<r,...,p(x,) <1,

ppi(x) < sp,...,0p,(x) < s,)

Then U* 2 U (44), which gives a homomorphism Z(U*) - 2(U), and
(6.2) yields

6.3. PROPOSITION. There is a unique continuous homomorphism Z(U *)
- 4,1~»1, X, ~a,....,X,~a,

The proposition is not quite optimal: we chose r, > ||a,l},...,r, >
la,ll, su > lp(D],---,s,> |lp,(a)l; and we define U* by spectral radii.
Fortunately, we can express everything in terms of spectral radii. Take
F > p(ay),.... 7, > p(a,), 5, > ppy(a),...,5, > pp,(a); then for k large
enough, [lafl| < 7., llakll < 7, (@) < 5E,.., I PA(a)ll < 5. We
just repeat the whole construction, but with (n + ¢) extra polynomials
X{, .., XY, pt,..., py, and radii Ff,...,F¥, 5f,...,5% Since p(x{)=
p(x))%,...,(6.3) becomes

6.4. THEOREM. If
W= {xeM"p(x)<h,...,p(x,) <F,

ppl(x) < El""’ppq(x) < §q}’

there is a unique continuous homomorphism Z(W) —» A, X, = ay,..., X,
= a,.
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This gives the functional calculus on polynomial polyhedra for Banach
Azumaya algebras of constant rank. Now let A, be a closed unital
subalgebra of the Banach algebra A, Azumaya of rank i°. Let a,...,q, €
A,. We have

6.5. PROPOSITION. With W as in (6.4), there is a unique continuous
homomorphism Z(W) - A,,1 -1, X; —» a,,..., X, — a,.

Proof. This follows immediately from (6.4), since 4, is closed in 4.

6.6. PROPOSITION. If A, is a Banach Azumaya algebra, it is a closed
subalgebra of a Banach Azumaya algebra of constant rank.

Proof. Let A, = $;=1Aj’ A; Azumaya of rank j2. Let k = i! We
can embed 4, as a closed subalgebra of M, ,(A4;) which is Azumaya of
rank k2, and 4, = @ jf= M, ,i(A)); the embedding has closed range, for
the sum is direct.

6.7. COROLLARY. Proposition 6.5 holds for closed subalgebras of Banach
Azumaya algebras (of nonconstant rank).

Now let 4 be a Banach Azumaya algebra, 4, a closed subalgebra of
A, and A, the quotient of A, by a closed ideal. Let (a,...,a,) € 4. Lift
itto(a,...,a,) € Ag.

6.8. PROPOSITION. If r; > p(&,),...,1, > p(a,), s, > ppy(@),...,s,
> pp,(a), if
W={xeM"p(x)<n,..p(x,) <r,

ppy(x) <sp,...,pp,(x) <s,},

there is a unique continuous homomorphism R(W)— A,, 1 =1, X; —
a,...,X,—a,.

Proof. Compose Z(W) — A, (6.5) with the quotient map A, — A4,.

This proposition is not fully satisfactory: we had to take r, >
p(a,),.... We do not know if it holds with r, > p(a,),.... Anyway, (6.8)
gives us the

6.9. COROLLARY. If A, is a topological subquotient of a Banach
Azumaya algebra of rank i*, and a, ..., a, € A,, there is a unique continu-
ous homomorphism (M) - A,1 -1, X, > a,,..., X, a,,.
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We are ready for a partial answer to Taylor’s question.

6.10. PROPOSITION. If A, is a topological subquotient of a Banach
Azumaya algebra, if a, ..., a, € A,, there is a unique continuous homomor-
phism 2(Q) > A,1- 1, X, = a,,..., X, > a,.

Proof. Compose 2(2) = Z(M]") — A,. To see that D(2) = Z(M}"),
combine (2.11) and the argument of (3.3).

6.11. REMARK. It is not known if every finitely generated Banach
Pl-algebra is a topological subquotient of a Banach Azumaya algebra. In a
purely algebraic setting, every algebra with n generators that satisfies
some identity is a quotient of the algebra R of n generic i X i matrices
for some i (1.1), and R can be presented as a subalgebra of a matrix
(hence Azumaya) algebra. In the Banach case, the best we can say is

6.12. PROPOSITION. Let A < M, be a unital Banach algebra. Assume
a € F(A) and a is not a topological divisor of zero. Then A can be
embedded as a closed subalgebra of a Banach algebra B which is Azumaya of
rank i*.

Proof. Since a is not a topological divisor of zero, there is a Banach
algebra B that isometrically contains 4 and where a is invertible [3] (here
A is not commutative, but a is central, and Aren’s proof works in our
case). Now a € F(B), a invertible in B imply 1 € F(B), and B is
Azumaya.

We now employ the results of Chapter Five.
Let A4 be a unital Banach algebra, 4 < M,; take (a,, a,) € 4%

6.13. PROPOSITION. There is a unique continuous homomorphism
R(M}) > A,1- 1, X; > a;, X, > a,.

Proof. This is just a restatement of (5.7).

6.14. COROLLARY. There is a continuous homomorphism 2(§}) — A,
1-1 X —a, X, a,.

Let us summarize (2.7, 6.10, 6.14).
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6.15. THEOREM. Let A be a unital Banach algebra; a,...,a, € A. In
order for a continuous homomorphism 2(Q) - 4,1 -1, X; - a,,..., X,
— a, to exist, it is necessary that B, the closed subalgebra of A generated by
1, a,...,a, satisfy a polynomial identity; it is sufficient that B be a
topological subquotient of a Banach Azumaya algebra or that n =2 and

B < M,. We conjecture that the necessary condition is also sufficient.

In Chapter One, we defined various notions of spectrum, including
the “polynomial spectrum” (1.15). We can restate (6.5) in terms of p sp.
First we need a

6.16. PROPOSITION. Let A be a unital Banach PI-algebra, and b € A.
Then p(b) = sup{ pp(b): ¢ irreducible representation of A}.

Proof. 1t is obvious that p(b) > pe(b) for all p. Now there is s € C,
|s| = p(b), such that (b — s) is not invertible, hence not invertible on
either side [9, 11.4.3]. Thus A(b — s) is a proper left ideal, which is
contained in a maximal left ideal I. This gives an irreducible (finite-di-
mensional, 1.12) representation ¢ of 4. As (b — 5) = @(b) — s is not
invertible, pp(b) > |s| = @(b).

Take p,..., p, free polynomials, r,,...,r,, §y,...,5,> 0. An open
set of the form

W = {x € M. p(xl) < rl,---,P(xn) < T

ppl(x) < S19~~-appq(x) < Sq}

is called a polynomial polyhedron.

6.17. PROPOSITION. Let A be a Banach algebra that is Azumaya of rank
i* over its center. Let (a,...,a,)=a € A" If W C M" is a polynomial
polyhedron that contains sp,(a) = fsp,(a), there is a continuous homomor-
phism Z(W) > A,1->1, X, =~ ay,..., X, > a,.

Proof. Recall (6.4). All we have to show is that W 2 sp,(a) implies

r > p(ay),...,r, > p(a,), s, > ppy(a),...,s, > pp,(a). By (6.16), p(a,)
= sup{ pp(a,): ¢ irreducible}. So

sp,(a) € W= (9(a)),...,9(a,)) € W (all p)
= pg(a,) <r (all ¢)

= p(a)<r,....
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Here is the corresponding formulation of (6.5). Let A4, be a closed
subalgebra of 4, a Banach Azumaya of rank i%. In view of (6.6), we can
assume that the dimension of all irreducible representations of A4 divides
i (this is automatic when i = 2). Take a = (aq,...,a,) € 4.

6.18. PROPOSITION. If W is a polynomial polyhedron that contains
fsp;(a), there is a continuous homomorphism Z(W) - A,, 1~ 1, X; —
a,....,X,—a,.

Proof. Similar to (6.17), as every irreducible representation yields a
i-dimensional representation.

6.19. REMARK. In the commutative case, the Arens-Calderon trick [8,
3.2.3] allows us to obtain a functional calculus on (an open neighborhood
of) the spectrum. For Pl-algebras, it is not clear that we can pass from
polynomial polyhedra to arbitrary open sets containing the full spectrum.
Every commutative algebra with unit “contains” C, so the resolvent
equation X} _,(a, — s,)x, = 1 makes sense, and is solvable precisely for
s & sp(a). For A < M,, there is in general no embedding M; — A4, and
the problem should be formulated differently.
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