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EXPOSED POINTS OF LEFT INVARIANT MEANS

ZHUOCHENG YANG

If S is a left amenable semigroup, let ML(S) be the set of left
invariant means on m(S), the space of bounded real-valued functions on
S. We prove in this paper that a left invariant mean on m(S) is an
exposed point of ML(S) if and only if it is the arithmetic average on a
minimal finite left ideal of S. In particular, ML(S) has no exposed point
when S is an infinite group. We also prove that if ML(S) has an
exposed point, then it is the w*-closed convex hull of all its exposed
points. This gives another proof of the Granirer-Klawe theorem on the
dimension of ML(S).

1. Introduction. For an arbitrary set X, let m(X) be the Banach
space of bounded real-valued functions on X with the supremum norm.
An element μ G m ( I ) * is called a mean on m(X) if μ is positive and
||μ|| = 1. A finite mean on X is a positive element μ e lι{X) with
\\μ\\ι = 1, and such that the support of μ, the set {JC e X\μ{x) > 0}, is
finite. Any finite mean, considered as an element of m{X)*> is a mean.
And the set of all finite means is w*-dense in the set of all means on X
(see Day [2]).

Let S be a semigroup. A mean μ on m(S) is left invariant if

/*(/) = μ(lsf)
 ΐoΐ a 1 1 / G m(s) a n d s G S> w h e r e hf G m(s) i s defined

by (lsf)(t) = f(st), t G S. When m(S) has a left invariant mean, we say
S is left amenable, and denote by ML(S) the set of all left invariant
means on m(S). ML(S) is convex and w*-compact in m(S)* (cf. [2]). If
s e S and A c S, it is easy to see that μ(χsA) > μ(χA) f°Γ anY μ G

ML(S).
For a mean μ on m(S) and s e S, we define s μ e m ^ ) * by

(s ' fθ/ = PUsf)* f G Ή ( £ ) . S μ is also a mean on m(S), and (5/) μ =
s (/ μ) for 5, / e S. If {μλ} is a net of means on m(S), we say that
{μλ} is w*-convergent to left invariance if the net {s μλ — μλ} is
w*-convergent to 0 for each s e S. Day [2] proved that S is left amenable
if and only if there exists a net of finite means w*-convergent to left
invariance.

When S is left amenable, ML(S), as a w*-compact convex set, is the
w*-closed convex hull of all its extreme points. It is natural to ask how
many exposed points (with respect to the w*-topology) ML(S) has. Chou
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[1] proved that if G is a countable infinite amenable group, then ML(G)
has no exposed points. Later, Granirer [4] studied intensively the existence
of exposed points of subsets of ML(S) for a countable left amenable
semigroup S. In particular, he proved [4, Cor. 4.1] that if S is a countable
left amenable semigroup, then ML(S) has exposed points if and only if S
has finite left ideals. In this paper we characterize the exposed points of
ML(S) for an arbitrary left amenable semigroup S as the arithmetic
averages on minimal finite left ideals. Thus we are abel to prove Chou and
Granirer's results without the countability condition. We also prove that if
ML(S) has an exposed point, then it is the w*-closed convex hull of all its
exposed points. This gives another proof of the Granirer-Klawe Theorem
on the dimension of ML(S) (see [5]).

This paper will form part of my thesis under the supervision of
Professor Anthony T. Lau. The author is most indebted to Professor Lau
for his valuable suggestions and encouragement.

2. Some lemmas. In this section we are going to prove some
lemmas which are used to obtain the main results. They are also of
independent interest.

For convenience we write μ(A) for μ(χA) when μ is a mean and A is
a subset of the underlying set or semigroup.

LEMMA 2.1. Let X be an infinite set, {μ\}\^\ a net of finite means
w*-convergent to a mean μ. Let K be an infinite cardinal. If for each subset
A of X, μ(A) = 0 whenever \A\ < /c, then |Λ| > K.

Proof. Suppose |Λ| = K. We are going to construct a function / e
m{X) such that μλ(f) diverges.

Well order Λas{λ f t}α < ι c . We define/ by transfiniteinduction.
Let a < K be an ordinal. Suppose we have defined for each β < a a

function fβ with range {0,1} on a subset Aβ of X, satisfying
(1) If β is finite, then Aβ is finite. If β is infinite, then \Aβ\ < \β\.
(2) βx < β2 < a => Aβi c Aβ2 and fβi \ Aβγ = fβχ.
(3) If β < α, then there exists λ', λ" > λ^ in Λ, such that the supports

of μλ, and μλ» are contained in Aβ, and μλ>(fβ) < 1/4, μ\»(fβ)>
3/4.

If a is finite, then ̂ β<aAβ is finite. If a is infinite, then \V)β<a Aβ\ < \a\2

= |α|. In both cases μ(Uβ<aAβ) = 0. μλ -> μ implies that there exists
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λ' > λa in A, such that μλ,(X\\Jβ<aAβ) > 3/4. Also since \Uβ<aAβ

U suppμ v | < /c, there exists λ" > λα in Λ such that

U ^ U s u p p μ v ) >3/4.

Let Aa = Uβ<aAβ U suppμv U suppμv,, and define

fβ(s), if s G Aβ for some β < a,

/A*) =
0, if s e suppμv\ U Ap,

1, ifjeΛβ\(

β<a

It is easy to see that Aa and fa satisfy conditions (l)-(3).
Now let f = fa on Aa, a < K, and / = 0 on X\Uβ<aAa. Then

μλ(f) diverges. In fact

liminfμλ(/) < \ < | < limsupμλ(/).

COROLLARY 2.2. Le/ S be an infinite left amenable right cancellative
semigroup, ( μ λ } λ G Λ a net of finite means w*-convergent to a left invariant
mean μ. Then |Λ| > |5|.

Proof, Let A c S be such that \A\ < \S\. Then it is not difficult to see
that μ(A) = 0. A proof can be found in [5, Prop. 2.5].

LEMMA 2.3. Let S be an infinite left amenable semigroup, μ an extreme
point of ML(S). Define the cardinal function κ(μ) = min{|>l| \A <z S and
μ(A) = 1}. // κ(μ) is infinite, then for each subset B of S, \B\ < κ(μ)
implies μ(B) = 0.

Proof. Suppose the contrary that there is a set B c S such that
\B\ < κ(μ) and μ(B) > 0.

If B is finite, then there is an s e S with μ({s}) > 0. For any t G S,
μ({ ts}) > μ({s}). So the left ideal / = Ss of S is finite, and 0 < μ(/) < 1
since fc(μ) is infinite. For any / e S, μ(tl) > μ(I) and tl c I give that
μ(tl) = μ(/) and μ(IAtΙ) = 0.

Suppose B is infinite. Let x = sup{μ(A)\A <z S, \A\<\B\). By
taking countable union, we can get a subset / of S such that |/| = \B\ and
μ(/) = x. For any t e S, μ(I) < μ(tl) < μ(tl U /) < x = μ(/) since
|/ U tl\ = \I\ = \B\. So the equalities hold everywhere. Thus we also have
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0 < μ(I) < 1, μ(/) = μ(tl) and μ(/Δtf) = 0. Denote by t~\tl) the set

{ je,S | teG//}. It is easy to see that μ(IΔr\tI)) = 0, since r\tl) D /

and μίrH//)) = μ(//) = μ(/)
Let μx e rnί^)* be defined by

Then μx is positive, ||μ1|| = 1, and is left invariant:

μ(7) μ(7)

χtr) μ(f χr)
= =

μ(7)
since μ(7Δr1(ί7)) = 0 and μ(7Δ/7) = 0.

Let μ2 = (μ - μ(7) μO/fl - μ(7)). Then f o r / e

=

μ(S\7)

So μ2 is also in ML(S), and

μ = μ ( 7 ) μ i + ( l - μ ( 7 ) ) μ 2

is not an extreme point.

LEMMA 2.4. Let S be a left amenable semigroup, {μ«}« er
 a n e t °f

finite means w*-convergent to left invariance. Then for any a e Γ, any

ε > 0, and any sl9...9sne S, there exists a finite mean μ'a which is a

convex combination of elements μβ, β > α, such that

Proof. This was proved by Day [2, p. 524].

3. Main results. We are now ready to prove our main results

concerning the exposed points of ML(S). In all cases we shall consider

only the w*-topology on ML(S).

THEOREM 3.1. Let S be a left amenable semigroup, and μ an exposed

point of ML(S) (if any). Then μ is a finite mean.
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Proof. Let μ be an extreme point of ML(S) and define κ(μ) as in
Lemma 2.3. Suppose μ is not a finite mean. Then κ(μ) is infinite. Take
^ c 5 s o that \A\ = κ(μ) and μ(A) = 1. Then for any t e S, μ(tA Π A)
= 1 since μ(tA) = 1. In particular tA Π A Φ 0 i.e., there exist a,b e A
with to = 6. For fixed a, b e Λ, let S(β ̂  = {/ e S| to = 6}. Then

Pick / e mίS) with | |/ | | = 1, and choose a net {μα}«<=r °f finite
means w*-convergent to μ. Then {μα}α G Γ is w*-convergent to left
invariance and μa(f) -> μ(/).

Let Λ be the set of all finite nonempty subsets of A X A, directed by
inclusion. Then Λ is a directed set with |Λ| = \A\ = κ(μ). Take F =
{(ai9 bt) 11 = 1,..., n} e Λ. There exists α e Γ such that for any β > α,
\μβ(f) - μ(f)\ < l/2«. By the finite intersection property on right ideals
(see [3]), ΠίLi^S Φ 0 . Choose a e Π ^ ^ ^ (α is not necessarily in A),
say a = ats^ / = 1,...,«. By Lemma 2.4, there exists a finite mean μ'a
which is a convex combination of elements μβ, β > α, such that

\W || <

and

Fort e 5 ( α > 6 ) , we have

/ -(β μ'β) - β μ'J =||(V,) μ'β - β • μ'J < \-\

Also

Define μF=a'μ'a. Then the net { μ f } F e Λ w*-converges to left
invariance and limμF(/) = μ(f). Since μ is an extreme point of ML(S),
by Lemma 2.3, for any B c 5, |2?| < /c(μ) implies μ(i?) = 0. By Lemma
2.1, { μ f } f G Λ does not converge to μ since |Λ| = \A\ = κ(μ). So it has a
w*-cluster point μx different from μ. Since μx G ML(S) and μ^/) =
μ(/), μ is not an exposed point of ML(S).

For a finite nonempty set / c 5, the arithmetic average on / is the
finite mean μ such that for each fl£/,μ({fl}) =

THEOREM 3.2. Let S be a left amenable semigroup. Then μ is an
exposed point of ML(S) if and only if it is the arithmetic average on a
minimal finite left ideal of S.
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Proof. Let / be a minimal finite left ideal of S. By a result of Mitchell
([6, pp. 256-257]), there exists μ e ML(S) with μ(I) = 1. Since la = I
for any a ^ /, / i s right cancellative. Also μ(α/) = μ(I) implies that
al = / for any a e S. Thus / is left cancellative and in fact a finite group.
μ as the unique invariant mean on / is the arithmetic average on /. Let /
be the characteristic function of /. Then μ(f) = 1. For any μλ ^ ML(S),
if μx{f) = μ\(I) = 1, then by the above argument, μ = μλ. Thus μ is an
exposed point of ML(S). (Remark. Part of the proof is adopted from [3,
Thm. 4.1].)

Suppose μ is an exposed point of ML(S). Then μ is a finite mean by
Theorem 3.1. Let / be the support of μ. For a e I and t e S, μ({ ta}) >
μ({ tf}) > 0, so ta e /. Thus / is a left ideal and it contains a minimal left
ideal Iv If I Φ Iv then as in the proof of Lemma 2.3 we have 0 < μ(I1) < 1
and μ(IιΔtI1) = 0 for any t e S. These give that μ is not an extreme
point of ML(S). So / must be a minimal finite left ideal. By the proof of
the first part, μ is the arithmetic average on /.

COROLLARY 3.3. For any left amenable semigroup S, ML(S) has
exposed points if and only if S has finite left ideals. The number of exposed
points of ML(S) is exactly the number of minimal finite left ideals of S.

COROLLARY 3.4. If S is a right cancellative, left amenable infinite
semigroup, then ML(S) has no exposed points.

Proof. For any s e S, \Ss\ = |,S|. So S does not have finite left ideals.

COROLLARY 3.5. 7/dim(ML(5')) < oo, then S has finite left ideals.

Proof. If dim(ML(S)) < oo, then ML(S) is a compact convex subset
of a Banach space. So it has exposed points.

COROLLARY 3.6. Different exposed points of ML(S) are linearly inde-
pendent.

Corollary 3.3 extends [4], Corollary 4.1. Corollary 3.5 is the main
result of Klawe [5].

Suppose S is an infinite left amenable semigroup and K is an
invariant subset of βS. Let M(S,K) denote the set of all μ e ML(S)
with its support contained in K (see [1] for the definitions). Chou [1]
proved that if G is a countably infinite amenable group, then M(G,K)
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has no exposed points. He asked whether this holds for any infinite
amenable group. Our Corollary 3.4 gives a partial answer to this problem
with K = βG.

Motivated by Granirer [3, Thm. 3.1], we get the following generaliza-
tion.

THEOREM 3.7. If ML(S) has exposed points, then it is the w*-closed
convex hull of all its exposed points.

Proof. Suppose ML(S) has exposed points. Then S has finite left
ideals. Let {Ia} be the class of all its minimal finite left ideals and
A = ΌIa. Then A is a right ideal of S since for any s e S, Ias is also a
minimal left ideal. For any μ e ML(S), μ(A) = 1. Thus μ is the w*-limit
of a net { μ λ } λ e Λ o f finite means with supports in A. For each λ e A,
define

where φa is the arithmetic average on Ia. Then μ'λ is a convex combina-
tion of some φa. Take a minimal finite left ideal /0 = {av...,an}. For
any Ia and any a e Ia9 it is easy to see that ΣjLitf,- μχ(a) = Mλ(̂ α) S°
fix = w~1Σ"βlΛJ μλ Since {μλ} converges to left invariance, we obtain
that {μ'λ} converges to μ in the w*-topology.

COROLLARY 3.8. (Granirer-Klawe Theorem. See [5].) For any left
amenable semigroup S, dim( ML(S)) = n if and only ifS contains exactly n
minimal finite left ideals.

Proof. If S has n minimal finite ideals, then ML(S) has n exposed
points. By Corollary 3.6, dim(ML(S)) > n. By Theorem 3.7, ML(S) is
the convex hull of those exposed points. So dim(ML(S)) = w.

On the other hand, if dim(ML(S)) = n, by Corollary 3.5, S has
finite left ideals. Again by Corollary 3.6, S has only finitely many
minimal finite left ideals. By the proof of the first part, this number is n.
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