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PLANE CURVES AND REMOVABLE SETS

R. KAUFMAN

Various function spaces defined outside a curve Γ are introduced,
along with their subspaces of holomorphic functions. The removability of
Γ depends on the modulus of continuity; the results obtained are quite
precise, as shown by examples based on careful estimation of Fourier
coefficients. It is most surprising that the results are nearly the same for
the holomorphic functions, and even for functions conformal off Γ.

Let Γ be the graph of a continuous real function y = y(x),0 < x < 1.
Then Cr(T) (r = 1,2,3,...) denotes the class of complex functions,
continuous on R2 and of class Cr(R2 \ Γ), whose partial derivatives up to
order r admit continuous extensions to all of i?2. Again, Ar(T) contains
the elements of Cr(Γ), holomorphic in R2\ Γ. We say that Γ is remova-
ble C\ abbreviated Nr9 if the functions in Cr(Γ) are necessarily of class
C\R2), and N? is defined with Ar(T) in place of Cr(Γ). (Remark 1,
explaining the definition of Nr9 is placed after Theorem 2.)

Our conclusions on class Nr and JVr

α can be summarized as follows: a
close connection exists between the modulus of continuity of y and
removability properties of Γ, and this connection is about the same for Nr

and the (ostensibly larger) class Nf. We do not know how to prove that
N? Φ Nr; an explanation for this anomaly appears as Remark 2. In
finding curves Γ, not of class Nf9 we are led to find elements of Ar(T)
with even stronger properties, so that one obtains a larger class that might
coincide with N?.

The modulus of continuity of y is

ω(h) = ω(y;h) = s u p d ^ x j - y ( x 2 ) \ 9 \xλ - x2\ <h).

THEOREM 1. // limsupΛ_oω(Λ)/r 1 / r + 1 < + oo, then Γ is of class Nr.

THEOREM 2. Let \p(t) be a positive, increasing function on 0 < t < 1
and limsupψ(O*~1 / r + 1 = + oo; then there is a curve Γ: y = y(x), 0 < x
< 1, such that

limsupω(/z)/ψ(A) = 0,
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and an element φ of Ar(T), which is not entire, defining a homeomorphism
ofR2 onto itself, whose inverse is a contraction mapping of R2.

For the method used, compare [2].

1. Proof of Theorem 1. Let M be a square |x| < c, \y\ < c containing
Γ and φ e Cr(Γ). When (x, yλ) e M, (x, y2) e M, then plainly \φ(x, yλ)
— φ(x,y2)\ ^ c\yλ. — y2\, for each fixed function φ in Cr(Γ) c C\T).
Suppose next that ( ^ j j e j l ί , (x2,y2)^M, and y1>y(x1), y2>
y(x2). We join (xl9 yλ) to (x2,y2) by a path γ, entirely in M \ Γ ;
clearly the length / of γ can be made at most |̂ cx — JV:2| + |jμx — j ^ 2 | -h
2ω(\xλ — x2\). Let p(x, y) be the Taylor polynomial, of order r, of φ
at zv We assert that φ(x2, y2) — p(x2, y2)

 = 0(1) * l\ where o(l) refers
to small distances \zλ - z2\. More exactly φ(x, y) - p(x, y) =
o{\) l(x,y)r, where /(x, y) is the distance between (xl9 yλ) and (x, ̂ )
along γ. This is true if r = 0 (no derivatives!) and then follows by induc-
tion. Combining this with out estimate for φ(x, yλ) - φ(x, y2), we see
that for zl9 z2 G M

x - z 2 | ) + o ί l j ω d z x - z 2 | ) r

say.
Let g e C\R2\ jjg(x,y)dxdy = 1, g > 0, g(z) = 0 when \z\ > 1,

and then define

<Ph(z) = Λ~2 ff φ(x -y,y- v)g(h~ιu, h~λυ) dxdy.

We shall show that VφΛ converges in I}(M) as h -> 0 + along a
subsequence A,,, and this clearly proves that φ e Cι(R2). On the part of
M defined by d(z, Γ) > A, VφΛ = 0(1), and on the remaining part of M
a change of variables yields the estimate VφΛ = O(A-1)Ω(A).

Now lim inf A-1Ω(A)ω(A) = 0, so it will be enough to prove that
m{z: d(z, Γ) < A} = 0(co(A)) + O(A). To do so we observe that when
d(z, Γ) < A and (k - 1) < x < kh9 then \y(x) -y((k - i)A)| < A +
ω(A), so the measure is O(A-1) O(A) O(Λ + ω(A)).

In the definition of C7(Γ), the continuity of the rth order derivatives
can be weakened to boundedness, provided liminf ω(h)h'ι/r+1 = 0. It is
unclear whether both hypotheses can be retained in the weaker form, to
conclude that Vφ is locally in L00.

2. Proof of Theorem 2. Because of the complications of the construc-
tion, we present an outline first. The operator / is defined by

f{z)(z-ζ)-ιdxdy.
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When / is smooth and integrable, then // is smooth, and 3(//)
= ^(d/dx + id/dy)(Jf) = -πf (a formula that will be useful later).
The proof begins with a smooth function /0 > 0, vanishing off 0 <
x < 1/2, 0 < y < 1/2, and constructs fl9 . . . , fk, . . . so that
J(fQ - - - fk)9..., 3r/(/o fu)βyr converge uniformly as k -> oo. The
singular set of the limit w will be the graph of a function defined over a
set E c [0,1], and linear interpolation will yield the graph Γ. Since
drw/dyr is continuous on all of i?2, w e Ar(T) by the Cauchy-Riemann
equations. Using the operator 3, we then find that φ = +w — Az with
a constant A > 0, has the properties claimed.

LEMMA 1. Letg(= C\R2), g = 0 when x2 + y2 > 1. Then

Jj εxp2πi(ux + μy)g(x9y)(z - ζ)'ιdxdy = 0(1) -(1 + \u\ + \v\y\

Proof. It will be convenient to abbreviate e(t) = exp2τπϊ. Clearly
nothing is lost in assuming v = 0, u > 0. Moreover, only the case \ζ \ < 2
is interesting and f = 0 is typical. Let H(x, y) be a radial function, of
class C1 and vanishing for x2 4- y2 > 1, and let i/(0,0) = 1. Then

if e(ux)H(x,y)z-ιdxdy= f2" Γe(urcosθ)H(r)e-iθdrdθ
JJ Jo Jo

= [2π Γ e(urcosθ)H(r)cosθdrdθ.

Now JQe(urcosθ)cosθdr = O(\u\~ι) uniformly for u > 0, t > 0, so the
integral is O(\u\'ι)9 since /0°° \H\r)\dr < oo.

Moreover, [g(x, y) — g(0,0)i/(x, ^)](JC + iy)~ι has a gradient in
L^i?2), whence

e(ux)[g{x9y) - g(0,0)H(x,y)](x + iyγ
ιdxdy =

A sequence of functions. We choose and fix a function a
such that a > 0, /_\^(0 Λ = 1, and α(ί) = 0 for |r| > 1. We then define
Aτ(x) (or A(T; x) for typographical reasons) for T> 2 as Ta(Tx) for
|JC| < 1/2, and extend Aτ to be 1-periodic on R. For the Fourier
expansion

Aτ{x) = 1 + Σ'aτ

ne(nx)

we have

\aτ

m\ < cp

for/? = 1,2,3,—
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Let now G(x, y) be a function of class C00 and compact support, let
S > 2 and T > 2 be parameters, and

F(S,T;ξ) = // G(x9y)A(T;y - Sx)(z - ξ

LEMMA 2. i^(5, Γ) am/ d'F(S, T)/dη? = O(TrS~l), I < p < r.

Proof. Writing the Fourier expansion

A(T; y-Sx)-l = Σ'aτ

ne(ny - nSx),

we substitute this in F(S, T; ξ). The partial derivatives 3/3η, d2/dη2,...
can be effected by applying 3/3}>, d2/dy2,... to the cofactor of (z — f)"1.
After using Leibniz' rule in these derivatives, and applying Lemma 1 to
the resulting integrals we get, for dr/dyr (taking p = r + 1) c(G)Σ™nr -
min(l,A2-/"1Γr+1)«-15-1 < c(G)TrS\

To prove Theorem 2, we choose a smooth function Go > 0, vanishing
off 0 < x < 1, 0 < y < 1/2, and choose Sk > Tk > 4 + k so that the
sequences defined by

y-Sjx)(z-ςyιdxdy,

and dpwk/dηp (1 < p < r) converge uniformly; of course we require that
w = limn^ Φ 0. At each step, this can be accomplished by choosing
Sk = ck__xTk, with a constant ck_γ depending only on Go and
Sl9 Tl9 . . . , Sk_v Tk_v Furthermore, since limsup ψ(ί)ί~ 1 / r + 1 = 4 oo, we
can choose Tk so that Tk

ι < Λ~1ψ(cik-Λ~r""1)
Clearly w is holomorphic off the set 0 < x < 1, 0 < y < \ \y — Skx\

< Tk

ι (modulo 1). On this set y is a single-valued function of JC, y = y(x);
let E be the closed set in [0,1] over which y is defined, and let y be
obtained from y by linear interpolation on the intervals contiguous to E
in its convex hull.

We first calculate the modulus of continuity cυ(y; h) for certain values
of h > 0. Let (xl9yι),(x2,y2) belong to E, and \xλ - x2\ < Sk

λ/4. We
write, for j = 1,2

Since Tk

ι < 1/4 and S'̂ |x1 - x2\ < 1/4, we have \yλ - y2\ < 2Tk

ι 4-
Sk\xλ - x2\ < 1 (modulo 1). Since 1^ - y2\ < 1/2, then Nλ = N2 and
l̂ x - y2\ < 2Tk

ι + Sk\xx - x2\. It follows from this that \yλ - y2\ <
2Tk

ι 4- 2Sk\xι - x2\ for all values of xl9x2 in £, that is ω(y, h) <
2Tk

ι 4- 2Skh. From this it follows that ω(y, h) < ATk

ι 4 ASkh, and in
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particular ω(y, Sk

ιTk

ι) < STk

ι. We recall that Sk = ck_{Γr

k, so that

or liminf co(j/, Λ)/ψ(Λ) = 0.
We shall now select a constant v4 > 0 so that each mapping wk - Az

= φΛ has positive determinant and \dφk\ > \dz\. The determinant is \dφk\
2

— Iθφ^)2, and the minimum of \dφk\/\dz\ is | |9<p |̂ — |9<p̂ | |. Thus we need
to choose A so that \dwk — A\ > 1 -I- fiwk\, using the inequalities 1dwk/dy\
< cl9 Hwk < 0. This can be done with A = 1 + 2cλ. It is worthwhile to
observe that φ(Γ) must have positive measure, for otherwise φ~ι is entire
and w Ξ 0. This completes the proof of Theorem 2.

REMARK 1. The function w found in Theorem 2 can be represented

with a certain non-negative μ on Γ. Choosing Γ of class Nf+19 but not Nf
(this will be true if ψ(ί) = ίσ, σ = 2(2r + 3)"1) we define

Then 3Φ = -l/2w off G, and Φ has a gradient locally in Zλ Hence
3Φ = -w/2 in the classical sense, and since Φ is real, Φ e Cr+1(T). Now
Φ e C^Λ2) is clear, but Φ ί C2(R2)y because V 2Φ = 2πμ, a singular
measure.

REMARK 2. It seems very difficult to prove that JVf # iVlβ To explain
this, we summarize a sufficient condition for a Cantor set S to be of class
N°9 from [1]. To each ε > 0, there exist Jordan curves yl9..., ym in
R2\S, of length < ε, surrounding S in the homology sense, and Σ/(γ7)

2

< C. Unfortunately, this condition also forces S e Nv Our condition can
be adapted to curves crossing Γ only in horizontal segments, and again
forces Γ e Nv
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